in

Acid resistance of Masson pine (Pinus massoniana Lamb.) families and their root morphology and physiological response to simulated acid deposition

  • 1.

    Reis, S. et al. From acid rain to climate change. Science 338, 1153–1154 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Wang, L., Chen, Z., Shang, H., Wang, J. & Zhang, P. Y. Impact of simulated acid rain on soil microbial community function in Masson pine seedlings. Electron. J. Biotechnol. 17, 199–203 (2014).

    CAS  Article  Google Scholar 

  • 3.

    Wang, W. X. & Xu, P. J. Research progress in precipitation chemistry in China. Prog. Chem. 21, 266–281 (2010).

    Google Scholar 

  • 4.

    Meng, Y. et al. Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment. Atmos. Res. 222, 12–24 (2019).

    CAS  Article  Google Scholar 

  • 5.

    Busch, G. et al. Forest ecosystems and the changing patterns of nitrogen input and acid deposition today and in the future based on a scenario. Environ. Sci. Pollut. Res. 8, 95–102 (2001).

    CAS  Article  Google Scholar 

  • 6.

    Wang, Y. et al. Phenotypic response of tobacco leaves to simulated acid rain and its impact on photosynthesis. Int. J. Agric. Biol. 21, 391–398 (2019).

    CAS  Google Scholar 

  • 7.

    Ramlall, C. et al. Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. Physiol. Plant. 153, 149–160 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Wang, X. Q., Liu, Z., Niu, L. & Fu, B. Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: A proteomic analysis. Trees Struct. Funct. 27, 297–309 (2013).

    Article  CAS  Google Scholar 

  • 9.

    Tong, S. M. & Zhang, L. Q. Differential sensitivity of growth and net photosynthetic rates in five tree species seedlings under simulated acid rain stress. Pol. J. Environ. Stud. 23, 2259–2264 (2014).

    CAS  Article  Google Scholar 

  • 10.

    Wu, X. & Liang, C. J. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid. Environ. Sci. Pollut. Res. 24, 4860–4870 (2017).

    CAS  Article  Google Scholar 

  • 11.

    Hu, W. J. et al. Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels. Plant Soil 380, 285–303 (2014).

    CAS  Article  Google Scholar 

  • 12.

    Luo, S. P., He, B. H., Zeng, Q. P., Li, N. J. & Yang, L. Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. J. Mt. Sci. 17, 1398–1409 (2020).

    Article  Google Scholar 

  • 13.

    Zhang, M. Y., Wang, S. J., Wu, F. C., Yuan, X. H. & Zhang, Y. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos. Res. 84, 311–322 (2007).

    CAS  Article  Google Scholar 

  • 14.

    Li, Y. F., Wang, Y. J., Wang, B. & Wang, Y. Q. Response of soil respiration and its components to simulated acid rain in a typical forest stand in the three gorges reservoir area. Environ. Sci. 40, 1457–1467. https://doi.org/10.13227/j.hjkx.201803170 (2019).

    Article  Google Scholar 

  • 15.

    Wu, G. Effect of acidic deposition on productivity of forest ecosystem and estimation of its economic losses in southern suburbs of Chongqing China. J. Environ. Sci-China 10, 83–88. http://kns.cnki.net/kns/detail/detail.aspx?FileName=HJKB802.010&DbName=CJFQ1998 (1998).

  • 16.

    Quan, W. X. & Ding, G. J. Root tip structure and volatile organic compound responses to drought stress in Masson pine (Pinusmassoniana Lamb.). Acta. Physiol. Plant. 39, 258 (2017).

    Article  CAS  Google Scholar 

  • 17.

    He, Y. L. et al. Physiological responses of needles of Pinus massoniana elite families to phosphorus stress in acid soil. J. For. Res. 24, 325–332 (2013).

    CAS  Article  Google Scholar 

  • 18.

    DeHayes, D. H., Schaberg, P. G., Hawley, G. J. & Strimbeck, G. R. Acid rain impacts on calcium nutrition and forest health. Bioscience 49, 789–800 (1999).

    Article  Google Scholar 

  • 19.

    Ju, S. M., Wang, L. P. & Chen, J. Y. Effects of silicon on the growth, photosynthesis and chloroplast ultrastructure of Oryzasativa L. seedlings under acid rain stress. Silicon 12, 655–664 (2020).

    CAS  Article  Google Scholar 

  • 20.

    Ma, Y., Guo, L. Q., Wang, H. X., Bai, B. & Shi, D. C. Accumulation, distribution, and physiological contribution of oxalic acid and other solutes in an alkali-resistant forage plant, Kochiasieversiana, during adaptation to saline and alkaline conditions. J. Plant Nutr. Soil Sci. 174, 655–663 (2011).

    CAS  Article  Google Scholar 

  • 21.

    Rajniak, J. et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 14, 442–450 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Zhang, H. et al. Colonization on cucumber root and enhancement of chlorimuron-ethyl degradation in rhizosphere by Hansschlegelia zhihuaiae S113 and root exudates. J. Agric. Food Chem. 66, 4584–4591 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Chen, Y. T., Wang, Y. & Yeh, K. C. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 39, 66–72 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Yan, F., Schubert, S. & Mengel, K. Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zeamays L.) and broad bean (Viciafaba L.). Plant Physiol. 99, 415–421 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Hu, X. F., Wu, A. Q., Wang, F. C. & Chen, F. S. The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg, Al, Ca, N, and P in tea plants of a subtropical plantation. Environ. Monit. Assess. 191, 99 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 26.

    Ericsson, T. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169, 205–214 (1995).

    Article  Google Scholar 

  • 27.

    Liu, J. X., Zhou, G. Y., Yang, C. W., Ou, Z. Y. & Peng, C. L. Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schimasuperba Gardn. & Champ. and Pinusmassoniana Lamb. to simulated acid rain at Dinghushan biosphere reserve, china. Acta Physiol. Plant. 29, 33–38 (2007).

    Article  CAS  Google Scholar 

  • 28.

    Liang, C. J. & Zhang, B. J. Effect of exogenous calcium on growth, nutrients uptake and plasma membrane H+-ATPase and Ca2+-ATPase activities in soybean (Glycine max) seedlings under simulated acid rain stress. Ecotoxicol. Environ. Safe 165, 261–269 (2018).

    CAS  Article  Google Scholar 

  • 29.

    Li, X. W. et al. Boron alleviates aluminum toxicity by promoting root alkalization in transition zone via polar auxin transport. Plant Physiol. 177, 1254–1266 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Wagatsuma, T. The membrane lipid bilayer as a regulated barrier to cope with detrimental ionic conditions: making new tolerant plant lines with altered membrane lipid bilayer. Soil Sci. Plant Nutr. 63, 507–516 (2017).

    CAS  Article  Google Scholar 

  • 31.

    Liang, C. J., Ma, Y. J. & Li, L. R. Comparison of plasma membrane H+-ATPase response to acid rain stress between rice and soybean. Environ. Sci. Pollut. Res. 27, 6389–6400 (2020).

    CAS  Article  Google Scholar 

  • 32.

    Guo, Q., Liu, L. & Barkla, B. J. Membrane lipid remodeling in response to salinity. Int. J. Mol. Sci. 20, 4264 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 33.

    Pellet, D. M., Grunes, D. L. & Kochian, L. V. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zeamays L.). Planta 196, 788–795 (1995).

    CAS  Article  Google Scholar 

  • 34.

    Wang, H. H. et al. Organic acids enhance the uptake of lead by wheat roots. Planta 225, 1483–1494 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Li, Z. R. et al. Effect of root exudates of intercropping vicia faba and arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. Int. J. Phytoremediat. 21, 4–13 (2019).

    CAS  Article  Google Scholar 

  • 36.

    Jia, H., Hou, D. Y., Dai, Y., Lu, H. L. & Yan, C. L. Effects of root exudates on the mobility of pyrene in mangrove sediment water system. CATENA 162, 396–401 (2018).

    CAS  Article  Google Scholar 

  • 37.

    Ahmed, I. M. et al. Physiological and molecular analysis on root growth associated with the tolerance to aluminumand drought individual and combined in Tibetan wild and cultivated barley. Planta 243, 973–985 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Wang, P., Bi, S. P., Wang, S. & Ding, Q. Y. Variation of wheat root exudates under aluminum stress. J. Agric. Food Chem. 54, 10040–10046 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Yao, Y. et al. Thallium-induced oxalate secretion from rice (Oryzasativa L.) root contributes to the reduction of Tl(III) to Tl(I). Environ. Exp. Bot. 155, 387–393 (2018).

    CAS  Article  Google Scholar 

  • 40.

    Javed, M. et al. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthusviridis L. and Portulacaoleracea L. under lead chloride stress. Environ. Sci. Pollut. Res. 25, 2958–2971 (2017).

    Article  CAS  Google Scholar 

  • 41.

    Wang, P., Bi, S. P., Ma, L. P. & Han, W. Y. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to the irrhizosphere pH and organic acids exuded from roots. J. Agric. Food. Chem. 54, 10033–10039 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 42.

    Tu, J., Wang, H. S., Zhang, Z. F., Jin, X. & Li, W. Q. Trends in chemical composition of precipitation in Nanjing, China, during 1992–2003. Atmos. Res. 73, 283–298 (2005).

    CAS  Article  Google Scholar 

  • 43.

    Liang, C. J. & Wang, W. M. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ. Sci. Pollut. Res. 20, 8182–8191 (2013).

    CAS  Article  Google Scholar 

  • 44.

    Tang, X. R., Li, W. P., Zuo, H. S. & Yin, Y. L. Study on the growth stability of Pinus Massoniana. J. Hunan For. Sci. Technol. 29, 20–24, http://kns.cnki.net/kns/detail/detail.aspx?FileName=HLKJ200204005&DbName=CJFQ2002 (2002) (in Chinese).

  • 45.

    Jia, X. M. et al. Comparative physiological responses and adaptive strategies of apple Malushalliana to salt, alkali and saline-alkali stress. Sci. Hortic. Amsterdam 245, 154–162 (2019).

    CAS  Article  Google Scholar 

  • 46.

    Inoue, S. & Kinoshita, T. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol. 174, 531–538 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Wang, S. L., Fan, C. N. Q. & Wang, P. Determination of ultra-trace organic acid in Masson pine (Pinusmassoniana L.) by accelerated solvent extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 981–982, 1–8 (2015).

    Google Scholar 

  • 48.

    Yao, Y. W., Ren, B. L., Yang, Y., Huang, C. J. & Li, M. Y. Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process. J. Hazard. Mater. 361, 141–151 (2019).

    CAS  PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT oceanographers have an explanation for the Arctic’s puzzling ocean turbulence

    Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents