in

Maladaptation, migration and extirpation fuel climate change risk in a forest tree species

  • 1.

    Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).

    Article  Google Scholar 

  • 2.

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).

    CAS  Article  Google Scholar 

  • 3.

    Ikeda, D. H. et al. Genetically informed ecological niche models improve climate change predictions. Glob. Change Biol. 23, 164–176 (2017).

    Article  Google Scholar 

  • 4.

    Maguire, K. C., Shinneman, D. J., Potter, K. M. & Hipkins, V. D. Intraspecific niche models for ponderosa pine (Pinus ponderosa) suggest potential variability in population-level response to climate change. Syst. Biol. https://doi.org/10.1093/sysbio/syy017 (2018).

  • 5.

    Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).

    Article  Google Scholar 

  • 6.

    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).

    CAS  Article  Google Scholar 

  • 7.

    Wang, T., O’Neill, G. A. & Aitken, S. N. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20, 153–163 (2010).

    CAS  Article  Google Scholar 

  • 8.

    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).

    Article  Google Scholar 

  • 9.

    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article  Google Scholar 

  • 10.

    Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).

    Article  Google Scholar 

  • 11.

    Vitt, P., Havens, K., Kramer, A. T., Sollenberger, D. & Yates, E. Assisted migration of plants: changes in latitudes, changes in attitudes. Biol. Conserv. 143, 18–27 (2010).

    Article  Google Scholar 

  • 12.

    Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. 111, 287–297 (2013).

    Google Scholar 

  • 13.

    Keller, S. R., Levsen, N., Olson, M. S. & Tiffin, P. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L. Mol. Biol. Evol. 29, 3143–3152 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Keller, S. R., Chhatre, V. E. & Fitzpatrick, M. C. Influence of range position on locally adaptive gene–environment associations in Populus flowering time genes. J. Hered. 109, 47–58 (2018).

    CAS  Article  Google Scholar 

  • 15.

    Chuine, I. Why does phenology drive species distribution? Phil. Trans. R. Soc. B 365, 3149–3160 (2010).

    Article  Google Scholar 

  • 16.

    Morin, X., Viner, D. & Chuine, I. Tree species range shifts at a continental scale: new predictive insights from a process-based model. J. Ecol. 96, 784–794 (2008).

    Article  Google Scholar 

  • 17.

    Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).

    Article  Google Scholar 

  • 18.

    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).

    Article  Google Scholar 

  • 19.

    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

    Article  Google Scholar 

  • 20.

    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).

    Article  Google Scholar 

  • 21.

    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).

    Article  Google Scholar 

  • 22.

    Shaw, R. G. From the past to the future: considering the value and limits of evolutionary prediction. Am. Nat. 193, 1–10 (2018).

    Article  Google Scholar 

  • 23.

    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).

    Article  Google Scholar 

  • 24.

    Yun, J. et al. Influence of winter precipitation on spring phenology in boreal forests. Glob. Change Biol. 24, 5176–5187 (2018).

    Article  Google Scholar 

  • 25.

    Fu, Y. H. et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob. Change Biol. 20, 3743–3755 (2014).

    Article  Google Scholar 

  • 26.

    Peterson, M. L., Doak, D. F. & Morris, W. F. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob. Change Biol. 25, 775–793 (2019).

    Article  Google Scholar 

  • 27.

    Atkins, K. E. & Travis, J. M. J. Local adaptation and the evolution of species’ ranges under climate change. J. Theor. Biol. 266, 449–457 (2010).

    CAS  Article  Google Scholar 

  • 28.

    Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Article  Google Scholar 

  • 29.

    Groom, Q. J. Some poleward movement of British native vascular plants is occurring, but the fingerprint of climate change is not evident. PeerJ 1, e77 (2013).

    Article  Google Scholar 

  • 30.

    Olson, M. S. et al. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Mol. Ecol. 22, 1214–1230 (2013).

    CAS  Article  Google Scholar 

  • 31.

    Fitzpatrick, M., Chhatre, V., Soolanayakanahally, R. & Keller, S. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Preprint at https://doi.org/10.22541/au.159863198.86187354 (2020).

  • 32.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    CAS  Article  Google Scholar 

  • 33.

    Keller, S. R. et al. Climate-driven local adaptation of ecophysiology and phenology in balsam poplar, Populus balsamifera L. (Salicaceae). Am. J. Bot. 98, 99–108 (2011).

    Article  Google Scholar 

  • 34.

    Alberto, F. J. et al. Potential for evolutionary responses to climate change—evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).

    Article  Google Scholar 

  • 35.

    Little, E. L. Atlas of United States Trees (US Dept of Agriculture, Forest Service, 1971).

  • 36.

    Romero-Lankao, P. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) 1439–1498 (Cambridge Univ. Press, 2014).

  • 37.

    Fetter, K. C., Gugger, P. F. & Keller, S. R. in Comparative and Evolutionary Genomics of Angiosperm Trees (eds Groover, A. & Cronk, Q.) 303–333 (Springer International, 2017); https://doi.org/10.1007/7397_2016_19

  • 38.

    Soolanayakanahally, R. Y., Guy, R. D., Silim, S. N., Drewes, E. C. & Schroeder, W. R. Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). Plant Cell Environ. 32, 1821–1832 (2009).

    CAS  Article  Google Scholar 

  • 39.

    Chhatre, V. E. et al. Climatic niche predicts the landscape structure of locally adaptive standing genetic variation. Preprint at https://doi.org/10.1101/817411 (2019).

  • 40.

    Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).

    Article  Google Scholar 

  • 41.

    Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).

    CAS  Article  Google Scholar 

  • 42.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 43.

    Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Article  Google Scholar 

  • 44.

    Goudet, J. & Jombart, T. hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.04-22 (2015).

  • 45.

    Manion, G., Lisk, M., Nieto-Lugilde, D., Mokany, K. & Fitzpatrick, M. gdm: Generalized dissimilarity modeling. R package version 1.3.11 (2018).

  • 46.

    Hijmans, R. J. geosphere: Spherical trigonometry. R package version 1.5-10 (2019).

  • 47.

    Gougherty, A. V., Chhatre, V. E., Keller, S. R. & Fitzpatrick, M. C. Contemporary range position predicts the range-wide pattern of genetic diversity in balsam poplar (Populus balsamifera L.). J. Biogeogr. 47, 1246–1257 (2020).

    Article  Google Scholar 

  • 48.

    Vallejos, R., Osorio, F. & Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables: With Applications in R (Springer, 2018).


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web