in

Insect reproductive behaviors are important mediators of carrion nutrient release into soil

  • 1.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 2.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article  Google Scholar 

  • 3.

    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 4.

    Losey, E. J. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311 (2006).

    Article  Google Scholar 

  • 5.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115, 6506–6511 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Yang, L. H. & Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2, 26–32 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Hunter, M. D. Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric. For. Entomol. 3, 77–84 (2001).

    Article  Google Scholar 

  • 8.

    Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).

    Article  Google Scholar 

  • 9.

    Lobry de Bruyn, L. A. & Conacher, A. J. The role of termites and ants in soil modification: a review. Aust. J. Soil Res. 28, 55–93 (1990).

    Google Scholar 

  • 10.

    Shukla, R. K., Singh, H., Rastogi, N. & Agarwal, V. M. Impact of abundant Pheidole ant species on soil nutrients in relation to the food biology of the species. Appl. Soil Ecol. 71, 15–23 (2013).

    Article  Google Scholar 

  • 11.

    López-Hernández, D. Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco Llanos (Venezuela). Soil Biol. Biochem. 33, 747–753 (2001).

    Article  Google Scholar 

  • 12.

    Nkem, J. N., Lobry de Bruyn, L. A., Grant, C. D. & Hulugalle, N. R. The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia 44, 609–621 (2000).

    Article  Google Scholar 

  • 13.

    Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47, 215–222 (2011).

    Article  Google Scholar 

  • 14.

    Frost, C. J. & Hunter, M. D. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85, 3335–3347 (2004).

    Article  Google Scholar 

  • 15.

    Calderon-Cortes, N. et al. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela. J. Insect Physiol. 84, 128–136 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).

    ADS  PubMed  Article  Google Scholar 

  • 17.

    Danell, K., Aux, D. B. & Bráthen, K. A. Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Artic 55, 389–392 (2002).

    Google Scholar 

  • 18.

    Melis, C. et al. Soil and vegetation nutrient response to bison carcasses in Bialowieza primeval forest Poland. Ecol. Res. 22, 807–813 (2007).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Bump, J. K., Peterson, R. O. & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90, 3159–3167 (2009).

    PubMed  Article  Google Scholar 

  • 20.

    Benninger, L. A., Carter, D. O. & Forbes, S. L. The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci. Int. 180, 70–75 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Anderson, G. S. & VanLaerhoven, S. L. Initial studies on insect succession on carrion in Southwestern British Columbia. J. Forensic Sci. 41, 617–625 (1996).

    Article  Google Scholar 

  • 22.

    Matuszewski, S., Bajerlein, D., Konwerski, S. & Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: succession of carrion fauna. Forensic Sci. Int. 207, 150–163 (2011).

    PubMed  Article  Google Scholar 

  • 23.

    Barton, P. S., Evans, M. J., Pechal, J. L. & Benbow, M. E. Necrophilous insect dynamics at small vertebrate carrion in a temperate eucalypt woodland. J. Med. Entomol. 54, 964–973 (2017).

    PubMed  Article  Google Scholar 

  • 24.

    Benbow, M. E., Lewis, A. J., Tomberlin, J. K. & Pechal, J. L. Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J. Med. Entomol. 50, 440–450 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Payne, J. A. A summer carrion study of the baby pig Sus Scrofa Linnaeus. Ecology 46, 592–602 (1965).

    Article  Google Scholar 

  • 26.

    Kočárek, P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur. J. Soil Biol. 39, 31–45 (2003).

    Article  Google Scholar 

  • 27.

    Bornemissza, G. F. An analysis of arthropod succession in carrion and the effects of its decomposition on the soil fauna. J. Zool. 5, 1–12 (1957).

    Google Scholar 

  • 28.

    Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79, 637–661 (2009).

    Article  Google Scholar 

  • 29.

    Pechal, J. L., Benbow, M. E., Crippen, T. L., Tarone, A. M. & Tomberlin, J. K. Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 5, 1–21 (2014).

    Article  Google Scholar 

  • 30.

    Pukowski, E. Ökologische untersuchungen an necrophorus. Z. Morphol. Oekol. 27, 518–586 (1933).

    Article  Google Scholar 

  • 31.

    Scott, M. P. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43, 595–618 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Milne, L. J. & Milne, M. The social behavior of burying beetles. Sci. Am. 235, 84–89 (1976).

    Article  Google Scholar 

  • 33.

    Müller, J. K. & Eggert, A. K. Paternity assurance by ‘helpful’ males: adaptations to sperm competition in burying beetles. Behav. Ecol. Sociobiol. 24, 245–249 (1989).

    Article  Google Scholar 

  • 34.

    House, C. M. et al. The evolution of repeated mating in the burying beetle Nicorphorus vespilloides. Evolution 62, 2004–2014 (2008).

    PubMed  Article  Google Scholar 

  • 35.

    Pettinger, A. M., Steiger, S., Müller, J. K., Sakaluk, S. K. & Eggert, A. K. Dominance status and carcass availability affect the outcome of sperm competition in burying beetles. Behav. Ecol. 22, 1079–1087 (2011).

    Article  Google Scholar 

  • 36.

    Rozen, D. E., Engelmoer, D. J. P. & Smiseth, P. T. Antimicrobial strategies in burying beetles breeding on carrion. Proc. Natl. Acad. Sci. USA 105, 17890–17895 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    Arce, A. N., Johnston, P. R., Smiseth, P. T. & Rozen, D. E. Mechanisms and fitness effects of antibacterial defences in a carrion beetle. J. Evol. Biol. 25, 930–937 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Hall, C. L. et al. Inhibition of microorganisms on a carrion breeding resource: the antimicrobial peptide activity of burying beetle (Coleoptera: Silphidae) oral and anal secretions. Environ. Entomol. 40, 669–678 (2011).

    PubMed  Article  Google Scholar 

  • 39.

    Duarte, A., Welch, M., Swannack, C., Wagner, J. & Kilner, R. M. Strategies for managing rival bacterial communities: lessons from burying beetles. J. Anim. Ecol. 87, 414–427 (2018).

    PubMed  Article  Google Scholar 

  • 40.

    Trumbo, S. T. Reproductive benefits and the duration of paternal care in a biparental burying beetle Necrophorus orbicollis. Behaviour 117, 82–105 (1991).

    Article  Google Scholar 

  • 41.

    Trumbo, S. T. Fate of mouse carcasses in a Northern Woodland. Ecol. Entomol. 41, 737–740 (2016).

    Article  Google Scholar 

  • 42.

    Hoback, W. W., Freeman, L., Payton, M. & Peterson, B. C. Burying beetle (Coleoptera: Silphidae: Nicrophorus fabricius) brooding improves soil fertility. Coleopt. Bull. 74, 427–433 (2020).

    Article  Google Scholar 

  • 43.

    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, 1–26 (2018).

    Google Scholar 

  • 44.

    Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Carter, D. O., Yellowlees, D. & Tibbett, M. Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl. Soil Ecol. 40, 129–137 (2008).

    Article  Google Scholar 

  • 46.

    Meyer, J., Anderson, B. & Carter, D. O. Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate. J. Forensic Sci. 58, 1175–1182 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Chen, Y. A., Forschler, B. T. & Nielsen, U. Elemental concentrations in the frass of saproxylic insects suggest a role in micronutrient cycling. Ecosphere 7, 1–13 (2016).

    Google Scholar 

  • 49.

    Couture, J. J. & Lindroth, R. L. Atmospheric change alters frass quality of forest canopy herbivores. Arthropod. Plant. Interact. 8, 33–47 (2014).

    Article  Google Scholar 

  • 50.

    Metcalf, J. L. et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife 2013, 1–19 (2013).

    Google Scholar 

  • 51.

    Xu, S., Liu, L. L. & Sayer, E. J. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences 10, 7423–7433 (2013).

    ADS  Article  CAS  Google Scholar 

  • 52.

    Wilson, W. A. et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 34, 952–985 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Achbergerová, L. & Nahálka, J. Polyphosphate—an ancient energy source and active metabolic regulator. Microb. Cell Fact. 10, 1–14 (2011).

    Article  CAS  Google Scholar 

  • 54.

    Kornberg, A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177, 491–496 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Wilkinson, J. F. Carbon and energy storage in bacteria. J. Gen. Microbiol. 32, 171–176 (1963).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Paul, E. A. Soil Microbiology, Ecology and Biochemistry (Academic Press, Cambridge, 2014).

    Google Scholar 

  • 57.

    DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).

    Article  Google Scholar 

  • 58.

    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).

    Article  Google Scholar 

  • 59.

    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. 47, 185–192 (2002).

    Article  Google Scholar 

  • 60.

    Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Sci. Rep. 7, 1–8 (2017).

    Article  CAS  Google Scholar 

  • 61.

    Wilson, D. S. & Fudge, J. Burying beetles: intraspecific interactions and reproductive success in the field. Ecol. Entomol. 9, 195–203 (1984).

    Article  Google Scholar 

  • 62.

    Keller, M. L., Howard, D. R. & Hall, C. L. Spatiotemporal niche partitioning in a specious silphid community (Coleoptera: Silphidae Nicrophorus). Sci. Nat. 106, 1–12 (2019).

    ADS  Article  CAS  Google Scholar 

  • 63.

    Owings, C. G. & Picard, C. J. Temporal survey of a carrion beetle (Coleoptera:Silphidae) community in Indiana. Proc. Indiana Acad. Sci. 124, 124–128 (2015).

    Google Scholar 

  • 64.

    Snyder, D. P. Survival rates, longevity, and population fluctuations in the white-footed mouse, Peromyscus leucopus Southeastern Michigan. Museum Zool. Universty Michigan 95, 1–33 (1956).

    Google Scholar 

  • 65.

    Stephens, R. B., Hocking, D. J., Yamasaki, M. & Rowe, R. J. Synchrony in small mammal community dynamics across a forested landscape. Ecography 40, 1198–1209 (2017).

    Article  Google Scholar 

  • 66.

    Leasure, D. R., Rupe, D. M., Phillips, E. A., Opine, D. R. & Huxel, G. R. Efficient new above-ground bucket traps produce comparable data to that of standard transects for the endangered American Burying Beetle, Nicrophorus americanus Olivier (Coleoptera: Silphidae). Coleopt. Bull. 66, 209–218 (2012).

    Article  Google Scholar 

  • 67.

    Bedick, J. C., Ratcliffe, B. C. & Higley, L. G. A new sampling protocol for the endangered American Burying Beetle, Nicrophorus americanus Olivier (Coleoptera: Silphidae). Coleopt. Bull. 58, 57–70 (2004).

    Article  Google Scholar 

  • 68.

    Trumbo, S. T. Reproductive success, phenology and biogeography of burying beetles (Silphidae, Nicrophorus). Am. Midl. Nat. 124, 1–11 (1990).

    Article  Google Scholar 

  • 69.

    Trumbo, S. T. Nesting failure in burying beetles and the origin of communal associations. Evol. Ecol. 9, 125–130 (1995).

    Article  Google Scholar 

  • 70.

    Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718 (1989).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Sims, G. K., Ellsworth, T. R. & Mulvaney, R. L. Microscale determination of inorganic nitrogen in water and soil extracts. Commun. Soil Sci. Plant Anal. 26, 303–316 (1995).

    CAS  Article  Google Scholar 

  • 72.

    Contosta, A. R., Frey, S. D. & Cooper, A. B. Seasonal dynamics of soil respiration and N mineralization in chronically warmed and fertilized soils. Ecosphere 2, 1–21 (2011).

    Article  Google Scholar 

  • 73.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).

    CAS  Article  Google Scholar 

  • 74.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).

    CAS  Article  Google Scholar 

  • 75.

    Brookes, P. D. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).

    CAS  Article  Google Scholar 

  • 76.

    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS  PubMed  Article  Google Scholar 

  • 77.

    White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 78.

    Guckert, J. B., Antworth, C. P., Nichols, P. D. & White, D. C. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Lett. 31, 147–158 (1985).

    CAS  Article  Google Scholar 

  • 79.

    Bardgett, R. D., Hobbs, P. J. & Frostegårde, A. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264 (1996).

    Article  Google Scholar 

  • 80.

    Bååth, E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol. 45, 373–383 (2003).

    PubMed  Article  CAS  Google Scholar 

  • 81.

    Ekelund, F., Olsson, S. & Johansen, A. Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biol. Biochem. 35, 1507–1516 (2003).

    CAS  Article  Google Scholar 

  • 82.

    Leckie, S. E., Prescott, C. E., Grayston, S. J., Neufeld, J. D. & Mohn, W. W. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability. Microb. Ecol. 48, 29–40 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 83.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 84.

    Oksanen, J. et al. Vegan: community ecology package (2019). http://cran.r-project.org/.

  • 85.

    Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics version 0.9-75 from CRAN. R package version 0.9-75 (2020).

  • 86.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications Inc, Thousand Oaks, 2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Brewing up a dirty-water remedy (and more) with kombucha-inspired biosensors

    Continuous versus discrete quantity discrimination in dune snail (Mollusca: Gastropoda) seeking thermal refuges