in

Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture

  • 1.

    FAO. The State of World Fisheries and Aquaculture 2018. (Food and Agriculture Organization of the United Nations, 2018).

  • 2.

    Zuo, Z.-H., Shang, B.-J., Shao, Y.-C., Li, W.-Y. & Sun, J.-S. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol. 86, 160–168. https://doi.org/10.1016/j.fsi.2018.11.003 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Hoseinifar, S. H., Sun, Y., Wang, A. & Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429. https://doi.org/10.3389/fmicb.2018.02429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B. & Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 433, 50–61. https://doi.org/10.1016/j.aquaculture.2014.05.048 (2014).

    Article  Google Scholar 

  • 5.

    Lieke, T. et al. Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Rev. Aquac. 12, 943–965. https://doi.org/10.1111/raq.12365 (2019).

    Article  Google Scholar 

  • 6.

    Noga, E. J. Fish Disease: Diagnosis and Treatment. Vol. 2nd Edn 143–148 (Wiley, 2011).

  • 7.

    Haugarvoll, E., Bjerkås, I., Nowak, B. F., Hordvik, I. & Koppang, E. O. Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J. Anat. 213, 202–209. https://doi.org/10.1111/j.1469-7580.2008.00943.x (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Zhang, Z., Swain, T., Bøgwald, J., Dalmo, R. A. & Kumari, J. Bath immunostimulation of rainbow trout (Oncorhynchus mykiss) fry induces enhancement of inflammatory cytokine transcripts, while repeated bath induce no changes. Fish Shellfish Immunol. 26, 677–684. https://doi.org/10.1016/j.fsi.2009.02.014 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Jeney, G. & Anderson, D. P. Enhanced immune response and protection in rainbow trout to Aeromonas salmonicida bacterin following prior immersion in immunostimulants. Fish Shellfish Immunol. 3, 51–58. https://doi.org/10.1006/fsim.1993.1005 (1993).

    Article  Google Scholar 

  • 10.

    Steinberg, C. E. W. Ecology of Humic Substances in Freshwaters: Determinants from Geochemistry to Ecological Niches. Vol. 1 (Springer, 2003).

  • 11.

    Haitzer, M., Höss, S., Traunspurger, W. & Steinberg, C. E. W. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms—A review. Chemosphere 37, 1335–1362. https://doi.org/10.1016/S0045-6535(98)00117-9 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 12.

    Thurman, E. M. Organic Geochemistry of Natural Waters. Vol. 1 (Nijhoff, M./Junk, W. Publishers, 1985).

  • 13.

    IHSS. What are Humic Substances? http://humic-substances.org .

  • 14.

    Meinelt, T. et al. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat. Toxicol. 83, 93–103. https://doi.org/10.1016/j.aquatox.2007.03.013 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Yamin, G. et al. The protective effect of humic substances and water and sludge from a recirculating aquaculture system on Aeromonas salmonicida infection in common carp (Cyprinus carpio). J. Fish Dis. 40, 1783–1790. https://doi.org/10.1111/jfd.12645 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Kodama, H., Denso & Nakagawa, T. Protection against atypical Aeromonas salmonicida infection in carp (Cyprinus carpio L.) by oral administration of humus extract. J. Vet. Med. Sci. 69, 405–408, https://doi.org/10.1292/jvms.69.405 (2007).

  • 17.

    Fierro-Coronado, J. A. et al. Dietary fulvic acid effects on survival and expression of immune-related genes in Litopenaeus vannamei challenged with Vibrio parahaemolyticus. Aquac. Res. 49, 3218–3227. https://doi.org/10.1111/are.13789 (2018).

    CAS  Article  Google Scholar 

  • 18.

