in

Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific

  • 1.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Spalding, M. D. & Brown, B. E. Warm-water coral reefs and climate change. Science 350, 769–771 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Randall, C. J. & van Woesik, R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat. Clim. Change 5, 375–379 (2015).

    ADS  Google Scholar 

  • 4.

    Randall, C. J. & van Woesik, R. Some coral diseases track climate oscillations in the Caribbean. Sci. Rep. 7, 5719 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Maynard, J. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Change 5, 688–694 (2015).

    ADS  Google Scholar 

  • 6.

    Harvell, D. et al. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography 20, 172–195 (2007).

    Google Scholar 

  • 7.

    Ruiz-Moreno, D. et al. Global coral disease prevalence associated with sea temperature anomalies and local factors. Diseases Aquatic Org. 100, 249–261 (2012).

    Google Scholar 

  • 8.

    Willis, B. L., Page, C. A. & Dinsdale, E. A (2004) Coral disease on the great barrier reef. in Coral Health and Disease (eds. Rosenberg, E. & Loya, Y.) 69–104 (Springer, Berlin, Heidelberg, 2004). https://doi.org/10.1007/978-3-662-06414-6_3.

  • 9.

    Haapkylä, J., Seymour, A. S., Trebilco, J. & Smith, D. Coral disease prevalence and coral health in the Wakatobi Marine Park, south-east Sulawesi, Indonesia. J. Marine Biol. Assoc. UK 87, 403–414 (2007).

    Google Scholar 

  • 10.

    Rosenberg, E. & Loya, Y. Coral Health and Disease. (Springer-Verlag, Berlin, 2004).

  • 11.

    Aeby, G. S. Baseline levels of coral disease in the Northwestern Hawaiian Islands. Atoll Res. Bull. 543, 471–488 (2006).

    Google Scholar 

  • 12.

    Roff, G., Hoegh-Guldberg, O. & Fine, M. Intra-colonial response to Acroporid ‘white syndrome’ lesions in tabular Acropora spp. (Scleractinia). Coral Reefs 25, 255–264 (2006).

  • 13.

    Ainsworth, T. D., Kramasky-Winter, E., Loya, Y., Hoegh-Guldberg, O. & Fine, M. Coral disease diagnostics: what’s between a plague and a band?. Appl. Environ. Microbiol. 73, 981–992 (2007).

    CAS  PubMed  Google Scholar 

  • 14.

    Bourne, D. G., Ainsworth, T. D., Pollock, F. J. & Willis, B. L. Towards a better understanding of white syndromes and their causes on Indo-Pacific coral reefs. Coral Reefs 34, 233–242 (2015).

    ADS  Google Scholar 

  • 15.

    Williams, G. J., Aeby, G. S., Cowie, R. O. M. & Davy, S. K. Predictive modeling of coral disease distribution within a reef system. PLoS ONE 5, e9264 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5, e124 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Selig, E. R. et al. Analyzing the Relationship Between Ocean Temperature Anomalies and Coral Disease Outbreaks at Broad Spatial Scales. in Coral Reefs and Climate Change: Science and Management (eds. Phinney, J., Hoegh-Guldberg, O., Kleypas, J., Skirving, W. & Strong, A.) (American Geophysical Union, 2006).

  • 18.

    Brodnicke, O. B. et al. Unravelling the links between heat stress, bleaching and disease: fate of tabular corals following a combined disease and bleaching event. Coral Reefs 38, 591–603 (2019).

    ADS  Google Scholar 

  • 19.

    Sussman, M., Willis, B. L., Victor, S. & Bourne, D. G. Coral pathogens identified for White Syndrome (WS) epizootics in the Indo-Pacific. PLoS ONE 3, e2393 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Sweet, M. & Bythell, J. Ciliate and bacterial communities associated with White Syndrome and Brown Band Disease in reef-building corals. Environ. Microbiol. 14, 2184–2199 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Sweet, M. & Bythell, J. White Syndrome in Acropora muricata: Nonspecific bacterial infection and ciliate histophagy. Mol. Ecol. 24, 1150–1159 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Pollock, F. J. et al. Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Mar. Ecol. Prog. Ser. 510, 39–43 (2014).

    ADS  Google Scholar 

  • 23.

    Work, T. M. & Aeby, G. S. Pathology of tissue loss (white syndrome) in Acropora sp. corals from the Central Pacific. J. Invertebrate Pathol. 107, 127–131 (2011).

  • 24.

    Ainsworth, T. D., Kvennefors, E. C., Blackall, L. L., Fine, M. & Hoegh-Guldberg, O. Disease and cell death in white syndrome of Acroporid corals on the Great Barrier Reef. Mar. Biol. 151, 19–29 (2007).

    Google Scholar 

  • 25.

    Petes, L. E., Harvell, C. D., Peters, E., Webb, M. & Mullen, K. Pathogens compromise reproduction and induce melanization in Caribbean sea fans. Mar. Ecol. Prog. Ser. 264, 167–171 (2003).

    ADS  Google Scholar 

  • 26.

    Brown, B. & Bythell, J. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).

    ADS  CAS  Google Scholar 

  • 27.

    Toledo-Hernández, C. & Ruiz-Diaz, C. P. The immune responses of the coral. Invertebrate Surv. J. 11, 319–328 (2014).

    Google Scholar 

  • 28.

    Mydlarz, L. D., Fuess, L. E., Mann, W. T., Pinzón, J. H. & Gochfeld, D. J. The Cnidaria, Past, Present and Future (Springer, Berlin, 2016).

    Google Scholar 

  • 29.

    Miller, D. J. et al. The innate immune repertoire in cnidaria–ancestral complexity and stochastic gene loss. Genome Biol. 8, R59 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Vidal-Dupiol, J. et al. Physiological responses of the scleractinian coral Pocillopora damicornis to bacterial stress from Vibrio coralliilyticus. J. Exp. Biol. 214, 1533–1545 (2011).

    CAS  PubMed  Google Scholar 

  • 31.

    Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genom. 16, 371 (2015).

    Google Scholar 

  • 32.

    Mydlarz, L. D. & Harvell, C. D. Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146, 54–62 (2007).

    PubMed  Google Scholar 

  • 33.

    Mydlarz, L. D., Jones, L. E. & Harvell, C. D. Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. Annu. Rev. Ecol. Evol. Syst. 37, 251–288 (2006).

    Google Scholar 

  • 34.

    Anderson, D. & Gilchrist, S. Development of a novel method for coral RNA isolation and the expression of a programmed cell death gene in White Plague-diseased Diploria strigosa (Dana, 1846). in Proceedings of the 11th International Coral Reef Symposium (2008).

  • 35.

    Anderson, D. A., Walz, M. E., Weil, E., Tonellato, P. & Smith, M. C. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. PeerJ 4, e1616 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Loya, Y. Skeletal regeneration in a Red Sea scleractinian coral population. Nature 261, 490–491 (1976).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Wahle, C. M. Regeneration of injuries among Jamaican gorgonians: the roles of colony physiology and environment. Biol. Bull. 165, 778–790 (1983).

    PubMed  Google Scholar 

  • 38.

    Ward, S. The effect of damage on the growth, reproduction and storage of lipids in the scleractinian coral Pocillopora damicornis (Linnaeus). J. Exp. Mar. Biol. Ecol. 187, 193–206 (1995).

    CAS  Google Scholar 

  • 39.

    Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).

    CAS  PubMed  Google Scholar 

  • 40.

    Sheridan, C. et al. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral. Coral Reefs 33, 1067–1076 (2014).

    ADS  Google Scholar 

  • 41.

    Palmer, C. V. Immunity and the coral crisis. Commun. Biol. 1, 91 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R (2011) Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. J. Ecol. (2011). https://doi.org/10.1111/j.1365-2435.2008.01531.x@10.1111/(ISSN)1365-2745.VI_OA_2011.

  • 43.

    Lesser, M. P. Using energetic budgets to assess the effects of environmental stress on corals: are we measuring the right things?. Coral Reefs 32, 25–33 (2013).

    ADS  Google Scholar 

  • 44.

    Parrish, C. C. Lipids in marine ecosystems. ISRN Oceanography 604045 (2013) https://doi.org/10.5402/2013/604045.

  • 45.

    Bergé, J.-P. & Barnathan, G. Fatty acids from lipids of marine organisms: molecular biodiversity, rolesas biomarkers, biologically active compounds, and economical aspects. in Marine Biotechnology I (eds. Ulber, R. & Le Gal, Y.) 49–125 (Springer, Berlin, Heidelberg, 2005). https://doi.org/10.1007/b135782.

  • 46.

    Farre, B., Cuif, J.-P. & Dauphin, Y. Occurrence and diversity of lipids in modern coral skeletons. Zoology 113, 250–257 (2010).

    PubMed  Google Scholar 

  • 47.

    Azeez, O. I., Meintjes, R. & Chamunorwa, J. P. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus. Lipids Health Disease 13, 71 (2014).

    Google Scholar 

  • 48.

    Baumann, J., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Biol. Ecol. 461, 469–478 (2014).

    CAS  Google Scholar 

  • 49.

    Towle, E. K., Enochs, I. C. & Langdon, C. Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS ONE 10, e0123394 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Meesters, E. H. & Bak, R. P. M. Effects of coral bleaching on tissue regeneration potential and colony survival. Mar. Ecol. Prog. Ser. 96, 189–198 (1993).

    ADS  Google Scholar 

  • 51.

    Mascarelli, P. E. & Bunkley-William, L. An experimental field evaluation of healing in damaged, unbleached and artificially bleached star coral, Montastraea annularis. Bull. Mar. Sci. 65, 577–586 (1999).

    Google Scholar 

  • 52.

    Oren, U., Rinkevich, B. & Loya, Y. Oriented intra-colonial transport of 14C labeled materials during coral regeneration. Mar. Ecol. Prog. Ser. 161, 117–122 (1997).

    ADS  Google Scholar 

  • 53.

    Oren, U., Brickner, I. & Loya, Y. Prudent sessile feeding by the corallivore snail, Coralliophila violacea on coral energy sinks. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 2043–2050 (1998).

    Google Scholar 

  • 54.

    Roff, G., Hoegh-Guldberg, O. & Fine, M. Intra-colonial response to Acroporid “white syndrome” lesions in tabular Acropora spp. (Scleractinia). Coral Reefs 25, 255 (2006).

  • 55.

    Kramarsky-Winter, E. What Can Regeneration Processes Tell Us About Coral Disease? in Coral Health and Disease (eds. Rosenberg, E. & Loya, Y.) 217–230 (Springer, Berlin, Heidelberg, 2004). https://doi.org/10.1007/978-3-662-06414-6_10.

  • 56.

    Mullen, K. M., Peters, E. C. & Harvell, C. D. Coral Resistance to Disease. in Coral Health and Disease (eds. Rosenberg, E. & Loya, Y.) 377–399 (Springer, Berlin, Heidelberg, 2004). https://doi.org/10.1007/978-3-662-06414-6_22.

  • 57.

    Andersen, S. B., Vestergaard, M. L., Ainsworth, T. D., Hoegh-Guldberg, O. & Kühl, M. Acute tissue death (white syndrome) affects the microenvironment of tabular Acropora corals. Aquatic Biol. 10, 99–104 (2010).

    Google Scholar 

  • 58.

    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).

    CAS  PubMed  Google Scholar 

  • 59.

    Bourne, D. G. et al. Microbial disease and the coral holobiont. Trends Microbiol. 17, 554–562 (2009).

    CAS  PubMed  Google Scholar 

  • 60.

    Ritchie, K. B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).

    ADS  CAS  Google Scholar 

  • 61.

    Shnit-Orland, M. & Kushmaro, A. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol. Ecol. 67, 371–380 (2009).

    CAS  PubMed  Google Scholar 

  • 62.

    Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).

    CAS  PubMed  Google Scholar 

  • 63.

    Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 9 (2017).

    Google Scholar 

  • 64.

    Egan, S. & Gardiner, M. Microbial dysbiosis: rethinking disease in marine ecosystems. Front. Microbiol. 7, 991 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Sweet, M. et al. Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease. Microbiome 7, 139 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Kvennefors, E. C. E. et al. Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. Dev. Comp. Immunol. 34, 1219–1229 (2010).

    CAS  PubMed  Google Scholar 

  • 67.

    Connelly, M. T., McRae, C. J., Liu, P.-J. & Traylor-Knowles, N. Lipopolysaccharide treatment stimulates Pocillopora coral genotype-specific immune responses but does not alter coral-associated bacteria communities. Dev. Comp. Immunol. 109, 103717 (2020).

    CAS  PubMed  Google Scholar 

  • 68.

    Pollock, F. J., Wada, N., Torda, G., Willis, B. L. & Bourne, D. G. White syndrome-affected corals have a distinct microbiome at disease lesion fronts. Appl. Environ. Microbiol. 83, e02799-e2816 (2017).

    PubMed  Google Scholar 

  • 69.

    Wada, N. et al. In situ visualization of bacterial populations in coral tissues: pitfalls and solutions. PeerJ 4, e2424 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 70.

    Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).

    CAS  PubMed  Google Scholar 

  • 71.

    Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).

    CAS  PubMed  Google Scholar 

  • 72.

    Zack, G. W., Rogers, W. E. & Latt, S. A. Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25, 741–753 (1977).

    CAS  PubMed  Google Scholar 

  • 73.

    Conlan, J. A., Jones, P. L., Turchini, G. M., Hall, M. R. & Francis, D. S. Changes in the nutritional composition of captive early-mid stage Panulirus ornatus phyllosoma over ecdysis and larval development. Aquaculture 434, 159–170 (2014).

    CAS  Google Scholar 

  • 74.

    Parrish, C. C., Bodennec, G. & Gentien, P. Determination of glycoglycerolipids by Chromarod thin-layer chromatography with Iatroscan flame ionization detection. J. Chromatogr. A 741, 91–97 (1996).

    CAS  Google Scholar 

  • 75.

    Christie, W. W. & Han, X. Lipid Analysis: Isolation, separation, identification and lipidomic analysis (Woodhead Publishing Limited, Cambridge, 2010).

    Google Scholar 

  • 76.

    Ackman, R. G. The gas chromatograph in practical analyses of common and uncommon fatty acids for the 21st century. Anal. Chim. Acta 465, 175–192 (2002).

    CAS  Google Scholar 

  • 77.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016).

  • 78.

    RStudio: Integrated development environment for R 0.99.903. (2015).

  • 79.

    de Mendiburu, F. Statistical Procedures for Agricultural Research. (2019).

  • 80.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).

    Google Scholar 

  • 81.

    Handl, S., Dowd, S. E., Garcia-Mazcorro, J. F., Steiner, J. M. & Suchodolski, J. S. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol. Ecol. 76, 301–310 (2011).

    CAS  PubMed  Google Scholar 

  • 82.

    Suchodolski, J. S. et al. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing. BMC Microbiol. 9, 210 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 83.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 84.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  Google Scholar 

  • 86.

    Anderson, M., Gorley, R. N. & Clarke, R. K. Permanova+ for Primer: Guide to Software and Statistical Methods. (Primer-E Limited, 2008).

  • 87.

    Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research) (Primer-E Ltd, Plymouth, 2006).

    Google Scholar 

  • 88.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 89.

    Morton, J. T. et al. Balance Trees Reveal Microbial Niche Differentiation. mSystems 2, e00162-16 (2017).

  • 90.

    Dixon, P. & Palmer, M. W. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  • 91.

    Kolde, R. Pretty Heatmaps. (2018).

  • 92.

    Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. (2019).

  • 93.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated Marginal Means, aka Least-Square Means. (2019).

  • 94.

    Graves, S., Piepho, H.-P. & Selzer, L. multcompView: Visualizations of Paired Comparisons. (2015).

  • 95.

    Wada, N. et al. Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Sci. Rep. 9, 14662 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Sunagawa, S. et al. Bacterial diversity and White Plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 3, 512–521 (2010).

    Google Scholar 

  • 97.

    Cárdenas, A., Rodriguez-R, L. M., Pizarro, V., Cadavid, L. F. & Arévalo-Ferro, C. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease. ISME J. 6, 502–512 (2012).

    PubMed  Google Scholar 

  • 98.

    Mydlarz, L. D., Holthouse, S. F., Peters, E. C. & Harvell, C. D. Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS ONE 3, e1811 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 99.

    Palmer, C. V. & Traylor-Knowles, N. Towards an integrated network of coral immune mechanisms. Proc. R. Soc. B: Biol. Sci. 279, 4106–4114 (2012).

    CAS  Google Scholar 

  • 100.

    Fang, L., Chen, Y. J. & Chen, C. Why does the white tip of stony coral grow so fast without zooxanthellae?. Mar. Biol. 103, 359–363 (1989).

    Google Scholar 

  • 101.

    Conlan, J. A., Humphrey, C. A., Severati, A. & Francis, D. S. Intra-colonial diversity in the scleractinian coral, Acropora millepora: identifying the nutritional gradients underlying physiological integration and compartmentalised functioning. PeerJ 6, e4239 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 102.

    Dodds, L. A., Black, K. D., Orr, H. & Roberts, J. M. Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar. Ecol. Prog. Ser. 397, 113–124 (2009).

    ADS  CAS  Google Scholar 

  • 103.

    Harriott, V. J. Coral lipids and environmental stress. Environ. Monit. Assess. 25, 131–139 (1993).

    CAS  PubMed  Google Scholar 

  • 104.

    Grottoli, A. G. & Rodrigues, L. J. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids. Coral Reefs 30, 687 (2011).

    ADS  Google Scholar 

  • 105.

    Rodrigues, L. J., Grottoli, A. G. & Pease, T. K. Lipid class composition of bleached and recoveringPorites compressaDana 1846 andMontipora capitataDana, 1846 corals from Hawaii. J. Exp. Mar. Biol. Ecol. 358, 136–143 (2008).

    CAS  Google Scholar 

  • 106.

    Figueiredo, J. et al. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs 31, 613–619 (2012).

    ADS  Google Scholar 

  • 107.

    Pollock, F. J. et al. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. R. Soc. Open Sci. 6, 190355 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 108.

    Stanley, D. W. Eicosanoids in Invertebrate Signal Transduction Systems (Princeton University Press, Princeton, 2014).

    Google Scholar 

  • 109.

    Dennis, E. A. & Norris, P. C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 110.

    Kaur, G., Cameron-Smith, D., Garg, M. & Sinclair, A. J. Docosapentaenoic acid (22:5n–3): a review of its biological effects. Prog. Lipid Res. 50, 28–34 (2011).

    CAS  PubMed  Google Scholar 

  • 111.

    Ushijima, B. et al. Mutation of the toxR or mshA genes from Vibrio coralliilyticus strain OCN014 reduces infection of the coral Acropora cytherea. Environ. Microbiol. 18, 4055–4067 (2016).

    CAS  PubMed  Google Scholar 

  • 112.

    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).

    CAS  PubMed  Google Scholar 

  • 113.

    Flanagan, J. L. et al. Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J. Clin. Microbiol. 45, 1954–1962 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 114.

    Roder, C. et al. Bacterial profiling of White Plague disease in a comparative coral species framework. ISME J.l 8, 31–39 (2014).

    CAS  Google Scholar 

  • 115.

    Sekar, R., Mills, D. K., Remily, E. R., Voss, J. D. & Richardson, L. L. Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl. Environ. Microbiol. 72, 5963–5973 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 116.

    Meyer, J. L., Paul, V. J. & Teplitski, M. Community shifts in the surface microbiomes of the coral Porites astreoides with Unusual Lesions. PLoS ONE 9, e100316 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 117.

    Apprill, A., Hughen, K. & Mincer, T. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ. Microbiol. 15, 2063–2072 (2013).

    CAS  PubMed  Google Scholar 

  • 118.

    Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674 (2010).

    PubMed  Google Scholar 

  • 119.

    Hernandez-Agreda, A., Leggat, W., Bongaerts, P. & Ainsworth, T. D. The Microbial Signature Provides Insight into the Mechanistic Basis of Coral Success across Reef Habitats. mBio 7, e00560–16 (2016).

  • 120.

    Reis, A. M. M. et al. Bacterial diversity associated with the Brazilian endemic reef coral Mussismilia braziliensis. J. Appl. Microbiol. 106, 1378–1387 (2009).

    CAS  PubMed  Google Scholar 

  • 121.

    Morrow, K. M., Moss, A. G., Chadwick, N. E. & Liles, M. R. Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl. Environ. Microbiol. 78, 6438–6449 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 122.

    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 105, 629–640 (2016).

    CAS  PubMed  Google Scholar 

  • 123.

    Meron, D. et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 5, 51–60 (2011).

    PubMed  Google Scholar 

  • 124.

    Meron, D. et al. Changes in coral microbial communities in response to a natural pH gradient. ISME J. 6, 1775–1785 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 125.

    Frias-Lopez, J., Zerkle, A. L., Bonheyo, G. T. & Fouke, B. W. Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl. Environ. Microbiol. 68, 2214–2228 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 126.

    Webster, N. S., Xavier, J. R., Freckelton, M., Motti, C. A. & Cobb, R. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ. Microbiol. 10, 3366–3376 (2008).

    CAS  PubMed  Google Scholar 

  • 127.

    Pantos, O. & Bythell, J. C. Bacterial community structure associated with white band disease in the Elkhorn coral Acropora palmata determined using culture-independent 16S rRNA techniques. Diseases Aquat. Org. 69, 79–88 (2006).

    CAS  Google Scholar 

  • 128.

    de Castro, A. P. et al. Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from Eastern Brazil. Microb. Ecol. 59, 658–667 (2010).

    PubMed  Google Scholar 

  • 129.

    Garcia, G. D. et al. Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. Microb. Ecol. 65, 1076–1086 (2013).

    PubMed  Google Scholar 

  • 130.

    Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692–1697 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 131.

    Peixoto, R. S., Rosado, P. M., Leite, D. C. de A., Rosado, A. S. & Bourne, D. G. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).

  • 132.

    Raina, J.-B., Tapiolas, D., Willis, B. L. & Bourne, D. G. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl. Environ. Microbiol. 75, 3492–3501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 133.

    Todd, J. D. et al. Molecular dissection of bacterial acrylate catabolism–unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ. Microbiol. 12, 327–343 (2010).

    CAS  PubMed  Google Scholar 

  • 134.

    Pisapia, C., Anderson, K. & Pratchett, M. S. Intraspecific Variation in Physiological Condition of Reef-Building Corals Associated with Differential Levels of Chronic Disturbance. PLoS One 9, (2014).

  • 135.

    Towle, E. K. Heterotrophy and lipids as indicators of resilience to climate change stress in scleractinian corals. (University of Miami, 2015).


  • Source: Ecology - nature.com

    Negative to positive shifts in diversity effects on soil nitrogen over time

    Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal