in

A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla

  • 1.

    van Soest, R. W. M. A monograph of the order Pyrosomatida (Tunicata, Thaliacea). J. Plankton Res. 3, 603–631 (1981).

    Article  Google Scholar 

  • 2.

    Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Kuo, C.-Y. et al. An unusual bloom of the tunicate, Pyrosoma atlanticum, in southern Taiwan. Bull. Mar. Sci. 91, 363–364 (2015).

    ADS  Article  Google Scholar 

  • 4.

    Huxley, T. H. Observations upon the anatomy and physiology of Salpa and Pyrosoma. Philos. Trans. R. Soc. Lond. 141, 567–593 (1851).

    ADS  Google Scholar 

  • 5.

    Péron, F. Mémoire sur le nouveau genre Pyrosoma. Annales du Museum d’histoire naturelle, Paris 4, 437–446 (1803).

    Google Scholar 

  • 6.

    Panceri, P. The luminous organs and light of Prosoma. Q. J. Microsc. Sci. 13, 45–51 (1873).

    Google Scholar 

  • 7.

    Burghause, F. Kreislauf und Herzschlag bei Pyrosoma giganteum nebst Bemerkungen zum Leuchtvermögen. Zeitschrift für Wissenschaftliche Zoologie 108, 430–497 (1914).

    Google Scholar 

  • 8.

    Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Ann. Rev. Mar. Sci. 2, 443–493 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Pierantoni, U. Gli organi luminosi simbiotici ed il loro ciclo ereditario in Pyrosoma giganteum. Pubblicazioni della Stazione zoologica di Napoli3, 191–222 (1921).

  • 10.

    Mackie, G. O. & Bone, Q. Luminescence and associated effector activity in Pyrosoma (Tunicata: Pyrosomida). Proc. R. Soci. B Biol. Sci. 202, 483–495 (1978).

    ADS  Google Scholar 

  • 11.

    Phillips, B. T. et al. A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Sci. Rep. 8, 14779 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 12.

    Brodeur, R. et al. An unusual gelatinous plankton event in the NE Pacific: the great pyrosome bloom of 2017. PICES Press 26, 22–27 (2018).

    Google Scholar 

  • 13.

    Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Kocot, K. M., Tassia, M. G., Halanych, K. M. & Swalla, B. J. Phylogenomics offers resolution of major tunicate relationships. Mol. Phylogenet. Evol. 121, 166–173 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Lebrato, M. & Jones, D. O. B. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 54, 1197–1209 (2009).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Drits, A. V., Arashkevich, E. G. & Semenova, T. N. Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J. Plankton Res. 14, 799–809 (1992).

    Article  Google Scholar 

  • 17.

    Perissinotto, R., Mayzaud, P., Nichols, P. D. & Labat, J. P. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar. Ecol. Prog. Ser. 330, 1–11 (2007).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Bone, Q. The Biology of Pelagic Tunicates (Oxford University Press on Demand, Oxford, 1998).

    Google Scholar 

  • 19.

    Sweeney, B. M., Fork, D. C. & Satoh, K. Stimulation of bioluminescence in dinoflagellates by red light. Photochem. Photobiol. 37, 457–465 (1983).

    CAS  Article  Google Scholar 

  • 20.

    Mauchline, J. IX.—the biology of the euphausiid crustacean, Meganyctiphanes norvegica (M. Sars). Proc. R. Soc. Edinb. Biol. 67, 141–179 (1959).

    Google Scholar 

  • 21.

    Widder, E. Bioluminescence and the pelagic visual environment. Mar. Freshw. Behav. Physiol. 35, 1–26 (2002).

    Article  Google Scholar 

  • 22.

    Bowlby, M. R., Widder, E. A. & Case, J. F. Patterns of stimulated bioluminescence in two pyrosomes (Tunicata: Pyrosomatidae). Biol. Bull. 179, 340–350 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Herring, P. J. The spectral characteristics of luminous marine organisms. Proc. R. Soc. B Biol. Sci. 220, 183–217 (1983).

    ADS  Google Scholar 

  • 24.

    Swift, E., Biggley, W. H. & Napora, T. A. The bioluminescence emission spectra of Pyrosoma atlanticum, P. spinosum (Tunicata), Euphausia tenera (Crustacea) and Gonostoma sp. (Pisces). J. Mar. Biol. Assoc. UK 57, 817 (1977).

    Article  Google Scholar 

  • 25.

    Mackie, G. O. Unconventional signalling in tunicates. Mar. Freshw. Behav. Physiol. 26, 197–205 (1995).

    Article  Google Scholar 

  • 26.

    Verdes, A. & Gruber, D. F. Glowing worms: biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comput. Biol. 57, 18–32 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Davis, M. P., Holcroft, N. I., Wiley, E. O., Sparks, J. S. & Leo Smith, W. Species-specific bioluminescence facilitates speciation in the deep sea. Mar. Biol. 161, 1139–1148 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Nealson, K. H. & Hastings, J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496–518 (1979).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Delroisse, J. et al. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Open Biol. 7, 160300 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 30.

    Janssen, D. B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol. 8, 150–159 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Loening, A. M., Fenn, T. D., Wu, A. M. & Gambhir, S. S. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel. 19, 391–400 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Woo, J., Howell, M. H. & von Arnim, A. G. Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci. 17, 725–735 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Loening, A. M., Fenn, T. D. & Gambhir, S. S. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 374, 1017–1028 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Shimomura, O. Bioluminescence Chemical Principles and Methods (World Scientific, Singapore, 2006).

    Google Scholar 

  • 35.

    Kaskova, Z. M., Tsarkova, A. S. & Yampolsky, I. V. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem. Soc. Rev. 45, 6048–6077 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Shimomura, O., Masugi, T., Johnson, F. H. & Haneda, Y. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry 17, 994–998 (1978).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Lorenz, W. W., McCann, R. O., Longiaru, M. & Cormier, M. J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. USA 88, 4438–4442 (1991).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 38.

    Martini, S. & Haddock, S. H. D. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci. Rep. 7, 45750 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Shimomura, O., Inoue, S., Johnson, F. H. & Haneda, Y. Widespread occurrence of coelenterazine in marine bioluminescence. Comp. Biochem. Physiol. Part B Comp. Biochem. 65, 435–437 (1980).

    Article  Google Scholar 

  • 40.

    Shimomura, O. Presence of coelenterazine in non-bioluminescent marine organisms. Comp. Biochem. Physiol. Part B Comp. Biochem. 86, 361–363 (1987).

    Article  Google Scholar 

  • 41.

    Rees, J. F. et al. The origins of marine bioluminescence: turning oxygen defense mechanisms into deep-sea communication tools. J. Exp. Biol. 201, 1211–1221 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Julin, C. The specific histological characters of the ‘luminous cells’ of Pyrosoma giganteum and of Cyclosalpa pinnata. Rep. Brit. Ass. 492–493 (1912).

  • 43.

    Leisman, G., Cohn, D. H. & Nealson, K. H. Bacterial origin of luminescence in marine animals. Science 208, 1271–1273 (1980).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Fortova, A. et al. DspA from Strongylocentrotus purpuratus: the first biochemically characterized haloalkane dehalogenase of non-microbial origin. Biochimie 95, 2091–2096 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Chaloupkova, R. et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 9, 4810–4823 (2019).

    CAS  Article  Google Scholar 

  • 46.

    Viviani, V. R. The origin, diversity, and structure function relationships of insect luciferases. Cell. Mol. Life Sci. 59, 1833–1850 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Haddock, S. H. D., Mastroianni, N. & Christianson, L. M. A photoactivatable green-fluorescent protein from the phylum Ctenophora. Proc. Biol. Sci. 277, 1155–1160 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Tessler, M. et al. Ultra-gentle soft robot fingers induce minimal transcriptomic response in a fragile marine animal during handling. Curr. Biol. 30, R157–R158 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Tessler, M. et al. Marine leech anticoagulant diversity and evolution. J. Parasitol. 104, 210–220 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Tessler, M. et al. Luciferin production and luciferase transcription in the bioluminescent copepod. PeerJ 6, e5506 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Brugler, M. R., Aguado, M. T., Tessler, M. & Siddall, M. E. The transcriptome of the Bermuda fireworm Odontosyllis enopla (Annelida: Syllidae): a unique luciferase gene family and putative epitoky-related genes. PLoS ONE 13, e0200944 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Brozovic, M. et al. ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. 46, D718–D725 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Gissi, C. et al. An unprecedented taxonomic revision of a model organism: the paradigmatic case of Ciona robusta and Ciona intestinalis. Zool. Scr. 46, 521–522 (2017).

    Article  Google Scholar 

  • 57.

    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).

    Article  CAS  Google Scholar 

  • 58.

    Nguyen, L.-T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 59.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (2010). https://doi.org/10.1109/gce.2010.5676129.


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach