in

Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics

  • 1.

    Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. 107, 16732–16737 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Laurance, W. F. Have we overstated the tropical biodiversity crisis?. Trends Ecol. Evol. 22, 65–70 (2007).

    PubMed  Article  Google Scholar 

  • 4.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Nottingham, A. T. et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. Bioscience 65, 906–921 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Seymour, F. & Busch, J. Why Forests? Why Now? The Science, Economics and Politics of Tropical Forests and Climate Change 1–450 (Center for Global Development, Washington, 2016).

    Google Scholar 

  • 7.

    de Quadros, P. D. et al. Coal mining practices reduce the microbial biomass, richness and diversity of soil. Appl. Soil Ecol. 98, 195–203 (2016).

    Article  Google Scholar 

  • 8.

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–426 (2000).

    Article  Google Scholar 

  • 10.

    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639–e1501639 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Chazdon, R. L. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. 6, 51–71 (2003).

    Article  Google Scholar 

  • 13.

    Arroyo-Rodríguez, V. et al. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 92, 326–340 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Vashum, K. T., Kasomwoshi, T. & Jayakumar, S. Soil organic carbon sequestration potential of primary and secondary forests in Northeast India. Proc. Int. Acad. Ecol. Environ. Sci. 6, 67 (2016).

    CAS  Google Scholar 

  • 15.

    Uriarte, M. et al. Natural disturbance and human land use as determinants of tropical forest dynamics: results from a forest simulator. New Phytol. 79, 423–443 (2009).

    Google Scholar 

  • 16.

    Calderón, K. et al. Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J. 11, 272–283 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 17.

    Rodrigues, J. L. M. et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Natl. Acad. Sci. USA 110, 988–993 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Coyle, D. R. et al. Soil fauna responses to natural disturbances, invasive species, and global climate change: current state of the science and a call to action. Soil Biol. Biochem. 110, 116–133 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Brussaard, L. Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997).

    Google Scholar 

  • 20.

    Brussaard, L., de Ruiter, P. C. & Brown, G. G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121, 233–244 (2007).

    Article  Google Scholar 

  • 21.

    Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).

    Article  Google Scholar 

  • 22.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  • 23.

    Eisenhauer, N., Sabais, A. C. W. & Scheu, S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biol. Biochem. 43, 1697–1704 (2011).

    CAS  Article  Google Scholar 

  • 24.

    Griffiths, B. S., de Groot, G. A., Laros, I., Stone, D. & Geisen, S. The need for standardisation: exemplified by a description of the diversity, community structure and ecological indices of soil nematodes. Ecol. Indic. 87, 43–46 (2018).

    Article  Google Scholar 

  • 25.

    Mulder, C. Driving forces from soil invertebrates to ecosystem functioning: the allometric perspective. Naturwissenschaften 93, 467–479 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Menta, C. Soil fauna diversity. In Biodiversity Conservation and Utilization in a Diverse World (ed. Lameed, G. A.) (InTech, London, 2012). https://doi.org/10.5772/51091.

    Google Scholar 

  • 27.

    Errington, I. et al. The influence of vegetation and soil properties on springtail communities in a diesel-contaminated soil. Sci. Total Environ. 619–620, 1098–1104 (2018).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 28.

    Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: a review. Soil Biol. Biochem. 94, 94–106 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Beng, K. C. et al. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 6, 1–13 (2016).

    Article  CAS  Google Scholar 

  • 30.

    McGee, K. M., Robinson, C. V. & Hajibabaei, M. Gaps in DNA-based biomonitoring across the globe. Front. Ecol. Evolut. 7, 337 (2019).

    Article  Google Scholar 

  • 31.

    Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16, 1245–1257 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Liu, S. et al. SOAP Barcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods Ecol. Evol. 4, 1142–1150 (2013).

    Article  Google Scholar 

  • 33.

    Bienert, F. et al. Tracking earthworm communities from soil DNA: tracking earthworm communities from soil DNA. Mol. Ecol. 21, 2017–2030 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Dell’Anno, A., Carugati, L., Corinaldesi, C., Riccioni, G. & Danovaro, R. Unveiling the biodiversity of deep-sea nematodes through metabarcoding: are we ready to bypass the classical taxonomy?. PLoS ONE 10, e0144928 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Fonseca, V. G. et al. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes: macroecology of microscopic marine eukaryotes. Glob. Ecol. Biogeogr. 23, 1293–1302 (2014).

    Article  Google Scholar 

  • 36.

    Pansu, J. et al. Landscape-scale distribution patterns of earthworms inferred from soil DNA. Soil Biol. Biochem. 83, 100–105 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Saitoh, S. et al. A quantitative protocol for DNA metabarcoding of springtails (Collembola). Genome 59, 705–723 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing: news and views: opinion. Mol. Ecol. 21, 2039–2044 (2012).

    PubMed  Article  Google Scholar 

  • 39.

    Edge, T. A. et al. The ecobiomics project: advancing metagenomics assessment of soil health and freshwater quality in Canada. Sci. Total Environ. 710, 135906 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 40.

    Porter, T. M. & Hajibabaei, M. Scaling up: a guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27, 313–338 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8, 1–10 (2018).

    Article  CAS  Google Scholar 

  • 42.

    Porter, T. M. & Hajibabaei, M. Over 2.5 million COI sequences in GenBank and growing. PLoS ONE 13, e0200177 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Fernandes, K. et al. DNA metabarcoding-a new approach to fauna monitoring in mine site restoration. Restor. Ecol. 26, 1098–1107 (2018).

    Article  Google Scholar 

  • 44.

    Gibson, J. F. et al. Large-scale biomonitoring of remote and threatened ecosystems via high-throughput sequencing. PLoS ONE 10, e0138432-e138515 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Martin, G. K., Adamowicz, S. J. & Cottenie, K. Taxonomic resolution based on DNA barcoding affects environmental signal in metacommunity structure. Freshw. Sci. 35, 701–711 (2016).

    Article  Google Scholar 

  • 46.

    Banerjee, S. et al. Determinants of bacterial communities in Canadian agroforestry systems. Environ. Microbiol. 18, 1805–1816 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Chikoski, J. M., Ferguson, S. H. & Meyer, L. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment. Acta Oecologica 30, 203–211 (2006).

    ADS  Article  Google Scholar 

  • 48.

    Wall, D. H. et al. Soil Ecology and Ecosystem Services (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 49.

    Yu, Y. et al. Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary. Eur. J. Soil Biol. 49, 12–21 (2012).

    Article  Google Scholar 

  • 50.

    Convey, P., Block, W. & Peat, H. J. Soil arthropods as indicators of water stress in Antarctic terrestrial habitats?. Glob. Change Biol. 9, 1718–1730 (2003).

    ADS  Article  Google Scholar 

  • 51.

    Marra, J. L. & Edmonds, R. L. Soil arthropod responses to different patch types in a mixed-conifer forest of the Sierra Nevada. For. Sci. 51, 255–265 (1998).

    Google Scholar 

  • 52.

    McCluney, K. E. & Sabo, J. L. Sensitivity and tolerance of riparian arthropod communities to altered water resources along a drying river. PLoS ONE 9, e109276 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Villani, M. G. & Wright, R. J. Environmental influences on soil macroarthropod behavior in agricultural systems 35, 249–269 (1990).

    Google Scholar 

  • 54.

    Zahran, H. H., Moharram, A. M. & Mohammad, H. A. Some ecological and physiological studies on bacteria isolated from salt-affected soils of Egypt. J. Basic Microbiol. 32, 405–413 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    McGee, K. M., Eaton, W. D., Shokralla, S. & Hajibabaei, M. Determinants of soil bacterial and fungal community composition toward carbon-use efficiency across primary and secondary forests in a costa rican conservation area. Microb. Ecol. 10, 423 (2018).

    Google Scholar 

  • 56.

    Oba, Y., Ôhira, H., Murase, Y., Moriyama, A. & Kumazawa, Y. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae). PLoS ONE 10, e0116612 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 57.

    Ensafi, P. et al. Soil type mediates the effectiveness of biological control against Limonius californicus (Coleoptera: Elateridae). J. Econ. Entomol. 111, 2053–2058 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Poggi, S. et al. Relative influence of climate and agroenvironmental factors on wireworm damage risk in maize crops. J. Pest. Sci. 91, 585–599 (2018).

    Article  Google Scholar 

  • 59.

    Di, S., Huang, L., Diao, J. & Zhou, Z. Selective bioaccumulation and elimination of hexachlorocyclohexane isomers in Tubifex tubifex (Oligochaeta, Tubificidae). Environ. Sci. Pollut. Res. 23, 6990–6998 (2016).

    CAS  Article  Google Scholar 

  • 60.

    Pelegrí, S. & Blackburn, T. H. Effects of Tubifex tubifex (Oligochaeta:Tubificidae) on N-mineralization in freshwater sediments, measured with 15-N isotopes. Aquat. Microb. Ecol. 9, 289–294 (1995).

    Article  Google Scholar 

  • 61.

    Saaltink, R. M. Respiration and aeration by bioturbating Tubificidae alter biogeochemical processes in aquatic sediment. Aquat. Sci. 81, 1–13 (2019).

    Article  CAS  Google Scholar 

  • 62.

    Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. New Phytol. 75, 139–157 (2005).

    Google Scholar 

  • 63.

    Feldpausch, T. R., Rondon, M. A., Fernandes, E. C. M., Riha, S. J. & Wandelli, E. Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia. Ecol. Appl. 14, 164–176 (2004).

    Article  Google Scholar 

  • 64.

    Gehring, C., Vlek, P. L. G., de Souza, L. A. G. & Denich, M. Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 111, 237–252 (2005).

    CAS  Article  Google Scholar 

  • 65.

    Guariguata, M. R. & Ostertag, R. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manag. 148, 185–206 (2001).

    Article  Google Scholar 

  • 66.

    Chassot, O. & Monge, G. Connectivity conservation of the great green macaw’s landscape in costa rica and nicaragua (1994–2012). Parks 18, 1–10 (2012).

    Google Scholar 

  • 67.

    Hartshorn, G. S. et al. Vegetation Types and Floristic Patterns. La Selva: Ecology and Natural History of a Neotropical Rain Forest (The University of Chicago Press, Chicago, 1994).

    Google Scholar 

  • 68.

    van der Gast, C. J., Gosling, P., Tiwari, B. & Bending, G. D. Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice: spatial scaling of arbuscular mycorrhizal fungi. Environ. Microbiol. 13, 241–249 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    McGee, K. M., Eaton, W. D., Porter, T. M., Shokralla, S. & Hajibabaei, M. Soil microbiomes associated with two dominant Costa Rican tree species, and implications for remediation. A case study from a Costa Rican conservation area. Appl. Soil Ecol. 137, 139–153 (2019).

    Article  Google Scholar 

  • 70.

    Eaton, W. D. et al. Differences in the soil microbial community and carbon-use efficiency following development of Vochysia guatemalensis tree plantations in unproductive pastures in Costa Rica. Restor. Ecol. https://doi.org/10.1111/rec.12978 (2019).

    Article  Google Scholar 

  • 71.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biochem. 3, 294–299 (1994).

    CAS  Google Scholar 

  • 72.

    Hajibabaei, M., Spall, J. L., Shokralla, S. & van Konynenburg, S. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol. 12, 28 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Gibson, J. et al. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc. Nat. Acad. Sci. 111, 8007–8012 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 74.

    St. John, J. SeqPrep. Retrieved https://github.com/jstjohn/SeqPrep (2016).

  • 75.

    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. https://doi.org/10.1101/081257 (2016).

    Article  Google Scholar 

  • 76.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Reeder, J. & Knight, R. The ‘rare biosphere’: a reality check. Nat. Methods 6, 636–637 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 78.

    Tedersoo, L. et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol. 188, 291–301 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 79.

    Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Anderson, M. J., Gorley, R. N. & Clarke, R. K. PERMANOVA+ for Primer: guide to Software and Statistical Methods (PRIMER-E Ltd., Plymouth, UK, 2008).

    Google Scholar 

  • 81.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).

    Article  Google Scholar 

  • 82.

    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).

    Article  Google Scholar 

  • 83.

    DiStefano, J., Fidler, F. & Cumming, G. Effect size estimates and confidence intervals: An alternative focus for the presentation and interpretation of ecological data. In New Trends in Ecology Research. 1st edn. (ed. Burk, A.). (Nova Science Publishers Inc., New York, 2005).

    Google Scholar 

  • 84.

    Clarke, K. R., & Gorley, R. N. PRIMER v6: user manual/tutorial (Plymouth routines in multivariate ecological research) (PRIMER-E Ltd., Plymouth, UK, 2006).

    Google Scholar 

  • 85.

    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. In Model Selection and Multimodel Inference (eds Burnham, K. P. & Anderson, D. R.) 1–515 (Springer, Berlin, 2003).

    Google Scholar 

  • 86.

    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. New Phytol. 69, 1–24 (1999).

    Google Scholar 


  • Source: Ecology - nature.com

    The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems

    A sciaenid swim bladder with long skinny fingers produces sound with an unusual frequency spectrum