in

The fast-acting “pulse” of Heinrich Stadial 3 in a mid-latitude boreal ecosystem

  • 1.

    Goñi, M. F. S. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quat. Sci. Rev. 29, 2823–2827 (2010).

    ADS  Article  Google Scholar 

  • 2.

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    ADS  Article  Google Scholar 

  • 3.

    McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Jouzel, J. et al. Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).

    ADS  Article  Google Scholar 

  • 6.

    Cvijanovic, I. & Chiang, J. C. H. Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Clim. Dyn. 40, 1435–1452 (2013).

    Article  Google Scholar 

  • 7.

    Markle, B. R. et al. Global atmospheric teleconnections during Dansgaard-Oeschger events. Nat. Geosci. 10, 36–40 (2017).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Fischer, H., Siggaard-Andersen, M.-L., Ruth, U., Röthlisberger, R. & Wolff, E. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition. Rev. Geophys. 45, 1–26 (2007).

  • 9.

    Biscaye, P. E. et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res. Ocean. 102, 26765–26781 (1997).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Bory, A. J.-M., Biscaye, P. E. & Grousset, F. E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys. Res. Lett. 30, 1167 (2003).

  • 11.

    Han, C. et al. High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Sci. Rep. 8, 1–9 (2018).

    ADS  Article  CAS  Google Scholar 

  • 12.

    Murphy, L. N. et al. Simulated changes in atmospheric dust in response to a Heinrich stadial. Paleoceanography 29, 30–43 (2014).

    ADS  Article  Google Scholar 

  • 13.

    Zhang, X. Y., Arimoto, R. & An, Z. S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. Atmos. 102, 28041–28047 (1997).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Hughen, K., Southon, J., Lehman, S., Bertrand, C. & Turnbull, J. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quat. Sci. Rev. 25, 3216–3227 (2006).

    ADS  Article  Google Scholar 

  • 15.

    Goñi, M. F. S. et al. Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151 (2008).

    ADS  Article  Google Scholar 

  • 16.

    Naughton, F. et al. Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth Planet. Sci. Lett. 284, 329–342 (2009).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, 1–5 (2009).

    Article  CAS  Google Scholar 

  • 18.

    Moseley, G. E. et al. NALPS19: Sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period. Clim. Past 16, 29–50 (2020).

    Article  Google Scholar 

  • 19.

    Moseley, G. E. et al. Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during marine isotope stage 3. Geology 42, 1043–1046 (2014).

    ADS  Article  Google Scholar 

  • 20.

    Cheng, H. et al. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362, 1293–1297 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 29, 2839–2864 (2010).

    ADS  Article  Google Scholar 

  • 22.

    Tzedakis, P. C. et al. Ecological thresholds and patterns of millennial-scale climate variability: The response of vegetation in Greece during the last glacial period. Geology 32, 109–112 (2004).

    ADS  Article  Google Scholar 

  • 23.

    Duprat-Oualid, F. et al. Vegetation response to abrupt climate changes in Western Europe from 45 to 14.7 k cal a BP: The Bergsee lacustrine record (Black Forest, Germany). J. Quat. Sci. 32, 1008–1021 (2017).

    Article  Google Scholar 

  • 24.

    Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. USA 114, E10632–E10638 (2017).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 25.

    Stager, J. C., Ryves, D. B., Chase, B. M. & Pausata, F. S. R. Catastrophic drought in the Afro-Asian monsoon region during Heinrich event 1. Science 331, 1299–1302 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Jullien, E. et al. Low-latitude ‘dusty events’ vs. high-latitude ‘icy Heinrich events’. Quat. Res. 68, 379–386 (2007).

    Article  Google Scholar 

  • 27.

    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Grimm, E. C., Jacobson, G. L. Jr, Watts, W. A., Hansen, B. C. S. & Maasch, K. A. A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich Events. Science 261, 198–200 (1993).  

  • 29.

    De Abreu, L., Shackleton, N. J., Schönfeld, J., Hall, M. & Chapman, M. Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Mar. Geol. 196, 1–20 (2003).

    ADS  Article  Google Scholar 

  • 30.

    Lynch-Stieglitz, J. et al. Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nat. Geosci. 7, 144–150 (2014).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Lowe, D. J. Tephrochronology and its application: A review. Quat. Geochronol. 6, 107–153 (2011).

    Article  Google Scholar 

  • 32.

    Luetscher, M. et al. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 6, 27–32 (2015).

    Article  CAS  Google Scholar 

  • 33.

    Columbu, A. et al. Speleothem record attests to stable environmental conditions during Neanderthal–modern human turnover in southern Italy. Nat. Ecol. Evol. 4, 1188–1195 (2020).  

  • 34.

    McDermott, F., Schwarcz, H. & Rowe, P. J. Isotopes in speleothems in Isotopes in Palaeoenvironmental Research (ed. Leng, M.) 185–225 (Kluwer Academic Publishers, 2006).  

  • 35.

    Fairchild, I. J. & Treble, P. C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28, 449–468 (2009).

    ADS  Article  Google Scholar 

  • 36.

    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the late-glacial interstadial (GI-1) at gerzensee (switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).

    Article  Google Scholar 

  • 37.

    Lydersen, J. M., Collins, B. M., Miller, J. D., Fry, D. L. & Stephens, S. L. Relating fire-caused change in forest structure to remotely sensed estimates of fire severity. Fire Ecol. 12, 99–116 (2016).

    Article  Google Scholar 

  • 38.

    Darfeuil, S. et al. Sea surface temperature reconstructions over the last 70 k year off Portugal: Biomarker data and regional modeling. Paleoceanography 31, 40–65 (2016).

    ADS  Article  Google Scholar 

  • 39.

    Waelbroeck, C. et al. Consistently dated Atlantic sediment cores over the last 40 thousand years. Sci. Data 6, 165 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Hemming, S. R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

  • 41.

    Turney, C. S. M. et al. High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: Testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis). Quat. Sci. Rev. 137, 126–134 (2016).

    ADS  Article  Google Scholar 

  • 42.

    Turney, C. S. M. et al. Rapid global ocean–atmosphere response to Southern Ocean freshening during the last glacial. Nat. Commun. 8, 1–9 (2017).

    CAS  Article  Google Scholar 

  • 43.

    Monegato, G., Scardia, G., Hajdas, I., Rizzini, F. & Piccin, A. The Alpine LGM in the boreal ice-sheets game. Sci. Rep. 7, 1–8 (2017).

    CAS  Article  Google Scholar 

  • 44.

    Makos, M. et al. Last Glacial Maximum and Lateglacial in the Polish High Tatra Mountains—Revised deglaciation chronology based on the 10Be exposure age dating. Quat. Sci. Rev. 187, 130–156 (2018).

    ADS  Article  Google Scholar 

  • 45.

    Oliva, M. et al. Late Quaternary glacial phases in the Iberian Peninsula. Earth Sci. Rev. 192, 564–600 (2019).

    ADS  Article  Google Scholar 

  • 46.

    Bradwell, T. et al. Pattern, style and timing of British–Irish Ice Sheet retreat: Shetland and northern North Sea sector. J. Quat. Sci. 1–42 (2019).

  • 47.

    Pini, R., Ravazzi, C. & Reimer, P. J. The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern Alpine foreland, N-Italy). Quat. Sci. Rev. 29, 3115–3137 (2010).

    ADS  Article  Google Scholar 

  • 48.

    Monegato, G., Pini, R., Ravazzi, C., Reimer, P. J. & Wick, L. Correlating Alpine glaciation with Adriatic sea-level changes through lake and alluvial stratigraphy. J. Quat. Sci. 26, 791–804 (2011).

    Article  Google Scholar 

  • 49.

    Moss, E. H. Forest communities in northwestern Alberta. Can. J. Bot. 31, 212–252 (1953).

    Article  Google Scholar 

  • 50.

    Ruuhijärvi, R. The Finnish mire types and their regional distribution. In Mires: Swamp, Bog, Fen and Moor. Ecosystems of the World 4B (ed. Gore, A. J. P.) 47–67 (Elsevier, New York, 1983).

    Google Scholar 

  • 51.

    Allen, J. R. M. & Huntley, B. Weichselian palynological records from southern Europe: Correlation and chronology. Quat. Int. 73–74, 111–125 (2000).

    Article  Google Scholar 

  • 52.

    Margari, V., Gibbard, P. L., Bryant, C. L. & Tzedakis, P. C. Character of vegetational and environmental changes in southern Europe during the last glacial period; evidence from Lesvos Island, Greece. Quat. Sci. Rev. 28, 1317–1339 (2009).

    ADS  Article  Google Scholar 

  • 53.

    Pross, J. et al. The 1.35-Ma-long terrestrial climate archive of Tenaghi Philippon, northeastern Greece: Evolution, exploration, and perspectives for future research. Newslett. Stratigr. 48, 253–276 (2015).

    Article  Google Scholar 

  • 54.

    Allen, J. R. M. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Wulf, S. et al. The marine isotope stage 1–5 cryptotephra record of Tenaghi Philippon, Greece: Towards a detailed tephrostratigraphic framework for the Eastern Mediterranean region. Quat. Sci. Rev. 186, 236–262 (2018).

    ADS  Article  Google Scholar 

  • 56.

    Benjamin, J. et al. Late Quaternary sea-level changes and early human societies in the central and eastern Mediterranean Basin: An interdisciplinary review. Quat. Int. 449, 29–57 (2017).

    Article  Google Scholar 

  • 57.

    Rossato, S., Carraro, A., Monegato, G., Mozzi, P. & Tateo, F. Glacial dynamics in pre-Alpine narrow valleys during the Last Glacial Maximum inferred by lowland fluvial records (northeast Italy). Earth Surf. Dynam 6, 809–828 (2018).

    ADS  Article  Google Scholar 

  • 58.

    Ravazzi, C., Badino, F., Marsetti, D., Patera, G. & Reimer, P. J. Glacial to paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and 15 ka cal BP. Quat. Sci. Rev. 58, 146–161 (2012).

    ADS  Article  Google Scholar 

  • 59.

    Gianotti, F. et al. Stratigraphy of the Ivrea morainic amphitheatre (NW Italy); an updated synthesis. Alp. Mediterr. Quat. 28, 29–58 (2015).

    Google Scholar 

  • 60.

    Braakhekke, J. et al. Timing and flow pattern of the Orta Glacier (European Alps) during the Last Glacial Maximum. Boreas 49, 315–332 (2020).

    Article  Google Scholar 

  • 61.

    Ivy-Ochs, S. et al. New geomorphological and chronological constraints for glacial deposits in the Rivoli-Avigliana end-moraine system and the lower Susa Valley (Western Alps, NW Italy). J. Quat. Sci. 33, 550–562 (2018).

    Article  Google Scholar 

  • 62.

    Miko, S. et al. Submerged karst landscapes of the Eastern Adriatic. in 5th Regional Scientific Meeting on Quaternary Geology Dedicated to Geohazards and Final conference of the LoLADRIA project “Submerged Pleistocene landscapes of the Adriatic Sea/Marjanac, Lj.—Zagreb : Hrvatska akademija znanosti i umjetnosti 53–54 (2017).

  • 63.

    Maselli, V. et al. Delta growth and river valleys: The influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea). Quat. Sci. Rev. 99, 146–163 (2014).

    ADS  Article  Google Scholar 

  • 64.

    Bigi, G. et al. Structural Model of Italy, Sheets 1 (CNR S.EL.CA, Firenze, 1990).

    Google Scholar 

  • 65.

    Bartolomei, G. et al. Note illustrative della carta geologica d’Italia alla scala 1:100,000, foglio 021-Trento, Poligrafica e Cartevalori, Ercolano. (1969).

  • 66.

    Dal Piaz, G., Fabiani, R., Trevisan, L. & Venzo, S. Carta geologica delle tre Venezie al 100.000, foglio 37-Bassano del Grappa, Ufficio Idrografico Magistrato delle Acque, Venezia. (1946).

  • 67.

    Barbieri, G. & Grandesso, P. Note illustrative della Carta Geologica d’Italia alla scala 1:50,000, foglio 082-Asiago, APAT, S.EL.CA., Firenze, 135. (2007).

  • 68.

    Avanzini, M., Bargossi, G. M., Borsato, A. & Selli, L. Note Illustrative della Carta Geologica d’Italia alla scala 1:50,000, foglio 060-Trento, ISPRA-Servizio Geologico d’Italia, Trento. (2010).

  • 69.

    Rossato, S. et al. Late Quaternary glaciations and connections to the piedmont plain in the prealpine environment: The middle and lower Astico Valley (NE Italy). Quat. Int. 288, 8–24 (2013).

    Article  Google Scholar 

  • 70.

    Bosellini, A. et al. Note illustrative della Carta Geologica d’Italia, Foglio 49 Verona, Servizio Geologico d’Italia. (1967).

  • 71.

    Antonelli, R. & Fabbri, P. Analysis and comparison of some values of transmissivity, permeability and storage from the Euganean Thermal Basin. IAHS-AISH Publ. 176, 707–718 (1988).

    Google Scholar 

  • 72.

    Bassi, D., Nebelsick, J. H., Puga-Bernabéu, Á. & Luciani, V. Middle Eocene Nummulites and their offshore re-deposition: A case study from the Middle Eocene of the Venetian area, northeastern Italy. Sediment. Geol. 297, 1–15 (2013).

    ADS  Article  Google Scholar 

  • 73.

    Pola, M., Ricciato, A., Fantoni, R., Fabbri, P. & Zampieri, D. Architecture of the western margin of the North Adriatic foreland: The Schio-Vicenza fault system. Ital. J. Geosci. 133, 223–234 (2014).

    Article  Google Scholar 

  • 74.

    Fontana, A., Mozzi, P. & Marchetti, M. Alluvial fans and megafans along the southern side of the Alps. Sed. Geol. 301, 150–171 (2014).

    Article  Google Scholar 

  • 75.

    Walter, H., Breckle, S.-W., Walter, H. & Breckle, S.-W. The Zonoecotones in Ecological Systems of the Geobiosphere 104–107 (Springer Berlin Heidelberg, 1986).  

  • 76.

    Archibold, O. W. Temperate forest ecosystems in Ecology of World Vegetation 165–203 (Springer, Dordrecht, 1995).  

  • 77.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  Google Scholar 

  • 78.

    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon, 62(4), 725–757 (2020).

  • 79.

    Oksanen, J. et al. Package ‘vegan’. R Packag. version 3.4.0 (2019).

  • 80.

    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ (2019).

  • 81.

    Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr. 79, 201–219 (2009).

    Article  Google Scholar 

  • 82.

    Lofverstrom, M. A dynamic link between high-intensity precipitation events in southwestern North America and Europe at the Last Glacial Maximum. Earth Planet. Sci. Lett. 534, 116081 (2020).

    CAS  Article  Google Scholar 

  • 83.

    Goñi, M. S. et al. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Clim. Dyn. 19, 95–105 (2002).

    Article  Google Scholar 

  • 84.

    Tzedakis, P. C., Lawson, I. T., Frogley, M. R., Hewitt, G. M. & Preece, R. C. Buffered tree population changes in a Quaternary refugium: Evolutionary implications. Science 297, 2044–2047 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Ravazzi, C. et al. Birch-sedge communities, forest withdrawal and flooding at the beginning of Heinrich Stadial 3 at the southern Alpine foreland. Rev. Palaeobot. Palynol. 280, 104276 (2020).

    Article  Google Scholar 

  • 86.

    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Holtmeier, F. Mountain Timberlines Mountain Timberlines (Springer, Dordrecht, 2009).

    Google Scholar 

  • 88.

    Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: Are there modern analogues in Siberia?. Quat. Sci. Rev. 95, 60–79 (2014).

    ADS  Article  Google Scholar 

  • 89.

    Chytrý, M. et al. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecol. 196, 61–83 (2008).

    Article  Google Scholar 

  • 90.

    Makunina, N. I. Botanical and geographical characteristics of forest steppe of the Altai-Sayan mountain region. Contemp. Probl. Ecol. 9, 342–348 (2016).

    Article  Google Scholar 

  • 91.

    Gunin, P. D., Vostokova, E. A., Dorofeyuk, N. I., Tarasov, P. E. & Black, C. C. Vegetation dynamics of Mongolia Vol. 26 (Springer Science & Business Media, New York, 2013).

    Google Scholar 

  • 92.

    Zhambazhamts, B. & Bat, B. The Atlas of the Climate and Ground Water Resources in the Mongolian People’s Republic (Goskomgidromet SSSR GUGMS MNR GUGK SSSR, Ulaanbaatar, 1985).

    Google Scholar 

  • 93.

    Klinge, M. & Sauer, D. Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia—A critical review and synthesis. Quat. Sci. Rev. 210, 26–50 (2019).

    ADS  Article  Google Scholar 

  • 94.

    Guiot, J., Reille, M., de Beaulieu, J. L. & Pons, A. Calibration of the climatic signal in a new pollen sequence from La Grande Pile. Clim. Dyn. 6, 259–264 (1992).

    Article  Google Scholar 

  • 95.

    Seret, G., Guiot, J., Wansard, G., de Beaulieu, J. L. & Reille, M. Tentative palaeoclimatic reconstruction linking pollen and sedimentology in La Grande Pile (Vosges, France). Quat. Sci. Rev. 11, 425–430 (1992).

    ADS  Article  Google Scholar 

  • 96.

    Wohlfarth, B. et al. Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40–16 ka. Geology 36, 407–410 (2008).

    ADS  CAS  Article  Google Scholar 

  • 97.

    Tzedakis, P. C. The last climatic cycle at Kopais, central Greece. J. Geol. Soc. London. 156, 425–434 (1999).

    Article  Google Scholar 

  • 98.

    Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon: Revised chronostratigraphy and long-term vegetation trends. Quat. Sci. Rev. 25, 3416–3430 (2006).

    ADS  Article  Google Scholar 

  • 99.

    Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).

    ADS  Article  Google Scholar 

  • 100.

    Ohlson, M., Korbøl, A. & Økland, R. H. The macroscopic charcoal record in forested boreal peatlands in southeast Norway. Holocene 16, 731–741 (2006).

    ADS  Article  Google Scholar 

  • 101.

    Hörnberg, G., Ohlson, M. & Zackrisson, O. Stand dynamics, regeneration patterns and long-term continuity in boreal old-growth Picea abies swamp-forests. J. Veg. Sci. 6, 291–298 (1995).

    Article  Google Scholar 

  • 102.

    Tryterud, E. Forest fire history in Norway: From fire-disturbed pine forests to fire-free spruce forests. Ecography (Cop.) 26, 161–170 (2003).

    Article  Google Scholar 

  • 103.

    Yefremova, T. T. & Yefremov, S. P. Ecological Effects of Peat Fire on Forested Bog Ecosystems in Fire in ecosystems of boreal Eurasia (ed Goldammer, JG., Furyaev, VV.) 350–357 (Kluwer, The Netherlands, 1996).  

  • 104.

    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).

    ADS  Google Scholar 

  • 105.

    Flanningan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 15, 549–560 (2009).

    ADS  Article  Google Scholar 

  • 106.

    Camill, P. et al. Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada. J. Geophys. Res. Biogeosci. 114, 1–10 (2009).

    Article  CAS  Google Scholar 

  • 107.

    Sofronov, M., Volokitina, A., Shvidenko, A. Wildland fires in the north of Central Siberia. Commonwealth Forestry Rev. 77, 124–127 (1998).  

  • 108.

    Kobayashi, M. et al. Regeneration after forest fires in mixed conifer broad-leaved forests of the Amur Region in Far Eastern Russia: The relationship between species specific traits against fire and recent fire regimes. Eurasian J. For. Res. 10, 51–58 (2007).

    Google Scholar 

  • 109.

    Berg, E. E. & Chapin, F. S. III. Needle loss as a mechanism of winter drought avoidance in boreal conifers. Can. J. For. Res. 24, 1144–1148 (1994).

    Article  Google Scholar 

  • 110.

    Gower, S. T. & Richards, J. H. Larches: Deciduous conifers in an evergreen world. Bioscience 40, 818–826 (1990).

    Article  Google Scholar 

  • 111.

    Schulze, E.-D. et al. Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can. J. For. Res. 25, 943–960 (1995).

    Article  Google Scholar 

  • 112.

    Sakai, A. & Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress Vol. 62 (Springer Science & Business Media, New York, 2012).

    Google Scholar 

  • 113.

    Bourgeau-Chavez, L. L. et al. Assessing boreal peat fire severity and vulnerability of peatlands to early season wildland fire. Front. Genet. 3, 1–13 (2020).

    Google Scholar 

  • 114.

    Vachula, R. S., Russell, J. M., Huang, Y. & Richter, N. Assessing the spatial fidelity of sedimentary charcoal size fractions as fire history proxies with a high-resolution sediment record and historical data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 508, 166–175 (2018).

    Article  Google Scholar 

  • 115.

    Turetsky, M. R., Amiro, B. D., Bosch, E. & Bhatti, J. S. Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Glob. Biogeochem. Cycles 18, 4014 (2004).

  • 116.

    Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 107, FFR 5-1 (2002).

    Google Scholar 

  • 117.

    Wang, Y. J. et al. A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 118.

    Guillevic, M. et al. Evidence for a three-phase sequence during heinrich stadial 4 using a multiproxy approach based on Greenland ice core records. Clim. Past 10, 2115–2133 (2014).

    Article  Google Scholar 

  • 119.

    Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl. Acad. Sci. USA 108, 13415–13419 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 120.

    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 121.

    Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. SEPM J. Sediment. Res. 44, 242–248 (1974).

    CAS  Google Scholar 

  • 122.

    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615–621 (1971).  

  • 123.

    Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen Analysis (Blackwell Scientific Publications, Oxford University Press, Oxford, 1991).

    Google Scholar 

  • 124.

    Reille, M. Pollen et spores d’Europe et d’Afrique du Nord–Supplément II. (1998).

  • 125.

    Beug, H. J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil. (2004).

  • 126.

    Reille, M. Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie. (1992).

  • 127.

    Grimm, E. T. TGView 19 Version 2.0. 41. Software (Illinois State Museum, Research and Collection Center, Springfield, 2015).

    Google Scholar 

  • 128.

    Grimm, E. C. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35 (1987).

    ADS  Article  Google Scholar 

  • 129.

    Clark, J. S. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quat. Res. 30, 67–80 (1988).

    ADS  Article  Google Scholar 

  • 130.

    Whitlock, C. & Larsen, C. Charcoal as a fire proxy. Track. Environ. Change Lake Sediments 3, 75–97 (2002).

    Article  Google Scholar 

  • 131.

    Higuera, P. E., Whitlock, C. & Gage, J. A. Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of yellowstone National Park, USA. Holocene 21, 327–341 (2011).

    ADS  Article  Google Scholar 

  • 132.

    Higuera, P. E., Peters, M. E., Brubaker, L. B. & Gavin, D. G. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 26, 1790–1809 (2007).

    ADS  Article  Google Scholar 

  • 133.

    Kelly, R. F., Higuera, P. E., Barrett, C. M. & Sheng Hu, F. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quat. Res.75(1), 11–17 (2011).  


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate