in

Mucin-derived O-glycans supplemented to diet mitigate diverse microbiota perturbations

  • 1.

    Earle KA, Billings G, Sigal M, Lichtman JS, Hansson GC, Elias JE, et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe. 2015;18:478–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307:1955–9.

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10:323–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Marcobal A, Southwick AM, Earle KA, Sonnenburg JL. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology. 2013;23:1038–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10:507–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22:1147–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Wu S, Salcedo J, Tang N, Waddell K, Grimm R, German JB, et al. Employment of tandem mass spectrometry for the accurate and specific identification of oligosaccharide structures. Anal Chem. 2012;84:7456–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000;20:699–722.

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011;128:e1520–31.

    PubMed  Article  Google Scholar 

  • 10.

    Bao Y, Zhu L, Newburg DS. Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis. Anal Biochem. 2007;370:206–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Coppa GV, Pierani P, Zampini L, Carloni I, Carlucci A, Gabrielli O. Oligosaccharides in human milk during different phases of lactation. Acta Paediatr Suppl. 1999;88:89–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Wang B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr. 2012;3:465S–472S.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr Allergy Immunol. 2010;21:1179–88.

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr. 2005;135:1304–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278:14112–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Triantis V, Bode L, van Neerven RJJ. Immunological effects of human milk oligosaccharides. Front Pediatr. 2018;6:1–14.

    Article  Google Scholar 

  • 17.

    Porcelli P, Schanler R, Greer F, Chan G, Gross S, Mehta N, et al. Growth in human milk-fed very low birth weight infants receiving a new human milk fortifier. Ann Nutr Metab. 2000;44:2–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Sisk PM, Lovelady CA, Dillard RG, Gruber KJ, O’Shea TM. Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J Perinatol. 2007;27:428–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Lauwaet T, Bliss LA, Bode L, Gillin FD, Reed SL, Jantscher-Krenn E. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br J Nutr. 2012;108:1839–46.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 20.

    Charbonneau MR. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164:859–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Jantscher-Krenn E, Marx C, Bode L. Human milk oligosaccharides are differentially metabolised in neonatal rats. Br J Nutr. 2013;110:640–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci. 2008;105:18964–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Kim J-H, Henrissat B, Bottacini F, Turroni F, Mills D, Kelly D, et al. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci. 2010;107:19514–9.

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:1–10. 6ra14.

    Article  CAS  Google Scholar 

  • 27.

    Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 2013;7:1933–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58:5334–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008;4:447–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Jin C, Kenny DT, Skoog EC, Padra M, Adamczyk B, Vitizeva V, et al. Structural diversity of human gastric mucin glycans. Mol Cell Proteomics. 2017;16:743–58.

  • 32.

    Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol. 2001;63:411–23.

    Article  Google Scholar 

  • 33.

    Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362:eaat9076.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Byndloss MX, Olsan EE, Rivera-Chavez F, Tiffany CR, Cevallos SA, Lokken KL, et al. Mictobiota-activated PPAR-gamma signaling inhibits dysbiotic Eneterobacteriaceae expansion. Science. 2017;357:570–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, et al. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med. 2018;10:eaam7019.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 37.

    Cherian RM, Jin C, Liu J, Karlsson NG, Holgersson J. Recombinant mucin-type fusion proteins with a Galα1,3Gal substitution as Clostridium difficile Toxin A inhibitors. Infect Immun. 2016;84:2842–52.

  • 38.

    Hansen CHF, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sørensen SJ, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55:2285–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol. 2017;8:1–8.

    Article  Google Scholar 

  • 40.

    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci. 2013;110:9066–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature. 2019;568:505–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Cowardin CA, Ahern PP, Kung VL, Hibberd MC, Cheng J, Guruge JL, et al. Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc Natl Acad Sci USA. 2019;116:11988–96.

    CAS  PubMed  Google Scholar 

  • 43.

    Rudloff S, Pohlentz G, Borsch C, Lentze MJ, Kunz C. Urinary excretion of in vivo 13C-labelled milk oligosaccharides in breastfed infants. Br J Nutr. 2012;107:957–63.

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Albrecht S, Schols HA, van Zoeren D, van Lingen RA, Groot Jebbink LJM, van den Heuvel EGHM, et al. Oligosaccharides in feces of breast- and formula-fed babies. Carbohydr Res. 2011;346:2173–81.

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2007;74:1646–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Santacruz A, Collado MC, García-Valdés L, Segura MT, Marítn-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104:83–92.

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Karlsson CLJ, Önnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity. 2012;20:2257–61.

    PubMed  Article  Google Scholar 

  • 48.

    Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–8.

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK, Plichta DR, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. 2017;357:802–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    I C, F K. A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res. 1984;131:209–17.

    Article  Google Scholar 

  • 53.

    Dell A, Ranzinger R, Damerell D, Maass K, Ceroni A, Haslam SM. The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments. Biol Chem. 2012;393:1357–62.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 54.

    Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslma SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res. 2008;7:1650–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Knights D, Walters WA, Caparose JGKJ, Stombaugh J, Bittinger K, Bushman FD. QIIME allows analysis of high-throughput community sequencing data. Nat Publ Gr. 2010;7:335–6. Nat Met 7:335–6.

    Google Scholar 

  • 56.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Holmes SP, Sankaran K, Callahan BJ, McMurdie PJ, Fukuyama JA. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res. 2016;5:1492.

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, et al. DbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 2018;46:D516–D521.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. DbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:445–51.

    Article  CAS  Google Scholar 

  • 60.

    Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology. 2013;144:967–77.

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Individual dietary specialization reduces intraspecific competition, rather than feeding activity, in black amur bream (Megalobrama terminalis)

    Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016