in

Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips

[adace-ad id="91168"]
  • 1.

    Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can J Res. 2003;33:612–23.

    Article  Google Scholar 

  • 2.

    Fricker MD, Heaton LLM, Jones NS, Boddy L. The mycelium as a network. Microbiol Spectr. 2017;5:1–32.

    Google Scholar 

  • 3.

    Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. London, UK: Academic Press; 2008.

    Google Scholar 

  • 5.

    Maron JL, Marler M, Klironomos JN, Cleveland CC. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett. 2011;14:36–41.

    PubMed  Article  Google Scholar 

  • 6.

    García-Guzmán G, Heil M. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytol. 2013.

  • 7.

    Lin X, Alspaugh JA, Liu H, Harris S. Fungal morphogenesis. Cold Spring Harb Perspect Med. 2014;5:a019679.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 8.

    Griffin DH. Fungal physiology. 2nd ed. New York, NY: John Wiley and Sons; 1994.

    Google Scholar 

  • 9.

    Trewavas A. What is plant behaviour? Plant, Cell Environ. 2009;32:606–16.

    Article  Google Scholar 

  • 10.

    Karban R. Plant behaviour and communication. Ecol Lett. 2008;11:727–39.

    PubMed  Article  Google Scholar 

  • 11.

    de Kroon H, Mommer L. Root foraging theory put to the test. Trends Ecol Evol. 2006;21:113–6.

    PubMed  Article  Google Scholar 

  • 12.

    Novoplansky A. Developmental plasticity in plants: implications of non-cognitive behavior. Evol Ecol. 2002;16:177–88.

    Article  Google Scholar 

  • 13.

    Lovett Doust L. Population dynamics and local specialization in a clonal perennial (Ranunculus repens): II. The dynamics of leaves, and a reciprocal transplant-replant experiment. J Ecol. 1981;69:757–68.

    Article  Google Scholar 

  • 14.

    Saiz H, Bittebiere A-K, Benot M-L, Jung V, Mony C. Understanding clonal plant competition for space over time: a fine-scale spatial approach based on experimental communities. J Veg Sci. 2016;27:759–70.

    Article  Google Scholar 

  • 15.

    Andrews JH. Comparative ecology of microorganisms and macroorganisms. New York, NY: Springer; 1991.

    Google Scholar 

  • 16.

    Carlile MJ. The success of the hypha and mycelium. In: Gow NAR, Gadd GM, editors. The growing fungus. London: Chapman & Hall; 1995. pp. 3–20.

  • 17.

    Boddy L. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia. 1999;91:13.

    Article  Google Scholar 

  • 18.

    Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Mov Ecol. 2019;7:36.

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Ritz K, Young IM. Interactions between soil structure and fungi. Mycologist. 2004;18:52–9.

    Article  Google Scholar 

  • 20.

    Harris K, Young IM, Gilligan CA, Otten W, Ritz K. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol Ecol. 2003;44:45–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Otten W, Harris K, Young IM, Ritz K, Gilligan CA. Preferential spread of the pathogenic fungus Rhizoctonia solani through structured soil. Soil Biol Biochem. 2004;36:203–10.

    CAS  Article  Google Scholar 

  • 22.

    Burges A, Nicholas DP. Use of soil sections in studying the amount of fungal hyphae in soil. Soil Sci. 1961;92:25–9.

    Article  Google Scholar 

  • 23.

    Dechesne A, Wang G, Gülez G, Or D, Smets BF. Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci USA. 2010;107:14369–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Wolfaardt GM, Hendry MJ, Birkham T, Bressel A, Gardner MN, Sousa AJ, et al. Microbial response to environmental gradients in a ceramic-based diffusion system. Biotechnol Bioeng. 2008;100:141–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Otten W, Pajor R, Schmidt S, Baveye PC, Hague R, Falconer RE. Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries. Soil Biol Biochem. 2012;51:53–5.

    CAS  Article  Google Scholar 

  • 26.

    Deng J, Orner EP, Chau JF, Anderson EM, Kadilak AL, Rubinstein RL, et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biol Biochem. 2015;83:116–24.

    CAS  Article  Google Scholar 

  • 27.

    Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Stanley CE, Grossmann G, Casadevall i Solvas X, DeMello AJ. Soil-on-a-chip: microfluidic platforms for environmental organismal studies. Lab Chip. 2016;16:228–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Held M, Kaspar O, Edwards C, Nicolau DV. Intracellular mechanisms of fungal space searching in microenvironments. Proc Natl Acad Sci USA. 2019;116:13543–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Soufan R, Delaunay Y, Gonod LV, Shor LM, Garnier P, Otten W, et al. Pore-scale monitoring of the effect of microarchitecture on fungal growth in a two-dimensional soil-like micromodel. Front Environ Sci. 2018;6:68.

    Article  Google Scholar 

  • 31.

    Schmieder SS, Stanley CE, Rzepiela A, van Swaay D, Sabotič J, Nørrelykke SF, et al. Bidirectional propagation of signals and nutrients in fungal networks via specialized hyphae. Curr Biol. 2019;29:217–28.e4.

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Aleklett K, Kiers ET, Ohlsson P, Shimizu TS, Caldas VE, Hammer EC. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 2018;12:312–9.

    PubMed  Article  Google Scholar 

  • 33.

    Veresoglou SD, Wang D, Andrade-Linares DR, Hempel S, Rillig MC. Fungal decision to exploit or explore depends on growth rate. Micro Ecol. 2018;75:289–92.

    Article  Google Scholar 

  • 34.

    Lange M, Smith, Alexander H. The coprinus ephemerus group. Mycologia. 1953;45:747–80.

    Article  Google Scholar 

  • 35.

    Hernández-Rodríguez M, Oria-de-Rueda JA, Martín-Pinto P. Post-fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. Ecol Manag. 2013;289:48–57.

    Article  Google Scholar 

  • 36.

    Hughes KW, Petersen RH. Transatlantic disjunction in fleshy fungi III: Gymnopus confluens. MycoKeys. 2015;9:37–63.

    Article  Google Scholar 

  • 37.

    Garnier-Delcourt M, Reckinger C, Tholl M-T, Turk J. Notes mycologiques luxembourgeoises. IV. Bull Soc Nat Luxemb. 2011;112:39–50.

    Google Scholar 

  • 38.

    Maynard DS, Bradford MA, Covey KR, Lindner D, Glaeser J, Talbert DA, et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat Microbiol. 2019;4:846–53.

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011;115:493–505.

    PubMed  Article  Google Scholar 

  • 40.

    Dowson CG, Rayner ADM, Boddy L. Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis. N Phytol. 1989;111:699–705.

    Article  Google Scholar 

  • 41.

    Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 2020;14:380–8.

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Held M, Binz M, Edwards C, Nicolau DV. Dynamic behaviour of fungi in microfluidics: a comparative study. In: Proc. SPIE 7182, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII. 2009. pp. 718213. https://doi.org/10.1117/12.822464.

  • 43.

    Hanson KL, Nicolau DV, Filipponi L, Wang L, Lee AP, Nicolau DV. Fungi use efficient algorithms for the exploration of microfluidic networks. Small. 2006;2:1212–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Falconer RE, Houston AN, Otten W, Baveye PC. Emergent behavior of soil fungal dynamics: influence of soil architecture and water distribution. Soil Sci. 2012;177:111–9.

    CAS  Article  Google Scholar 

  • 45.

    Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Nezhad AS, Packirisamy M, Bhat R, Geitmann A. In vitro study of oscillatory growth dynamics of camellia pollen tubes in microfluidic environment. IEEE Trans Biomed Eng. 2013;60:3185–93.

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Tayagui A, Sun Y, Collings D, Garrill A, Nock V. An elastomeric micropillar platform for the study of protrusive forces in hyphal invasion. Lab Chip. 2017;17:3643–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Brand A, Gow NA. Mechanisms of hypha orientation of fungi. Curr Opin Microbiol. 2009;12:350–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Pantidou M, Watling R, Gonou Z. Mycelial characters, anamorphs, and teleomorphs in genera and species of various families of Agaricales in culture. Mycotaxon. 1983;17:409–32.

    Google Scholar 

  • 50.

    Boekhout T, Stalpers J, Verduin SJW, Rademaker J, Noordeloos ME. Experimental taxonomic studies in Psilocybe sect. Psilocybe. Mycol Res. 2002;106:1251–61.

    Article  Google Scholar 

  • 51.

    Valenzuela E, Garnica S. Pseudohelicomyces, a new anamorph of Psilocybe. Mycol Res. 2000;104:738–41.

    Article  Google Scholar 

  • 52.

    Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, et al. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev. 2014;28:36–55.

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Genomics helps to predict maladaptation to climate change

    How science can put the Sustainable Development Goals back on track