in

The sources of variation for individual prey-to-predator size ratios

  • Agashe D, Bolnick DI (2010) Intraspecific genetic variation and competition interact to influence niche expansion. Proc R Soc B Biol Sci 277:2915–2924

    Article  Google Scholar 

  • Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958

    PubMed  Article  Google Scholar 

  • Benton TG, Ranta E, Kaitala V, Beckerman AP (2001) Maternal effects and the stability of population dynamics in noisy environments. J Anim Ecol 70:590–599

    Article  Google Scholar 

  • Bernardo J (1996) Maternal effects in animal ecology. Am Zool 36:83–105

    Article  Google Scholar 

  • Boll PK, Leal-Zanchet AM (2016) Preference for different prey allows the coexistence of several land planarians in areas of the Atlantic Forest. Zoology 119:162–168

    PubMed  Article  Google Scholar 

  • Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M et al. (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192

    PubMed  PubMed Central  Article  Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD et al. (2003) The ecology of individuals: Incidence and implications of individual specialization. Am Nat 161:1–28

    PubMed  PubMed Central  Article  Google Scholar 

  • Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941

    Article  Google Scholar 

  • Brose U, Ehnes RB, Rall BC, Vucic-Pestic O, Berlow EL, Scheu S (2008) Foraging theory predicts predator-prey energy fluxes. J Anim Ecol 77:1072–1078

    CAS  PubMed  Article  Google Scholar 

  • Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF et al. (2006) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417

    PubMed  Article  PubMed Central  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology:some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Caballero A (2020) Quantitative genetics. Cambridge University Press, Cambridge

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Cheverud JM (1996) Development integration and evolution of pleiotropy. Am Zool 36:44–50

    Article  Google Scholar 

  • Chevin LM (2013) Genetic constraints on adaptation to a changing environment. Evolution 67:708–721

    PubMed  Article  PubMed Central  Google Scholar 

  • Class B, Brommer JE (2020) Can dominance genetic variance be ignored in evolutionary quantitative genetic analyses of wild populations? Evolution 74:1540–1550

    PubMed  Article  PubMed Central  Google Scholar 

  • Cockburn A (1991) An introduction to evolutionary ecology. Blackwell Scientific, Oxford

    Google Scholar 

  • Cortez MH (2018) Genetic variation determines which feedbacks drive and alter predator–prey eco-evolutionary cycles. Ecol Monogr 88:353–371

    Article  Google Scholar 

  • Costa-Pereira R, Araújo MS, Olivier R, da S, Souza FL, Rudolf VHW (2018) Prey limitation drives variation in allometric scaling of predator-prey interactions. Am Nat 192:139–149

    Article  Google Scholar 

  • Crnokrak P, Roff DA (1995) Dominance variance: associations with selection and fitness. Heredity 75:530–540

    Article  Google Scholar 

  • Cuthbert RN, Wasserman RJ, Dalu T, Kaiser H, Weyl OLF, Dick JTA et al. (2020) Influence of intra‐ and interspecific variation in predator–prey body size ratios on trophic interaction strengths. Ecol Evol 10:5946–5962

    PubMed  PubMed Central  Article  Google Scholar 

  • Dey S, Proulx SR, Teotónio H (2016) Adaptation to temporally fluctuating environments by the evolution of maternal effects. PLOS Biol 14:e1002388

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Dufour L (1835) Observations sur la Tarentule (Lycosa Tarantula) avec la figure de cette aranéide. Ann. Sci. Nat. Zool 3:95–108

  • Emmerson MC, Raffaelli D (2004) Predator-prey body size, interaction strength and the stability of a real food web. J Anim Ecol 73:399–409

    Article  Google Scholar 

  • Fabricius JC (1775) Systema entomologiae, sistens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus, Flensburgi et Lipsiae. In Officina Libraria Kortii, 832 pp

  • García LF, Viera C, Pekár S (2018) Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci Nat 105:30

    Article  CAS  Google Scholar 

  • Gavín-Centol MP, Kralj-Fišer S, De Mas E, Ruiz-Lupión D, Moya-Laraño J (2017) Feeding regime, adult age and sexual size dimorphism as determinants of pre-copulatory sexual cannibalism in virgin wolf spiders. Behav Ecol Sociobiol 71:10

    Article  Google Scholar 

  • Gebhardt‐Henrich SG, Van Noordwijk AJ (1991) Nestling growth in the great tit I. Heritability estimates under different environmental conditions. J Evol Biol 4:341–362

    Article  Google Scholar 

  • Gnatzy W, Otto D (1996) Digger wasp vs. cricket: application of the paralytic venom by the predator and changes in behavioural reactions of the prey after being stung. Naturwissenschaften 83:467–470

    CAS  Article  Google Scholar 

  • Grafen A (1988) On the uses of data on lifetime reproductive success. In: Clutton-Brock TH (eds) Reproductive success: studies of individual variation in contrasting breeding systems, University of Chicago Press, Chicago. pp 454–471

  • Griffiths D (1980) Foraging costs and relative prey size. Am Nat 116:743–752

    Article  Google Scholar 

  • Grinsted L, Schou MF, Settepani V, Holm C, Bird TL, Bilde T (2020) Prey to predator body size ratio in the evolution of cooperative hunting—a social spider test case. Dev Genes Evol 230:173–184

    CAS  PubMed  Article  Google Scholar 

  • Groothuis TGG, Schwabl H (2008) Hormone-mediated maternal effects in birds: Mechanisms matter but what do we know of them? Philos Trans R Soc B Biol Sci 363:1647–1661

    CAS  Article  Google Scholar 

  • Gustafsson S, Rengefors K, Hansson LA (2005) Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86:2561–2567

    Article  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33

  • Hagstrum DW (1971) Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann Entomol Soc Am 64:757–760

    Article  Google Scholar 

  • Hansen TF (2013) Why epistasis is important for selection and adaptation. Evolution 67:3501–3511

    PubMed  Article  Google Scholar 

  • Hart SP, Schreiber SJ, Levine JM (2016) How variation between individuals affects species coexistence. Ecol Lett 19:825–838

  • Heath DD, Fox CW, Heath JW (1999) Maternal effects on offspring size: variation through early development of Chinook salmon. Evolution 53:1605

    PubMed  Article  Google Scholar 

  • Hirvonen H, Ranta E (1996) Prey to predator size ratio influences foraging efficiency of larval Aeshna juncea dragonflies. Oecologia 106:407–415

    PubMed  Article  PubMed Central  Google Scholar 

  • Inchausti P, Ginzburg LR (2009) Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator–prey view. Philos Trans R Soc B Biol Sci 364:1117–1124

    Article  Google Scholar 

  • Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  • Jensen K, Mayntz D, Toft S, Raubenheimer D, Simpson SJ (2011) Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim Behav 81:993–999

    Article  Google Scholar 

  • Jiang L, Morin PJ (2005) Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity. Am Nat 165:350–363

    PubMed  Article  Google Scholar 

  • De Jong G, Imasheva A (2000) Genetic variance in temperature dependent adult size deriving from physiological genetic variation at temperature boundaries. Genetica 110:195–207

    PubMed  Article  Google Scholar 

  • Jonsson T, Ebenman B (1998) Effects of predator-prey body size ratios on the stability of food chains. J Theor Biol 193:407–417

    CAS  PubMed  Article  Google Scholar 

  • Keightley PD, Kacser H (1987) Dominance, pleiotropy and metabolic structure. Genetics 117:319–329

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Laigle I, Aubin I, Digel C, Brose U, Boulangeat I, Gravel D (2018) Species traits as drivers of food web structure. Oikos 127:316–326

    Article  Google Scholar 

  • LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol Lett 4:64–71

    Article  Google Scholar 

  • Lindholm AK, Hunt J, Brooks R (2006) Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae. Biol Lett 2:586–589

    PubMed  PubMed Central  Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Magalhães S, Janssen A, Montserrat M, Sabelis MW (2005) Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proc R Soc B Biol Sci 272:1929–1933

    Article  Google Scholar 

  • Matlock RB (2005) Impact of prey size on prey capture success, development rate, and survivorship in Perillus bioculatus (Heteroptera: Pentatomidae), a predator of the Colorado Potato Beetle. Environ Entomol 34:1048–1056

    Article  Google Scholar 

  • Maynard DS, Serván CA, Capitán JA, Allesina S (2019) Phenotypic variability promotes diversity and stability in competitive communities. Ecol Lett 22:1776–1786

    PubMed  Article  Google Scholar 

  • McGlothlin JW, Ketterson ED (2008) Hormone-mediated suites as adaptations and evolutionary constraints. Philos Trans R Soc B Biol Sci 363:1611–1620

    Article  Google Scholar 

  • Meigen JW (1830) Systematische Beschreibung der bekannten europaeischen zweifluegeligen Insekten. Schulzische uchhandlung, Hamm

  • Merilä J, Kruuk LEB, Sheldon BC (2001) Natural selection on the genetical component of variance in body condition in a wild bird population. J Evol Biol 14:918–929

    Article  Google Scholar 

  • Moore MP, Whiteman HH, Martin RA (2019) A mother’s legacy: the strength of maternal effects in animal populations. Ecol Lett 22:1620–1628

    PubMed  Article  PubMed Central  Google Scholar 

  • Moskalik B, Uetz GW (2011) Female hunger state affects mate choice of a sexually selected trait in a wolf spider. Anim Behav 81:715–722

    Article  Google Scholar 

  • Mousseau TA, Fox CW (1998) Maternal effects as adaptations. Oxford University Press, Oxford

  • Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197

    PubMed  Article  PubMed Central  Google Scholar 

  • Moya-Larano J (2002) Senescence and food limitation in a slowly ageing spider. Funct Ecol 16:734–741

    Article  Google Scholar 

  • Moya-Laraño J (2011) Genetic variation, predator-prey interactions and food web structure. Philos Trans R Soc B Biol Sci 366:1425–1437

    Article  Google Scholar 

  • Moya-Larano J, Barrientos JA, Orta-Ocana JM, Bach C, Wise DH (1998) Limitación por la comida en las tarántulas del Cabo de Gata (Almeria). Investig y Gestión del Medio Nat 3:73–77

    Google Scholar 

  • Moya-Laraño J, Macías-Ordóñez R, Blanckenhorn WU, Fernández-Montraveta C (2008) Analysing body condition: Mass, volume or density? J Anim Ecol 77:1099–1108

    PubMed  Article  Google Scholar 

  • Moya-Laraño J, Orta-Ocaña JM, Barrientos JA, Bach C, Wise DH (2002) Territoriality in a cannibalistic burrowing wolf spider. Ecology 83:356–361

    Article  Google Scholar 

  • Moya-Laraño J, Bilbao-Castro JR, Barrionuevo G, Ruiz-Lupión D, Casado LG, Montserrat M et al. (2014) Eco-evolutionary spatial dynamics: rapid evolution and isolation explain food web persistence. In: Moya-Laraño J, Rowntree J & Woodward G (eds) Eco-Evolutionary Dynamics, Adv. Ecol. Res., Elsevier. Vol 50, pp 75–143

  • Moya-Laraño J, Verdeny-Vilalta O, Rowntree J, Melguizo-Ruiz N, Montserrat M, Laiolo P et al. (2012) Climate change and eco-evolutionary dynamics in food webs. In: Schoener TW, Moya-Larano J, Rowntree J, & Woodward G Global Change in Multispecies Systems Part 2. Adv. Ecol. Res, Academic Press, Oxford. Vol 45, pp 1–80

  • Nakazawa T (2017) Individual interaction data are required in community ecology: a conceptual review of the predator–prey mass ratio and more. Ecol Res 32:5–12

    Article  Google Scholar 

  • Nakazawa T, Ushio M, Kondoh M (2011) Scale dependence of predator-prey mass ratio. In: Belgrano A & Reiss J (eds) The role of body size in multispecies system. Adv. Ecol. Res., Academic Press, Oxford. Vol 45, pp 269–302

  • Nentwig W, Wissel C (1986) A comparison of prey lengths among spiders. Oecologia 68:595–600

    PubMed  Article  Google Scholar 

  • Otto SB, Rall BC, Brose U (2007) Allometric degree distributions facilitate food-web stability. Nature 450:1226–1229

    CAS  PubMed  Article  Google Scholar 

  • Parellada X (1998) Identificació i dades biològiques de tres espècies de taràntules (Araneae: Lycosidae) al Garraf. II Trobades d’estudiosos del Garraf Monogr 26:15–25

    Google Scholar 

  • Patel S, Cortez MH, Schreiber SJ (2018) Partitioning the effects of eco-evolutionary feedbacks on community stability. Am Nat 191:381–394

    Article  Google Scholar 

  • Persons MH, Rypstra AL (2000) Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology 106:27–35

    Article  Google Scholar 

  • Pooni HS, Jinks JL, Jayasekara NEM, Jayasekara NEM (1978) An investigation of gene action and genotype x environment interaction in two crosses of nicotiana rustica by triple test cross and inbred line analysis. Heredity 41:83–92

    Article  Google Scholar 

  • Poore AGB, Hill NA (2006) Sources of variation in herbivore preference: among-individual and past diet effects on amphipod host choice. Mar Biol 149:1403–1410

    Article  Google Scholar 

  • Roff DA (1997) Evolutionary quantitative genetics. Chapman & Hall, New York

  • Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269

    CAS  PubMed  Article  Google Scholar 

  • De Roos AM, Persson L, McCauley E (2003) The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol Lett 6:473–487

    Article  Google Scholar 

  • Schneider FD, Brose U, Rall BC, Guill C (2016) Animal diversity and ecosystem functioning in dynamic food webs. Nat Commun 7:1–8

    Article  CAS  Google Scholar 

  • Schreiber SJ, Bürger R, Bolnick DI (2011) The community effects of phenotypic and genetic variation within a predator population. Ecology 92:1582–1593

    PubMed  Article  Google Scholar 

  • Schreiber SJ, Patel S, Terhorst C (2018) Evolution as a coexistence mechanism: does genetic architecture matter? Am Nat 191:407–420

    Article  Google Scholar 

  • Sheriff MJ, Krebs CJ, Boonstra R (2010) The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91:2983–2994

    PubMed  Article  Google Scholar 

  • Shultz S, Noë R, McGraw WS, Dunbar RIM (2004) A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition. Proc R Soc B Biol Sci 271:725–732

    Article  Google Scholar 

  • Singer MC (1986) The definition and measurement of oviposition preference in plant-feeding insects. In: Miller JR, Miller TA (eds) Insect-plant interactions, Springer, New York. pp 65–94

  • Stewart FM (1971) Evolution of dimorphism in a predator-prey model. Theor Popul Biol 2:493–506

    CAS  PubMed  Article  Google Scholar 

  • Sztepanacz JL, Blows MW (2015) Dominance genetic variance for traits under directional selection in Drosophila serrata. Genetics 200:371–384

    PubMed  PubMed Central  Article  Google Scholar 

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493

    Article  Google Scholar 

  • Tsai CH, Hsieh CH, Nakazawa T (2016) Predator–prey mass ratio revisited: does preference of relative prey body size depend on individual predator size? Funct Ecol 30:1979–1987

    Article  Google Scholar 

  • Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C et al. (2012) The return of the variance: Intraspecific variability in community ecology. Trends Ecol Evol 27:244–252

    PubMed  Article  Google Scholar 

  • Walsh MR, Castoe T, Holmes J, Packer M, Biles K, Walsh M et al. (2016) Local adaptation in transgenerational responses to predators. Proc R Soc B Biol Sci 283:20152271

    Article  Google Scholar 

  • Wang J, Caballero A, Keightley PD, Hill WG (1998) Bottleneck effect on genetic variance: a theoretical investigation of the role of dominance. Genetics 150:435–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AJ, Réale D (2006) Ontogeny of additive and maternal genetic effects: lessons from domestic mammals. Am Nat 167:E23–E38.

    PubMed  Article  Google Scholar 

  • Wilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA et al. (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26

    PubMed  Article  Google Scholar 

  • Wolak ME, Keller LF (2014) Dominance, genetic variance and inbreeding in natural populations. In: Charmantier A, Garant D & Kruuk LE (eds) Quantitative genetics in the wild, Oxford University Press, Oxford. pp 104–127

  • Wolf JB, Wade MJ (2016) Evolutionary genetics of maternal effects. Evolution 70:827–839

    PubMed  PubMed Central  Article  Google Scholar 

  • Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074

    Article  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos Trans R Soc B Biol Sci 365:2093–2106

    Article  Google Scholar 

  • Woodward G, Warren P (2007) Body size and predatory interactions in freshwaters: scaling from individuals to communities. In: Hildrew AG, Raffaelli DG & Edmonds-Brown R (eds) Body size: the structure and function of aquatic ecosystems, Cambridge University Press, Cambridge. pp 98–117

  • Ye L, Chang CY, García-Comas C, Gong GC, Hsieh Chao (2013) Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J Anim Ecol 82:1052–1061

    PubMed  Article  PubMed Central  Google Scholar 

  • Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424:303–306

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Envisioning an equitable, inclusive low-carbon future

    Complex networks of marine heatwaves reveal abrupt transitions in the global ocean