in

Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting

  • 1.

    Eschenmoser, A. The search for the chemistry of life’s origin. Tetrahedron 63, 12821–12844 (2007).

    CAS  Article  Google Scholar 

  • 2.

    Eschenmoser, A. On a hypothetical generational relationship between hcn and constituents of the reductive citric acid cycle. Chem. Biodivers. 4, 554–573 (2007).

    CAS  Article  Google Scholar 

  • 3.

    Sagi, V. N. et al. Exploratory experiments on the chemistry of the “glyoxylate scenario”: formation of ketosugars from dihydroxyfumarate. J. Am. Chem. Soc. 134, 3577–3589 (2012).

    CAS  Article  Google Scholar 

  • 4.

    Butlerow, A. Bildung einer zuckerartigen substanz durch synthese. Justus Liebigs Ann. Chem. 120, 295–298 (1861).

    Article  Google Scholar 

  • 5.

    Schwartz, A. W. & de Graaf, R. M. The prebiotic synthesis of carbohydrates: a reassessment. J. Mol. Evol. 36, 101–106 (1993).

    CAS  Article  Google Scholar 

  • 6.

    Cairns-Smith, A. G., Ingram, P. & Walker, G. L. Formose production by minerals: possible relevance to the origin of life. J. Theor. Biol. 35, 601–604 (1972).

    CAS  Article  Google Scholar 

  • 7.

    Furukawa, Y. et al. Extraterrestrial ribose and other sugars in primitive meteorites. Proc. Natl Acad. Sci. 116, 24440–24445 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Appayee, C. & Breslow, R. Deuterium studies reveal a new mechanism for the formose reaction involving hydride shifts. J. Am. Chem. Soc. 136, 3720–3723 (2014).

    CAS  Article  Google Scholar 

  • 9.

    Mizuno, T. & Weiss, A. H. in Adv. Carbohydr. Chem. Biochem. Vol. 29 (eds R. Stuart Tipson & Derek Horton) 173–227 (Academic Press, 1974).

  • 10.

    Runge, K. & Mayer, R. Kohlenhydrate aus formaldehyd in gegenwart tertiärer amine. Justus Liebigs Ann. Chem. 707, 161–169 (1967).

    CAS  Article  Google Scholar 

  • 11.

    Wanzlick, H. W. Nucleophile carben-chemie. Angew. Chem. 74, 129–134 (1962).

    CAS  Article  Google Scholar 

  • 12.

    Weiss, A. H. & John, T. Homogeneously catalyzed formaldehyde condensation to carbohydrates. J. Catal. 32, 216–229 (1974).

    CAS  Article  Google Scholar 

  • 13.

    Pestunova, O. et al. Putative mechanism of the sugar formation on prebiotic Earth initiated by UV-radiation. Adv. Space Res. 36, 214–219 (2005).

    CAS  Article  Google Scholar 

  • 14.

    Matsumoto, T., Yamamoto, H. & Inoue, S. Selective formation of triose from formaldehyde catalyzed by thiazolium salt. J. Am. Chem. Soc. 106, 4829–4832 (1984).

    CAS  Article  Google Scholar 

  • 15.

    Beck, W. L. Über die beschleunigung der formaldehyd-kondensation mit organischen katalysatoren. Angew. Chem. 61, 186–188 (1949).

    Article  Google Scholar 

  • 16.

    Iqbal, Z. & Novalin, S. The formose reaction: a tool to produce synthetic carbohydrates within a regenerative life support system. Curr. Org. Chem. 16, 769–788 (2012).

    CAS  Article  Google Scholar 

  • 17.

    Shapiro, R. Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol. Biosph. 18, 71–85 (1988).

    CAS  Article  Google Scholar 

  • 18.

    Larralde, R., Robertson, M. P. & Miller, S. L. Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc. Natl Acad. Sci. 92, 8158–8160 (1995).

    CAS  Article  Google Scholar 

  • 19.

    De Bruijn, J. M., Kieboom, A. P. G. & Bekkiun, H. V. Alkaline degradation of monosaccharides VI1: the fhucto-fobmose reaction of mixtures of D-fructose and formaldehyde. J. Carbohydr. Chem. 5, 561–569 (1986).

    Article  Google Scholar 

  • 20.

    Lamour, S., Pallmann, S., Haas, M. & Trapp, O. Prebiotic sugar formation under nonaqueous conditions and mechanochemical acceleration. Life 9, 52 (2019).

    CAS  Article  Google Scholar 

  • 21.

    Hansma, H. G. Possible origin of life between mica sheets. J. Theor. Biol. 266, 175–188 (2010).

    CAS  Article  Google Scholar 

  • 22.

    Komiya, T. et al. Geology of the Eoarchean, >3.95Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics. Tectonophysics 662, 40–66 (2015).

    CAS  Article  Google Scholar 

  • 23.

    Buczkowski, D. L. & Wyrick, D. Y. in European Planetary Science Congress EPSC2015-2304 (2015).

  • 24.

    Bolm, C. et al. Mechanochemical activation of iron cyano complexes: a prebiotic impact scenario for the synthesis of α-amino acid derivatives. Angew. Chem. Int. Ed. 57, 2423–2426 (2018).

    CAS  Article  Google Scholar 

  • 25.

    McCaffrey, V. P. et al. Reactivity and survivability of glycolaldehyde in simulated meteorite impact experiments. Orig. Life Evol. Biosph. 44, 29–42 (2014).

    CAS  Article  Google Scholar 

  • 26.

    Friščić, T., Mottillo, C. & Titi, H. M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed. 59, 1018–1029 (2020).

    Article  Google Scholar 

  • 27.

    Bolm, C. & Hernández, J. G. Mechanochemistry of gaseous reactants. Angew. Chem. Int. Ed. 58, 3285–3299 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Dayaker, G. et al. Catalytic room-temperature C−N coupling of amides and isocyanates by using mechanochemistry. ChemSusChem 13, 2966–2972 (2020).

    CAS  Article  Google Scholar 

  • 29.

    Puccetti, F. et al. The use of copper and vanadium mineral ores in catalyzed mechanochemical carbon–carbon bond formations. ACS Sustain. Chem. Eng. 8, 7262–7266 (2020).

    CAS  Article  Google Scholar 

  • 30.

    Hazen, R. M. Paleomineralogy of the Hadean Eon: a preliminary species list. Am. J. Sci. 313, 807–843 (2013).

    CAS  Article  Google Scholar 

  • 31.

    Pallmann, S. et al. Schreibersite: an effective catalyst in the formose reaction network. N. J. Phys. 20, 055003 (2018).

    Article  Google Scholar 

  • 32.

    Meinert, C. et al. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352, 208–212 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Nuevo, M., Cooper, G. & Sandford, S. A. Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites. Nat. Commun. 9, 5276 (2018).

    CAS  Article  Google Scholar 

  • 34.

    Cleaves, Ii,H. J. The prebiotic geochemistry of formaldehyde. Precambrian Res. 164, 111–118 (2008).

    CAS  Article  Google Scholar 

  • 35.

    Maurer, H. W., Bemiller, J. N. & Smith, G. V. Homogeneous catalytic condensation of methylene glycol (the formose reaction): Effects of oxygen and reducing sugars. J. Catal. 103, 239–248 (1987).

    CAS  Article  Google Scholar 

  • 36.

    Brekalo, I. et al. Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks. Chem. Sci. 11, 2141–2147 (2020).

    CAS  Article  Google Scholar 

  • 37.

    Pičmanová, M. & Møller, B. L. Apiose: one of nature’s witty games. Glycobiology 26, 430–442 (2016).

    Article  Google Scholar 

  • 38.

    Ritson, D. & Sutherland, J. D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem. 4, 895–899 (2012).

    CAS  Article  Google Scholar 

  • 39.

    Haas, M., Lamour, S. & Trapp, O. Development of an advanced derivatization protocol for the unambiguous identification of monosaccharides in complex mixtures by gas and liquid chromatography. J. Chromatogr. A 1568, 160–167 (2018).

    CAS  Article  Google Scholar 

  • 40.

    Scanlon, J. T. & Willis, D. E. Calculation of flame ionization detector relative response factors using the effective carbon number concept. J. Chromatogr. Sci. 23, 333–340 (1985).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Georgina Mace (1953–2020)

    Designing off-grid refrigeration technologies for crop storage in Kenya