    Gao, Y. et al. Effects of fulvic acid on growth performance and intestinal health of juvenile loach Paramisgurnus dabryanus (Sauvage). Fish Shellfish Immunol. 62, 47–56. https://doi.org/10.1016/j.fsi.2017.01.008 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Saebelfeld, M., Minguez, L., Griebel, J., Gessner, M. O. & Wolinska, J. Humic dissolved organic carbon drives oxidative stress and severe fitness impairments in Daphnia. Aquat. Toxicol. 182, 31–38. https://doi.org/10.1016/j.aquatox.2016.11.006 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Steinberg, C. E. W. et al. Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652, 223–236 (2010).

    CAS  Article  Google Scholar 

  • 21.

    Hseu, Y.-C. et al. Humic acid induced genotoxicity in human peripheral blood lymphocytes using comet and sister chromatid exchange assay. J. Hazard. Mater. 153, 784–791. https://doi.org/10.1016/j.jhazmat.2007.09.024 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Savy, D. et al. Quantitative structure-activity relationship of humic-like biostimulants derived from agro-industrial by products and energy crops. Front. Plant Sci. 11, 581. https://doi.org/10.3389/fpls.2020.00581 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Pörs, Y. & Steinberg, C. E. Humic substances delay aging of the photosynthetic apparatus of Chara hispida. J. Phycol. 48, 1522–1529. https://doi.org/10.1111/jpy.12012 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Muscolo, A., Sidari, M., Francioso, O., Tugnoli, V. & Nardi, S. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. J. Chem. Ecol. 33, 115–129. https://doi.org/10.1007/s10886-006-9206-9 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    Gilbert, M., Bährs, H., Steinberg, C. E. W. & Wilhelm, C. The artificial humic substance HS1500 does not inhibit photosynthesis of the green alga Desmodesmus armatus in vivo but interacts with the photosynthetic apparatus of isolated spinach thylakoids in vitro. Photosynth. Res. https://doi.org/10.1007/s11120-018-0513-0 (2018).

    Article  PubMed  Google Scholar 

  • 26.

    Perdue, E. M. in Encyclopedia of Inland Waters (ed Gene E. Likens) 806–819 (Academic Press, 2009).

  • 27.

    Chen, J., Gu, B., LeBoeuf, E. J., Pan, H. & Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 48, 59–68. https://doi.org/10.1016/S0045-6535(02)00041-3 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 28.

    Lieke, T., Zhang, X., Steinberg, C. E. & Pan, B. Overlooked risks of biochars: Persistent free radicals trigger neurotoxicity in Caenorhabditis elegans. Environ. Sci. Technol. 52, 7981–7987. https://doi.org/10.1021/acs.est.8b01338 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 29.

    Liao, S., Pan, B., Li, H., Zhang, D. & Xing, B. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ. Sci. Technol. 48, 8581–8587. https://doi.org/10.1021/es404250a (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 30.

    Yuan, Y. et al. Electron transfer capacity as a rapid and simple maturity index for compost. Biores. Technol. 116, 428–434. https://doi.org/10.1016/j.biortech.2012.03.114 (2012).

    CAS  Article  Google Scholar 

  • 31.

    Scott, D. T., McKnight, D. M., Blunt-Harris, E. L., Kolesar, S. E. & Lovley, D. R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32, 2984–2989. https://doi.org/10.1021/es980272q (1998).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Abdel-Tawwab, M., Abdel-Rahman, A. M. & Ismael, N. E. M. Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280, 185–189, https://doi.org/10.1016/j.aquaculture.2008.03.055 (2008).

  • 33.

    Sanmanee, N. & Areekijseree, M. The effects of fulvic acid on copper bioavailability to porcine oviductal epithelial cells. Biol. Trace Elem. Res. 135, 162–173. https://doi.org/10.1007/s12011-009-8508-5 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 34.

    Hasan, M. & Soto, D. Improving Feed Conversion Ratio and Its Impact on Reducing Greenhouse Gas Emissions in Aquaculture. (FAO, 2017).

  • 35.

    Besson, M. et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J. Clean. Prod. 116, 100–109 (2016).

    Article  Google Scholar 

  • 36.

    Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375. https://doi.org/10.1016/j.dci.2011.07.002 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Mommsen, T. P., Vijayan, M. M. & Moon, T. W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fisheries 9, 211–268. https://doi.org/10.1023/A:1008924418720 (1999).

    Article  Google Scholar 

  • 38.

    Meinelt, T. et al. Humic substances affect physiological condition and sex ratio of swordtail (Xiphophorus helleri Heckel). Aquat. Sci. 66, 239–245. https://doi.org/10.1007/s00027-004-0706-9 (2004).

    Article  Google Scholar 

  • 39.

    Bly, J. E., Quiniou, S. M. & Clem, L. W. Environmental effects on fish immune mechanisms. Dev. Biol. Stand. 90, 33–43 (1997).

    CAS  PubMed  Google Scholar 

  • 40.

    Conde-Sieira, M., Chivite, M., Míguez, J. M. & Soengas, J. L. Stress effects on the mechanisms regulating appetite in teleost fish. Front. Endocrinol. 9, https://doi.org/10.3389/fendo.2018.00631 (2018).

  • 41.

    Kalamarz-Kubiak, H. in Corticosteroids (ed Ali Gamal Al-Kaf) Chap. 7, 183–155 (InTechOpen, 2018).

  • 42.

    Timofeyev, M. A. et al. Natural organic matter (NOM) induces oxidative stress in freshwater amphipods Gammarus lacustris Sars and Gammarus tigrinus (Sexton). Sci. Total Environ. 366, 673–681. https://doi.org/10.1016/j.scitotenv.2006.02.003 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 43.

    Xin, Z. et al. Species sensitivity analysis of heavy metals to freshwater organisms. Ecotoxicology 24, 1621–1631. https://doi.org/10.1007/s10646-015-1500-2 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Demers, N. E. & Bayne, C. J. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev. Comp. Immunol. 21, 363–373. https://doi.org/10.1016/S0145-305X(97)00009-8 (1997).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Dupré-Crochet, S., Erard, M. & Nüβe, O. ROS production in phagocytes: why, when, and where?. J. Leukoc. Biol. 94, 657–670. https://doi.org/10.1189/jlb.1012544 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Geng, X. et al. Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish Shellfish Immunol. 31, 400–406. https://doi.org/10.1016/j.fsi.2011.06.006 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Fries, C. & Tripp, M. Depression of phagocytosis in Mercenaria following chemical stress. Dev. Comp. Immunol. 4, 233–244. https://doi.org/10.1016/S0145-305X(80)80027-9 (1980).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Sesti-Costa, R., Baccan, G. C., Chedraoui-Silva, S. & Mantovani, B. Effects of acute cold stress on phagocytosis of apoptotic cells: The role of corticosterone. NeuroImmunoModulation 17, 79–87. https://doi.org/10.1159/000258690 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Narnaware, Y. K., Baker, B. I. & Tomlinson, M. G. The effect of various stresses, corticosteroids and adrenergic agents on phagocytosis in the rainbow trout Oncorhynchus mykiss. Fish Physiol. Biochem. 13, 31–40. https://doi.org/10.1007/BF00004117 (1994).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Dhabhar, F. S. & McEwen, B. S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain Behav. Immun. 11, 286–306 (1997).

    CAS  Article  Google Scholar 

  • 51.

    Adel, M., Abedian Amiri, A., Zorriehzahra, J., Nematolahi, A. & Esteban, M. Á. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry Caspian white fish (Rutilus frisii kutum). Fish Shellfish Immunol. 45, 841–847, https://doi.org/10.1016/j.fsi.2015.06.010 (2015).

  • 52.

    Christybapita, D., Divyagnaneswari, M. & Michael, R. D. Oral administration of Eclipta alba leaf aqueous extract enhances the non-specific immune responses and disease resistance of Oreochromis mossambicus. Fish Shellfish Immunol. 23, 840–852. https://doi.org/10.1016/j.fsi.2007.03.010 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Ragland, S. A. & Criss, A. K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 13, https://doi.org/10.1371/journal.ppat.1006512 (2017).

  • 54.

    Ansorg, R. & Rochus, W. Studies on the antimicrobial effect of natural and synthetic humic acids (author’s transl). Arzneimittelforschung 28, 2195–2198 (1978).

    CAS  PubMed  Google Scholar 

  • 55.

    Hertkorn, N. et al. Comparative analysis of partial structures of a peat humic and fulvic acid using one-and two-dimensional nuclear magnetic resonance spectroscopy. J. Environ. Qual. 31, 375–387. https://doi.org/10.2134/jeq2002.3750 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Zheng, X. et al. Comparing electron donating/accepting capacities (EDC/EAC) between crop residue-derived dissolved black carbon and standard humic substances. Sci. Total Environ. 673, 29–35. https://doi.org/10.1016/j.scitotenv.2019.04.022 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 57.

    Weil, J. A. & Bolton, J. R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Vol. 2 (Wiley, 2007).

  • 58.

    Hopkins, K. D. Reporting fish growth: A review of the basics 1. J. World Aquac. Soc. 23, 173–179. https://doi.org/10.1111/j.1749-7345.1992.tb00766.x (1992).

    Article  Google Scholar 

  • 59.

    Fulton, T. W. The Rate of Growth of Fishes. 141–241 (Scotland, 1904).

  • 60.

    Barnham, C. A. & Baxter, A. F. Condition Factor, K, for Salmonid Fish. (Department of Primary Industries, 2003).

  • 61.

    Secombes, C. J. in Techniques in Fish Immunology Vol. 1 (eds J. S. Stolen et al.) 137–154 (SOS Publications, 1990).

  • 62.

    Chettri, J. K., Holten-Andersen, L. & Buchmann, K. Factors influencing in vitro respiratory burst assays with head kidney leucocytes from rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 33, 593–602. https://doi.org/10.1111/j.1365-2761.2010.01160.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Crampe, M., Farley, S. R., Langston, A. & Pulsford, A. L. in Methodology in Fish Diseases Research (eds A.C. Barnes, G.A. Davidson, M. P. Hiney, & D. McIntosh) 81–91 (Fisheries Research Services, 1998).

  • 64.

    Begemann, H. & Rastetter, J. Atlas of Clinical Haematology 9–21 (Springer, Berlin, 1972).

    Google Scholar 

  • 65.

    Sitja-Bobadilla, A., Palenzuela, O. & Alvarez-Pellitero, P. Immune response of turbot, Psetta maxima (L.) (Pisces: Teleostei), to formalin-killed scuticociliates (Ciliophora) and adjuvanted formulations. Fish Shellfish Immunol. 24, 1–10, https://doi.org/10.1016/j.fsi.2007.06.007 (2008).

  • 66.

    Siwicki, A. in Fish Diseases Diagnosis and Preventions Methods Vol. 1 (eds A.K. Siwicki, D.P. Anderson, & J. Waluga) 105–111 (Wydawnictwo Instytutu Rybactwa Strodladowego, 1993).

  • 67.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).

    CAS  Article  Google Scholar 

  • 68.

    Amado, L. L. et al. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: Application to evaluate microcystins toxicity. Sci. Total Environ. 407, 2115–2123. https://doi.org/10.1016/j.scitotenv.2008.11.038 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 69.

    Hollander, M. & Wolfe, D. A. Nonparametric Statistical Methods. Vol. 3 115–120 (Wiley, 2015).

  • 70.

    Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252. https://doi.org/10.2307/1266041 (1964).

    Article  Google Scholar 

  • 71.

    Siegal, S. & Castellan Jr., N. J. Nonparametric Statistics for the Behavioral Sciences. (McGraw-Hill, 1988).

  • 72.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57, 289–300 (1995).


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy