in

Elevated temperatures diminish the effects of a highly resistant rice variety on the brown planthopper

  • 1.

    Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382. https://doi.org/10.1038/nature06949 (2008).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 2.

    NASA. Global Vital Signs: Vital Signs of the Planet https://climate.nasa.gov/ (2019).

  • 3.

    Pachauri, R. K. et al. Climate Change 2014: synthesis report. Fifth Assessment Report on the Intergovernmental Panel on Climate Change 151. Geneva, Switzerland. (2014)

  • 4.

    Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x (2002).

    Article  ADS  Google Scholar 

  • 5.

    Forrest, J. R. K. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54. https://doi.org/10.1016/j.cois.2016.07.002 (2016).

    Article  PubMed  Google Scholar 

  • 6.

    Food and Agriculture Organisation of the United Nations. FAOSTAT Crops http://www.fao.org/faostat/en/#home (2019).

  • 7.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620. https://doi.org/10.1126/science.1204531 (2011).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 8.

    Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148. https://doi.org/10.1371/journal.pone.0217148 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Ali, M. P. et al. Will climate change affect outbreak patterns of planthoppers in Bangladesh?. PLoS ONE https://doi.org/10.1371/journal.pone.0091678 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Ali, M. P. et al. Increased temperature induces leaffolder outbreak in rice field. J. Appl. Entomol. 143, 867–874. https://doi.org/10.1111/jen.12652 (2019).

    Article  Google Scholar 

  • 11.

    Hu, G. et al. Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: immigration or local reproduction? PLoS ONE 9, e88973 (2014).

  • 12.

    Yukawa, J. et al. Northward range expansion by Nezara viridula (Hemiptera: Pentatomidae) in Shikoku and Chugoku Districts, Japan, possibly due to global warming. Appl. Entomol. Zool. 44, 429–437 (2009).

    Article  Google Scholar 

  • 13.

    Horgan, F. G. Integrating gene deployment and crop management for improved rice resistance to Asian planthoppers. Crop Prot. 110, 21–33 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Ali, M. P. et al. Establishing next-generation pest control services in rice fields: eco-agriculture. Sci. Rep. 9, 1–9 (2019).

    Article  Google Scholar 

  • 15.

    Horgan, F. G. et al. Effects of vegetation strips, fertilizer levels and varietal resistance on the integrated management of arthropod biodiversity in a tropical rice ecosystem. Insects 10, 328 (2019).

    Article  Google Scholar 

  • 16.

    Horgan, F. G. Potential for an impact of global climate change on insect herbivory in cereal crops. In Crop Protection Under Climate Change (eds Jabran, K. et al.) 101–144 (Springer, Berlin, 2020).

    Google Scholar 

  • 17.

    Fujita, D., Kohli, A. & Horgan, F. G. Rice resistance to planthoppers and leafhoppers. Crit. Rev. Plant Sci. 32, 162–191 (2013).

    CAS  Article  Google Scholar 

  • 18.

    Horgan, F. G. et al. Virulence of brown planthopper (Nilaparvata lugens) populations from South and South East Asia against resistant rice varieties. Crop Prot. 78, 222–231 (2015).

    Article  Google Scholar 

  • 19.

    Khush, G. S. & Virk, P. S. IR Varieties and Their Impact (International Rice Research Institute, Los Baños, Philippines, 2005).

    Google Scholar 

  • 20.

    Ren, J. et al. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Sci. Rep. 6, 37645 (2016).

    CAS  Article  ADS  Google Scholar 

  • 21.

    Horgan, F. G. & Ferrater, J. B. Benefits and potential trade-offs associated with yeast-like symbionts during virulence adaptation in a phloem-feeding planthopper. Entomol. Exp. Appl. 163, 112–125 (2017).

    Article  Google Scholar 

  • 22.

    Horgan, F. G., Garcia, C. P. F., Haverkort, F., de Jong, P. W. & Ferrater, J. B. Changes in insecticide resistance and host range performance of planthoppers artificially selected to feed on resistant rice. Crop Prot. 127, 104963. https://doi.org/10.1016/j.cropro.2019.104963 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Ferreter, J. B. et al. Varied responses by yeast-like symbionts during virulence adaptation in a monophagous phloem-feeding insect. Arthropod-Plant Interact. 9, 215–224 (2015).

    Article  Google Scholar 

  • 24.

    Ferrater, J. B., de Jong, P. W., Dicke, M., Chen, Y. H. & Horgan, F. G. Symbiont-mediated adaptation by planthoppers and leafhoppers to resistant rice varieties. Arthropod-Plant Interact. 7, 591–605. https://doi.org/10.1007/s11829-013-9277-9 (2013).

    Article  Google Scholar 

  • 25.

    Lee, Y. H. & Hou, R. F. Physiological roles of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugensStål. J. Insect Physiol. 33, 851–860 (1987).

    Article  Google Scholar 

  • 26.

    Hongoh, Y. & Ishikawa, H. Uric acid as a nitrogen resource for the brown planthopper, Nilaparvata lugens: studies with synthetic diets and aposymbiotic insects. Zool. Sci. 14, 581–586 (1997).

    CAS  Article  Google Scholar 

  • 27.

    Pan, Y. et al. Identification of brown planthopper resistance gene Bph32 in the progeny of a rice dominant genic male sterile recurrent population using genome-wide association study and RNA-seq analysis. Mol. Breed. 39, 72 (2019).

    Article  Google Scholar 

  • 28.

    Stevenson, P. C., Kimmins, F. M., Grayer, R. J. & Raveendranath, S. Schaftosides from rice phloem as feeding inhibitors and resistance factors to brown planthopper, Nilaparvata lugens. Entomol. Exp. Appl. 80, 246–249 (1996).

    Article  Google Scholar 

  • 29.

    Uawisetwathana, U. et al. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics 15, 151. https://doi.org/10.1007/s11306-019-1616-0 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Saxena, R. C. & Okech, S. H. Role of plant volatiles in resistance of selected rice varieties to brown planthopper, Nilaparvata lugens (Stål)(Homoptera; Delphacidae). J. Chem. Ecol. 11, 1601–1616 (1985).

    CAS  Article  Google Scholar 

  • 31.

    Kamolsukyeunyong, W. et al. Identification of spontaneous mutation for broad-spectrum brown planthopper resistance in a large, long-term fast neutron mutagenized rice population. Rice 12, 16 (2019).

    Article  Google Scholar 

  • 32

    Nguyen, C. D. et al. The development and characterization of near-isogenic and pyramided lines carrying resistance genes to brown planthopper with the genetic background of japonica rice (Oryza sativa L.). Plants 8, 498 (2019).

    CAS  Article  Google Scholar 

  • 33.

    Salim, M. & Saxena, R. C. Temperature stress and varietal resistance in rice: effects on whitebackedplanthopper. Crop Sci. 31, 1620–1625. https://doi.org/10.2135/cropsci1991.0011183X003100060048x (1991).

    Article  Google Scholar 

  • 34.

    Wang, B.-J., Xu, H.-X., Zheng, X.-S., Fu, Q. & Lu, Z.-X. High temperature modifies resistance performances of rice varieties to brown planthopper, Nilaparvata lugens (Stål). Rice Sci. 17, 334–338. https://doi.org/10.1016/S1672-6308(09)60036-6 (2010).

    CAS  Article  Google Scholar 

  • 35.

    Havko, N. E., Kapali, G., Das, M. R. & Howe, G. A. Stimulation of insect herbivory by elevated temperature outweighs protection by the jasmonate pathway. Plants 9, 172 (2020).

    Article  Google Scholar 

  • 36.

    Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F. & Stewart, C. N. Jr. Smelling global climate change: mitigation of function from plant volatile organic compounds. Trends Ecol. Evol. 24, 323–331 (2009).

    Article  Google Scholar 

  • 37.

    Horgan, F. G., Arida, A., Ardestani, G. & Almazan, M. L. P. Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PLoS ONE 15, e0235506 (2020).

    CAS  Article  Google Scholar 

  • 38.

    Srinivas, M., Devi, R. S., Varmaand, N. R. G. & Jagadeeshwar, R. Interactive effect of temperature and CO2 on resistance of rice genotypes to brown planthopper, Nilaparvata lugens (Stål.). J. Entomol. Zool. Stud. 8, 600–602 (2020).

    Google Scholar 

  • 39.

    Zhang, L., Wu, J. & Chen, B. Influence of temperature and light on expression of resistance in rice to the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). J. South China Agric. Univ. 11, 64–70 (1990).

    Google Scholar 

  • 40.

    Romena, S. & Saxena, R. Screening for resistance to whitebacked planthopper, Sogatella furcifera (Horvath): effect of temperature on seedling damage (Pest Control Council of the Philippines, Cebu City (Philippines), 1988).

    Google Scholar 

  • 41.

    Horgan, F. G. et al. Resistance and tolerance to the brown planthopper, Nilaparvata lugens (Stål), in rice infested at different growth stages across a gradient of nitrogen applications. Field Crops Res. 217, 53–65. https://doi.org/10.1016/j.fcr.2017.12.008 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Neven, L. G. Physiological responses of insects to heat. Postharvest Biol. Technol. 21, 103–111 (2000).

    CAS  Article  Google Scholar 

  • 43.

    Bühler, A., Lanzrein, B. & Wille, H. Influence of temperature and carbon dioxide concentration on juvenile hormone titre and dependent parameters of adult worker honey bees (Apis mellifera L). J. Insect Physiol. 29, 885–893 (1983).

    Article  Google Scholar 

  • 44.

    Foissac, X., Edwards, M., Du, J., Gatehouse, A. & Gatehouse, J. Putative protein digestion in a sap-sucking homopteran plant pest (rice brown plant hopper; Nilaparvata lugens: Delphacidae)—identification of trypsin-like and cathepsin B-like proteases. Insect Biochem. Mol. Biol. 32, 967–978 (2002).

    CAS  Article  Google Scholar 

  • 45.

    MacMillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).

    CAS  Article  Google Scholar 

  • 46.

    Vailla, S., Muthusamy, S., Konijeti, C., Shanker, C. & Vattikuti, J. L. Effects of elevated carbon dioxide and temperature on rice brown planthopper, Nilaparvata lugens (Stål) populations in India. Curr. Sci. 116, 988 (2019).

    CAS  Article  Google Scholar 

  • 47.

    Wang, B., Xu, H., Zheng, X., Fu, Q. & Lu, X. Effect of temperature on resistance of rice to brown planthopper, Nilaparvata lugens. Chin. J. Rice Sci. 24, 443–446 (2010).

    Google Scholar 

  • 48.

    Ji, R. et al. A salivary endo-β-1, 4-glucanase acts as an effector that enables the brown planthopper to feed on rice. Plant Physiol. 173, 1920–1932 (2017).

    CAS  Article  Google Scholar 

  • 49.

    Venkatesh, J. & Kang, B.-C. Current views on temperature-modulated R gene-mediated plant defense responses and tradeoffs between plant growth and immunity. Curr. Opin. Plant Biol. 50, 9–17 (2019).

    CAS  Article  Google Scholar 

  • 50.

    Murai, M. & Kiritani, K. Influence of parental age upon the offspring in the green rice leafhopper, Nephotettix cincticeps Uhler (Hemiptera: Deltocephalidae). Appl. Entomol. Zool. 5, 189–201 (1970).

    Article  Google Scholar 

  • 51.

    Lu, K. et al. Nutritional signaling regulates vitellogenin synthesis and egg development through juvenile hormone in Nilaparvata lugens (Stål). Int. J. Mol. Sci. 17, 269 (2016).

    Article  Google Scholar 

  • 52.

    Thoeun, H. C. Observed and projected changes in temperature and rainfall in Cambodia. Weather Clim. Extremes 7, 61–71 (2015).

    Article  Google Scholar 

  • 53.

    PAGASA. Observed Climate Trends and Projected Climate Change in the Philippines. (Philippine Athmospheric, Geophysical and Astronomical Services Administration (PAGASA), Philippines, (2018).

  • 54.

    Yu Media Group. Weather Atlas: weather around the world – list of countries. http://www.weather-atlas.com/en/countries (2020).

  • 55

    You, L. L. et al. Driving pest insect populations: agricultural chemicals lead to an adaptive syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae). Sci. Rep. https://doi.org/10.1038/srep37430 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Ge, L. Q. et al. Molecular basis for insecticide-enhanced thermotolerance in the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae). Mol. Ecol. 22, 5624–5634. https://doi.org/10.1111/mec.12502 (2013).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy