in

Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change

  • 1.

    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2, 111–115 (2012).

    ADS  Article  Google Scholar 

  • 2.

    Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Chang. 7, 577–580 (2017).

    ADS  Article  Google Scholar 

  • 3.

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. USA 105, 11823–11826 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M. & Pauli, H. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. N. Phytol. 220, 447–459 (2018).

    Article  Google Scholar 

  • 5.

    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21, 829–840 (2012).

    Article  Google Scholar 

  • 7.

    Rumpf, S. B. et al. Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10, 4293 (2019).

  • 8.

    Cannone, N. & Pignatti, S. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Clim. Change 123, 201–214 (2014).

    ADS  Article  Google Scholar 

  • 9.

    Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr, G. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Glob. Chang. Biol. 13, 147–156 (2007).

    ADS  Article  Google Scholar 

  • 10.

    Pounds, J. A., Fogden, M. P. L., Savage, J. M. & Gorman, G. C. Tests of null models for amphibian declines on a tropical mountain. Conserv. Biol. 11, 1307–1322 (1997).

    Article  Google Scholar 

  • 11.

    Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Lehikoinen, A. et al. Declining population trends of European mountain birds. Glob. Chang. Biol. 25, 577–588 (2019).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Lenoir, J. & Svenning, J. C. In Encyclopedia of Biodiversity 599–611 (Academic, 2013).

  • 15.

    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 16.

    Carboni, M. et al. Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Glob. Chang. Biol. 24, e289–e302 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Tattoni, C., Ianni, E., Geneletti, D., Zatelli, P. & Ciolli, M. Landscape changes, traditional ecological knowledge and future scenarios in the Alps: a holistic ecological approach. Sci. Total Environ. 579, 27–36 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Chang. 4, 127–131 (2014).

    ADS  Article  Google Scholar 

  • 19.

    Opdam, P. & Wascher, D. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 117, 285–297 (2004).

    Article  Google Scholar 

  • 20.

    Troia, M. J., Kaz, A. L., Niemeyer, J. C. & Giam, X. Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nat. Ecol. Evol. 3, 1321–1330 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).

    Article  Google Scholar 

  • 23.

    Lenoir, J. & Svenning, J. C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Article  Google Scholar 

  • 24.

    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

  • 25.

    Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 15039 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Dullinger, I. et al. A socio-ecological model for predicting impacts of land-use and climate change on regional plant diversity in the Austrian Alps. Glob. Chang. Biol. 26, 2336–2352 (2020).

    ADS  PubMed Central  Article  Google Scholar 

  • 27.

    Kull, T. & Hutchings, M. J. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol. Conserv. 129, 31–39 (2006).

    Article  Google Scholar 

  • 28.

    Wraith, J. & Pickering, C. A continental scale analysis of threats to orchids. Biol. Conserv. 234, 7–17 (2019).

    Article  Google Scholar 

  • 29.

    Wraith, J., Norman, P. & Pickering, C. Orchid conservation and research: an analysis of gaps and priorities for globally red listed species. Ambio 49, 1601–1611 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Phillips, R. D., Reiter, N. & Peakall, R. Orchid conservation: from theory to practice. Ann. Bot. 126, 345–362 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    van der Meer, S., Jacquemyn, H., Carey, P. D. & Jongejans, E. Recent range expansion of a terrestrial orchid corresponds with climate-driven variation in its population dynamics. Oecologia 181, 435–448 (2016).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Vogt-Schilb, H. et al. Responses of orchids to habitat change in Corsica over 27 years. Ann. Bot. 118, 115–123 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Vogt-Schilb, H., Munoz, F., Richard, F. & Schatz, B. Recent declines and range changes of orchids in Western Europe (France, Belgium and Luxembourg). Biol. Conserv. 190, 133–141 (2015).

    Article  Google Scholar 

  • 34.

    Perazza, G., & & Lorenz, R. Le Orchidee dell’Italia Nordorientale. Atlante Corologico e Guida al Riconoscimento (Osiride, 2013).

  • 35.

    Sletvold, N., Dahlgren, J. P., Øien, D.-I., Moen, A. & Ehrlén, J. Climate warming alters effects of management on population viability of threatened species: results from a 30-year experimental study on a rare orchid. Glob. Chang. Biol. 19, 2729–2738 (2013).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Auffret, A. G., Kimberley, A., Plue, J. & Waldén, E. Super-regional land-use change and effects on the grassland specialist flora. Nat. Commun. 9, 3464 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 37.

    Vilà‐Cabrera, A., Premoli, A. C. & Jump, A. S. Refining predictions of population decline at species’ rear edges. Glob. Chang. Biol. 25, 1549–1560 (2019).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Matthies, D., Bräuer, I., Maibom, W. & Tscharntke, T. Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105, 481–488 (2004).

    Article  Google Scholar 

  • 39.

    Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Wilcox, R. R. Introduction to Robust Estimation and Hypothesis Testing 4th edn (Academic, 2016).

  • 41.

    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 43.

    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Lenoir, J. et al. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295–303 (2010).

    Google Scholar 

  • 47.

    Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).

    Article  Google Scholar 

  • 49.

    Gibson-Reinemer, D. K. & Rahel, F. J. Inconsistent range shifts within species highlight idiosyncratic responses to climate warming. PLoS ONE 10, e0132103 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Vittoz, P., Randin, C., Dutoit, A., Bonnet, F. & Hegg, O. Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob. Chang. Biol. 15, 209–220 (2009).

    ADS  Article  Google Scholar 

  • 51.

    Vogt-Schilb, H., Geniez, P., Pradel, R., Richard, F. & Schatz, B. Inter-annual variability in flowering of orchids: lessons learned from 8 years of monitoring in a Mediterranean region of France. Eur. J. Environ. Sci. 3, 129–137 (2013).

    Google Scholar 

  • 52.

    Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Tye, M., Dahlgren, J. P., Øien, D.-I., Moen, A. & Sletvold, N. Demographic responses to climate variation depend on spatial- and life history-differentiation at multiple scales. Biol. Conserv. 228, 62–69 (2018).

    Article  Google Scholar 

  • 54.

    Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina: Atlas des 4500 Plantes Vasculaires des Alpes (Aeschimann/Lauber, Belin, 2004).

  • 55.

    Di Piazza, A., & Eccel, E. Analisi di Serie di Temperatura e Precipitazione in Trentino nel Periodo 1958–2010 (Provincia Autonoma di Trento, 2012).

  • 56.

    Provincia Autonoma di Trento. Urbanistica – Banche Dati – Repertorio Cartografico (Provincia Autonoma di Trento, 2009).

  • 57.

    Monteiro, A. T., Fava, F., Hiltbrunner, E., Della Marianna, G. & Bocchi, S. Assessment of land cover changes and spatial drivers behind loss of permanent meadows in the lowlands of Italian Alps. Landsc. Urban Plan. 100, 287–294 (2011).

    Article  Google Scholar 

  • 58.

    Eccel, E., Zollo, A. L., Mercogliano, P. & Zorer, R. Simulations of quantitative shift in bio-climatic indices in the viticultural areas of Trentino (Italian Alps) by an open source R package. Comput. Electron. Agric. 127, 92–100 (2016).

    Article  Google Scholar 

  • 59.

    Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83 (2017).

    Article  Google Scholar 

  • 60.

    Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).

  • 61.

    Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 05, 754–767 (2015).

    Article  Google Scholar 

  • 62.

    Kéry, M., Gardner, B. & Monnerat, C. Predicting species distributions from checklist data using site-occupancy models. J. Biogeogr. 37, 1851–1862 (2010).

  • 63.

    Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Hothorn, T., Bretz, F., Westfall, P. & Heiberger, R. M. multcomp: simultaneous inference for general linear hypotheses. R package version 0.992-4. http://132.180.15.2/math/statlib/R/CRAN/doc/packages/multcomp.pdf (2007).

  • 65.

    Mair, P. & Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 52, 464–488 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 67.

    Aikio, S., Duncan, R. P. & Hulme, P. E. Herbarium records identify the role of long-distance spread in the spatial distribution of alien plants in New Zealand. J. Biogeogr. 37, 1740–1751 (2010).

    Article  Google Scholar 

  • 68.

    Ripley, B., Venables, B., Bates, D., Hornik, K. & Firth, D. Package ‘MASS’. http://www.stats.ox.ac.uk/pub/MASS4/ (2010).

  • 69.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 70.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).


  • Source: Ecology - nature.com

    The northernmost haulout site of South American sea lions and fur seals in the western South Atlantic

    Ecological drivers of genetic connectivity for African malaria vectors Anopheles gambiae and An. arabiensis