in

Individual dietary specialization reduces intraspecific competition, rather than feeding activity, in black amur bream (Megalobrama terminalis)

  • 1.

    Jones, G. P. Competitive interactions among adults and juveniles in a coral reef fish. Ecology 68, 1534–1547 (1987).

    Article  ADS  Google Scholar 

  • 2.

    Smith, C. L. Coral reef fish communities: A compromise view. Environ. Biol. Fish. 3, 109–128 (1978).

    Article  Google Scholar 

  • 3.

    Belovsky, G. E. & Jordan, P. A. The time-energy budget of a moose. Theor. Popul. Biol. 14, 76–104 (1978).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Ward, A. J. W., Webster, M. M. & Hart, P. J. B. Intraspecific food competition in fishes. Fish Fish. 7, 231–261 (2006).

    Article  Google Scholar 

  • 5.

    Del Arco, A. I., Parra, G., Rico, A. & Van den Brink, P. J. Effects of intra- and interspecific competition on the sensitivity of aquatic macroinvertebrates to carbendazim. Ecotoxicol. Environ. Saf. 120, 27–34 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 6.

    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 7.

    Quintana, X. D. et al. Predation and competition effects on the size diversity of aquatic communities. Aquat. Sci. 77, 45–57 (2015).

    Article  Google Scholar 

  • 8.

    Swanson, B. O., Gibb, A. C., Marks, J. C. & Hendrickson, D. A. Trophic polymorphism and behavioral differences decrease intraspecific competition in a cichlid, Herichthys minckleyi. Ecology 84, 1441–1446 (2003).

    Article  Google Scholar 

  • 9.

    Sánchez-Vázquez, F. J., Madrid, J. A., Zamora, S. & Tabata, M. Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by a feeding-entrainable circadian oscillator. J. Comp. Physiol. 181, 121–132 (1997).

    Article  Google Scholar 

  • 10.

    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialisation. Am. Nat. 161, 1–28 (2003).

    MathSciNet  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Araujo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Vindenes, Y., Engen, S. & Saether, B. Individual heterogeneity in vital parameters and demographic stochasticity. Am. Nat. 171, 455–467 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Duffy, M. A. Ecological consequences of intraspecific variation in lake Daphnia. Freshw. Biol. 55, 995–1004 (2010).

    Article  Google Scholar 

  • 14.

    Schreiber, S. J., Bürger, R. & Bolnick, D. I. The community effects of phenotypic and genetic variation within a predator population. Ecology 92, 1582–1593 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Darimont, C. T., Paquet, P. C. & Reimchen, T. E. Stable isotopic niche predicts fitness of prey in a wolf–deer system. Biol. J. Linn. Soc. 90, 125–137 (2007).

    Article  Google Scholar 

  • 16.

    Johnson, C. K. et al. Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. PNAS 106, 2242–2247 (2009).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 17.

    Wagner, C. E., McIntyre, P. B., Buels, K. S., Gilbert, D. M. & Michel, E. Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Funct. Ecol. 23, 1122–1131 (2009).

    Article  Google Scholar 

  • 18.

    Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).

    Article  Google Scholar 

  • 19.

    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).

    Article  Google Scholar 

  • 20.

    Ackermann, M. & Doebeli, M. Evolution of niche width and adaptive diversification. Evolution 58, 2599–2612 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Fausch, K. D. Profitable stream positions for salmonids: Relating specific growth rate to net energy gain. Revue Canadienne De Zoologie. 62, 441–451 (1984).

    Article  Google Scholar 

  • 22.

    Metcalfe, N. B. Intraspecific variation in competitive ability and food intake in salmonids: Consequences for energy budgets and growth rates. J. Fish Biol. 28, 525–531 (1986).

    Article  Google Scholar 

  • 23.

    Sol, D. et al. Ecological mechanisms of a resource polymorphism in Zenaida Doves of Barbados. Ecology 86, 2397–2407 (2005).

    Article  Google Scholar 

  • 24.

    Lu, K. Fisheries Resources in Pearl River (ed. Lu, K.) 146–150 (Guangdong Science and Technology Press, 1990).

  • 25.

    Xia, Y. et al. Small-subunit ribosomal DNA sequencing analysis of dietary shifts during gonad maturation in wild black Amur bream (Megalobrama terminalis) in the lower reaches of the Pearl River. Fish. Sci. 83, 955–965 (2017).

    CAS  Article  Google Scholar 

  • 26.

    Li, J. et al. Species diversity of fish community of Provincial Xijiang River rare fishes natural reserve in Zhaoqing City, Guangdong Province. J. Lake Sci. 21, 556–562 (2009).

    Article  Google Scholar 

  • 27.

    Zhang, Y. et al. Fish community structure and environmental effects of West River. South China Fish. Sci. 16, 42–52 (2020).

    CAS  Google Scholar 

  • 28.

    Li, Y. et al. Exploitation status of Megalobrama terminalis based on analysis of SBR and YPR models in Xijiang River. Acta Hydrobiol. Sin. 42, 975–983 (2018).

    Google Scholar 

  • 29.

    Svanbäck, R. & Eklov, P. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131, 61–70 (2002).

    PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 30.

    Uchikawa, K. & Kidokoro, H. Feeding habits of juvenile Japanese common squid Todarodes pacificus: Relationship between dietary shift and allometric growth. Fish. Res. 152, 29–36 (2014).

    Article  Google Scholar 

  • 31.

    Carreonmartinez, L. B. & Heath, D. D. Revolution in food web analysis and trophic ecology: Diet analysis by DNA and stable isotope analysis. Mol. Ecol. 19, 25–27 (2010).

    CAS  Article  Google Scholar 

  • 32.

    Hardy, C. M., Krull, E. S., Hartley, D. M. & Oliver, R. L. Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol. Ecol. 19, 197–212 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Peterson, B. J., Howarth, R. W. & Garritt, R. H. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67, 865–874 (1986).

    CAS  Article  Google Scholar 

  • 34.

    Peterson, B. J., Howarth, R. W. & Garritt, R. H. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227, 1361–1363 (1985).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 35.

    Peterson, B. J. & Fry, B. Stable isotope in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).

    Article  Google Scholar 

  • 36.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article  Google Scholar 

  • 37.

    Valen, L. V. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).

    Article  Google Scholar 

  • 38.

    Lesser, J. S., James, W. R., Stallings, C. D., Wilson, R. M. & Nelson, J. A. Trophic niche size and overlap decreases with increasing ecosystem productivity. Oikos https://doi.org/10.1111/oik.07026 (2020).

    Article  Google Scholar 

  • 39.

    Pool, T. et al. Seasonal increases in fish trophic niche plasticity within a flood-pulse river ecosystem (Tonle Sap Lake, Cambodia). Ecosphere. 8, e01881 (2017).

    Article  Google Scholar 

  • 40.

    Persson, L. Food consumption and the significance of detritus and algae to intraspecific competition in roach Rutilus rutilus in a shallow eutrophic lake. Oikos 41, 118–125 (1983).

    Article  Google Scholar 

  • 41.

    Zhang, B. et al. Characteristics of aquatic vascular plant communities in Dongguan reaches of dongjiang river during two periods. Wetland Sci. 13, 284–290 (2015).

    Google Scholar 

  • 42.

    Bing, X. et al. Spatial and temporal difference of primary productivity and its influencing factors in the Pearl River Delta. South China Fish. Sci. 13, 1–8 (2017).

    Google Scholar 

  • 43.

    Slatkin, M. Ecological character displacement. Ecology 61, 163–177 (1980).

    Article  Google Scholar 

  • 44.

    Steiner, C. F., Caceres, C. E. & Smith, S. D. P. Resurrecting the ghost of competition past with dormant zooplankton eggs. Am. Nat. 169, 416–422 (2007).

    PubMed  Article  Google Scholar 

  • 45.

    Hamrin, S. F. & Persson, L. Asymmetrical competition between age classes as a factor causing population oscillations in an obligate planktivorous fish species. Oikos 47, 223–232 (1986).

    Article  Google Scholar 

  • 46.

    Taylor, R. C., Trexler, J. C. & Loftus, W. F. Separating the effects of intra- and interspecific age-structured interactions in an experimental fish assemblage. Oecologia 127, 143–152 (2001).

    PubMed  Article  ADS  Google Scholar 

  • 47.

    Pan, B. Z., Wang, H. Z., Pusch, M. T. & Wang, H. J. Macroinvertebrate responses to regime shifts caused by eutrophication in subtropical shallow lakes. Freshw. Sci. 34, 942–952 (2015).

    Article  Google Scholar 

  • 48.

    Ru, H., Li, Y., Sheng, Q., Zhong, L. & Ni, Z. River damming affects energy flow and food web structure: A case study from a subtropical large river. Hydrobiologia 847, 679–695 (2020).

    CAS  Article  Google Scholar 

  • 49.

    Yin, M. 1995. The Fish Ecology (ed. Yin, M.) 266–267 (China Agriculture Press, Beijing, 1995).

  • 50.

    Bates, D. M. lme4: Mixed-effects modeling with R. https://cran.r-project.org/web/packages/lme4/vignettes/lmer.pdf (2010).

  • 51.

    R Core Team. R: a language and environment for statistical computing. https://www.R-project.org (2019).

  • 52.

    Parnell, A. C., Inger, R., Bearhop, S., Jackson, A. L. & Rands, S. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672 (2010).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 53.

    McCutchan, J. H., Lewis, W. M., Kendall, C. & Mcgrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).

    CAS  Article  Google Scholar 

  • 54.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed  Article  Google Scholar 

  • 55.

    Layman, C. A., Quattrochi, J. P., Peyer, C. M. & Allgeier, J. E. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol. Lett. 10, 937–944 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotope ecology. Front. Ecol. Environ. 5, 429–436 (2007).

    Article  Google Scholar 

  • 57.

    Turner, T. F., Collyer, M. L. & Krabbenhoft, T. J. A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91, 2227–2233 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Krebs, C. J. Ecological Methodology (ed. Krebs, C. J.) 466–496 (Harper and Row, Manhattan, 1989).

  • 59.

    Hall, D. H., Raffaelli, D., Basfors, D. J., Robertson, M. R. & Fryer, R. The feeding relationships of the larger fish species in a Scottish sea loch. J. Fish Biol. 37, 775–791 (1990).

    Article  Google Scholar 

  • 60.

    Pinzone, M., Damseaux, F., Michel, L. N. & Das, K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere 237, 124448 (2019).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 61.

    Roughgarden, J. Evolution of niche width. Am. Nat. 106, 683–718 (1972).

    Article  Google Scholar 

  • 62.

    Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).

    Article  Google Scholar 

  • 63.

    Roughgarden, J. Theory of Population Genetics and Evolutionary Ecology: An Introduction (ed. Roughgarden, J.) 510 (Macmillan, New York, 1979).

  • 64.

    Zaccarelli, N., Bolnick, D. I. & Mancinelli, G. RInSp: An r package for the analysis of individual specialization in resource use. Methods Ecol. Evol. 4, 1018–1023 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Genassemblage 2.0 software facilitates conservation of genetic variation of captively propagated species

    Mucin-derived O-glycans supplemented to diet mitigate diverse microbiota perturbations