in

A horizontally acquired expansin gene increases virulence of the emerging plant pathogen Erwinia tracheiphila

  • 1.

    Shi, S. et al. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol. Ecol. 77(3), 600–610 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Lindow, S. E. & Brandl, M. T. Microbiology of the Phyllosphere. Appl. Environ. Microbiol. 69(4), 1875–1883 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Miwa, H. & Okazaki, S. How effectors promote beneficial interactions. Curr. Opin. Plant Biol. 38, 148–154 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Cosgrove, D. J. Microbial expansins. Annu. Rev. Microbiol. 71(1), 479–497 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Georgelis, N., Nikolaidis, N. & Cosgrove, D. J. Biochemical analysis of expansin-like proteins from microbes. Carbohyd. Polym. 100, 17–23 (2014).

    CAS  Article  Google Scholar 

  • 6.

    Nikolaidis, N., Doran, N. & Cosgrove, D. J. Plant expansins in bacteria and fungi: Evolution by horizontal gene transfer and independent domain fusion. Mol. Biol. Evol. 31(2), 376–386 (2013).

    PubMed  Article  CAS  Google Scholar 

  • 7.

    Chase, W. R. et al. Global cellulose biomass, horizontal gene transfers and domain fusions drive microbial expansin evolution. New Phytol. 226(3), 921–938 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Cosgrove, D. J. Loosening of plant cell walls by expansins. Nature 407(6802), 321–326 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Sampedro, J. & Cosgrove, D. J. The expansin superfamily. Genome Biol. 6(12), 242 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 10.

    Cosgrove, D. J. Plant expansins: Diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 25, 162–172 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Chen, F. & Bradford, K. J. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 124(3), 1265–1274 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Brummell, D. A. et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11(11), 2203–2216 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Cho, H.-T. & Cosgrove, D. J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 97(17), 9783–9788 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Li, Y. et al. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 128(3), 854–864 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Cosgrove, D. J. et al. The growing world of expansins. Plant Cell Physiol. 43(12), 1436–1444 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Georgelis, N., Nikolaidis, N. & Cosgrove, D. J. Bacterial expansins and related proteins from the world of microbes. Appl. Microbiol. Biotechnol. 99(9), 3807–3823 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Kerff, F. et al. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc. Natl. Acad. Sci. 105(44), 16876–16881 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 18.

    Brotman, Y. et al. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol. 147(2), 779–789 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Saloheimo, M. et al. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269(17), 4202–4211 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Kende, H. et al. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol. Biol. 55(3), 311–314 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Tancos, M. A. et al. Plant-like bacterial expansins play contrasting roles in two tomato vascular pathogens. Mol. Plant Pathol. 19(5), 1210–1221 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Narváez-Barragán, D. A. et al. Expansin-like Exl1 from Pectobacterium is a virulence factor required for host infection, and induces a defence plant response involving ROS, and jasmonate, ethylene and salicylic acid signalling pathways in Arabidopsis thaliana. Sci. Rep. 10(1), 1–14 (2020).

    Article  CAS  Google Scholar 

  • 23.

    Chalupowicz, L. et al. Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. Mol. Plant Pathol. 18(3), 336–346 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Laine, M. J. et al. The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp. sepedonicus plays a role in virulence and contains an expansin-like domain. Physiol. Mol. Plant Pathol. 57(5), 221–233 (2000).

    CAS  Article  Google Scholar 

  • 25.

    Hwang, I. S. et al. Functional characterization of two cellulase genes in the Gram-positive pathogenic bacterium Clavibacter michiganensis for wilting in tomato. Mol. Plant Microbe Interact. 32(4), 491–501 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Hwang, I. S. et al. Multiple plasmid-borne virulence genes of Clavibacter michiganensis ssp. capsici critical for disease development in pepper. New Phytol. 217(3), 1177–1189 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Olarte-Lozano, M. et al. PcExl1 a novel acid expansin-like protein from the plant pathogen Pectobacterium carotovorum, binds cell walls differently to BsEXLX1. PLoS ONE 9(4), e95638 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Jahr, H. et al. The endo-β-1,4-glucanase CelA of Clavibacter michiganensis subsp. michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. Mol. Plant-Microbe Interact. 13(7), 703–714 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Shapiro, L. R. et al. Draft genome sequence of Erwinia tracheiphila, an economically important bacterial pathogen of cucurbits. genomeA 3(3), e00482-15 (2015).

    PubMed  Article  Google Scholar 

  • 30.

    Shapiro, L. R. et al. Draft genome sequence of an Erwinia tracheiphila isolate from an infected muskmelon (Cucumis melo). Microbiol. Res. Announcements 7(17), e01058-e1118 (2018).

    Google Scholar 

  • 31.

    Shapiro, L. A to ZYMV Guide to Erwinia tracheiphila Infection: An Ecological and Molecular Study Infection: An Ecological and Molecular Study (The Pennsylvania State University, State College, 2012).

    Google Scholar 

  • 32.

    Shapiro, L. R. et al. An introduced crop plant is driving diversification of the virulent bacterial pathogen Erwinia tracheiphila. mBio 9(5), e01307-18 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Shapiro, L.R. and K.E. Mauck, Chemically-mediated interactions among cucurbits, insects and microbes. in Chemical Ecology of Insects 55–90 (ed. J. Tabata). (CRC Press, 2018).

  • 34.

    Smith, E. F. An Introduction to Bacterial Diseases of Plants (W.B. Saunders Company, Philadelphia, 1920).

    Google Scholar 

  • 35.

    Shapiro, L. R. et al. Horizontal gene acquisitions, mobile element proliferation, and genome decay in the host-restricted plant pathogen Erwinia tracheiphila. Genome Biol. Evol. 8(3), 649–664 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14(6), 627–633 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Rand, F. V. & Enlows, E. M. A. Transmission and control of bacterial wilt of cucurbits. J. Agric. Res. 6(4), 7–434 (1916).

    Google Scholar 

  • 38.

    Rand, F. V. & Cash, L. C. Some insect relations of Bacillus tracheiphilus Erw. Sm. Phytopathology 10, 133–140 (1920).

    Google Scholar 

  • 39.

    de Mackiewicz, D. et al. Herbaceous weeds are not ecologically important reservoirs of Erwinia tracheiphila. Plant Dis. 82(5), 521–529 (1998).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Shapiro, L. et al. Dynamics of short-and long-term association between a bacterial plant pathogen and its arthropod vector. Sci. Rep. 4, 4155 (2014).

    CAS  Google Scholar 

  • 41.

    Garcia-Salazar, C. et al. ELISA versus immunolocalization to determine the association of Erwinia tracheiphila in Acalymma vittatum (Coleoptera: Chrysomelidae). Environ. Entomol. 29, 542–550 (2000).

    Article  Google Scholar 

  • 42.

    Fleischer, S. J. et al. Serological estimates of the seasonal dynamics of Erwinia tracheiphila in Acalymma vittata (Coleoptera: Chrysomelidae). Environ. Entomol. 28, 470–476 (1999).

    Article  Google Scholar 

  • 43.

    Sasu, M. et al. Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo. Environ. Entomol. 39(1), 140–148 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Shapiro, L. R. et al. Disease interactions in a shared host plant: Effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease. PLoS ONE 8(10), e77393 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Shapiro, L. et al. Pathogen effects on vegetative and floral odours mediate vector attraction and host exposure in a complex pathosystem. Ecol. Lett. 15(12), 1430–1438 (2012).

    PubMed  Article  Google Scholar 

  • 46.

    Sasu, M. A. et al. Indirect costs of a nontarget pathogen mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita. Proc. Natl. Acad. Sci. 106(45), 19067–19071 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Marchler-Bauer, A. et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45(D1), D200–D203 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Lombard, V. et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42(D1), D490–D495 (2013).

    MathSciNet  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Aziz, R. et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 9(1), 75 (2008).

    Article  CAS  Google Scholar 

  • 50.

    Armenteros, J. J. A. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Article  CAS  Google Scholar 

  • 51.

    Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3(9), 711 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Zhaxybayeva, O. & Doolittle, W. F. Lateral gene transfer. Curr. Biol. 21(7), R242–R246 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784), 299–304 (2000).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Polz, M. F., Alm, E. J. & Hanage, W. P. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29(3), 170–175 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Zhaxybayeva, O. et al. Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events. Genome Res. 16(9), 1099–1108 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Danchin, E. G. et al. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc. Natl. Acad. Sci. 107(41), 17651–17656 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 58.

    Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480(7376), 241–244 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 59.

    Halpern, M. et al. Transfer of Pseudomonas flectens Johnson 1956 to Phaseolibacter gen. nov., in the family Enterobacteriaceae, as Phaseolibacter flectens gen. nov., comb. nov. Int. J. Syst. Evolut. Microbiol. 63(1), 268–273 (2013).

    Article  Google Scholar 

  • 60.

    Mensi, I. et al. Breaking dogmas: The plant vascular pathogen Xanthomonas albilineans is able to invade non-vascular tissues despite its reduced genome. R. Soc. Open Biol. 4(2), 130116 (2014).

    Article  CAS  Google Scholar 

  • 61.

    Vrisman, C. M. et al. Differential colonization dynamics of cucurbit hosts by Erwinia tracheiphila. Phytopathology 106(7), 684–692 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Saile, E. et al. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87(12), 1264–1271 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Czajkowski, R. et al. Systemic colonization of potato plants by a soilborne, green fluorescent protein-tagged strain of Dickeya sp. biovar 3. Phytopathology. 100(2), 134–142 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Cosgrove, D. J. Catalysts of plant cell wall loosening. F1000Research (2016). https://doi.org/10.12688/f1000research.7180.1.

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Malinovsky, F. G., Fangel, J. U. & Willats, W. G. The role of the cell wall in plant immunity. Front. Plant Sci. 5, 178 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Bahar, O., Goffer, T. & Burdman, S. Type IV pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol. Plant Microbe Interact. 22(8), 909–920 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Burdman, S. et al. Involvement of type IV pili in pathogenicity of plant pathogenic bacteria. Genes 2(4), 706–735 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Cursino, L. et al. Identification of an operon, Pil–Chp, that controls twitching motility and virulence in Xylella fastidiosa. Mol. Plant Microbe Interact. 24(10), 1198–1206 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Bahar, O., Levi, N. & Burdman, S. The cucurbit pathogenic bacterium Acidovorax citrulli requires a polar flagellum for full virulence before and after host-tissue penetration. Mol. Plant Microbe Interact. 24(9), 1040–1050 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 70.

    Ewald, P. W. Evolution of Infectious Disease (Oxford University Press, Oxford, 1993).

    Google Scholar 

  • 71.

    Mackinnon, M. & Read, A. F. Virulence in malaria: An evolutionary viewpoint. Philos. Trans. R. Soc. B Biol. Sci. 359(1446), 965–986 (2004).

    Article  Google Scholar 

  • 72.

    Hinnebusch, B. J. et al. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273(5273), 367 (1996).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 73.

    Yao, C., Zehnder, G., Bauske, E. & Kloepper, J. Relationship between cucumber beetle (Coleoptera: Chrysomelidae) density and incidence of bacterial wilt of cucurbits. J. Econ. Entomol. 89(2), 510–514 (1996).

    Article  Google Scholar 

  • 74.

    Pasek, S., Risler, J.-L. & Brézellec, P. Gene fusion/fission is a major contributor to evolution of multi-domain bacterial proteins. Bioinformatics 22(12), 1418–1423 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Yang, S. & Bourne, P. E. The evolutionary history of protein domains viewed by species phylogeny. PLoS ONE 4(12), e8378 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 76.

    Boutilier, M. S. et al. Water filtration using plant xylem. PLoS ONE 9(2), e89934 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 77.

    Pérez-Donoso, A. G. et al. Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines. Plant Physiol. 152(3), 1748–1759 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Yadeta, K. & B. Thomma. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 4, 97 (2013). https://doi.org/10.3389/fpls.2013.00097.

    Article  PubMed  PubMed Central  Google Scholar 

  • 79.

    Secchi, F., Pagliarani, C. & Zwieniecki, M. A. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant Cell Environ. 40(6), 858–871 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 80.

    Christman, M. A. & Sperry, J. S. Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant Cell Environ. 33(3), 431–443 (2010).

    PubMed  Article  Google Scholar 

  • 81.

    Roper, M. C. Pantoea stewartii subsp. stewartii: Lessons learned from a xylem-dwelling pathogen of sweet corn. Mol. Plant Pathol. 12(7), 628–637 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Foley, J. A. et al. Global consequences of land use. Science 309(5734), 570–574 (2005).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Nasaruddin, A. S. et al. First report of Dickeya dianthicola causing blackleg on potato in Texas. Plant Dis. 103(8), 2121 (2019).

    Article  Google Scholar 

  • 84.

    Cai, W. et al. Draft genome sequences of two Dickeya dianthicola isolates from potato. Genome Announcements 6(11), e00115-e118 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Ma, X. et al. Pectobacterium and Dickeya responsible for potato blackleg disease in New York State in 2016. Plant Dis. 102(9), 1834–1840 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 86.

    Bae, C. et al. Infection processes of xylem-colonizing pathogenic bacteria: Possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Theor. Appl. Genet. 128(7), 1219–1229 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 87.

    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. 97(12), 6640–6645 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 88.

    Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990).

    CAS  Article  Google Scholar 

  • 89.

    Katoh, K. et al. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15), 1972–1973 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 91.

    Abascal, F., Zardoya, R. & Posada, D. ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21(9), 2104–2105 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 92.

    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 93.

    Miller, M.A., W. Pfeiffer, & T. Schwartz. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in Proceedings of the Gateway Computing Environments Workshop (CGE). (New Orleans, LA, 2010).

  • 94.

    Sukumaran, J. & Holder, M. T. DendroPy: A Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 95.

    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2015). https://www.r-project.org/.

  • 96.

    Yu, G. et al. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8(1), 28–36 (2017).

    Article  Google Scholar 

  • 97.

    Guy, L., Kultima, J. R. & Andersson, S. G. genoPlotR: Comparative gene and genome visualization in R. Bioinformatics 26(18), 2334–2335 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 98.

    Philippe, N. et al. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51(3), 246–255 (2004).

    MathSciNet  CAS  PubMed  Article  Google Scholar 

  • 99.

    Lagendijk, E. L. et al. Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol. Lett. 305(1), 81–90 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 100.

    Franklin, N. C. Genetic fusions for operon analysis. Annu. Rev. Genet. 12(1), 193–221 (1978).

    CAS  PubMed  Article  Google Scholar 

  • 101.

    Machin, D., Cheung, Y. B. & Parmar, M. Survival Analysis: A Practical Approach (Wiley, New York, 2006).

    Google Scholar 


  • Source: Ecology - nature.com

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences