in

Bayesian Network Analysis reveals resilience of the jellyfish Aurelia aurita to an Irish Sea regime shift

  • 1.

    Lynam, C. P. et al. Have jellyfish in the Irish Sea benefited from climate change and overfishing?. Glob. Change Biol. 17, 767–782 (2011).

    ADS  Article  Google Scholar 

  • 2.

    Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. 110, 1000–1005 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Lynam, C. P., Hay, S. J. & Brierley, A. S. Jellyfish abundance and climatic variation: Contrasting responses in oceanographically distinct regions of the North Sea, and possible implications for fisheries. J. Mar. Biol. Assoc. 85, 435–450 (2005).

    Article  Google Scholar 

  • 4.

    Lynam, C. P. et al. Jellyfish overtake fish in a heavily fished ecosystem. Curr. Biol. 16, R492-493 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Hays, G. C., Doyle, T. K. & Houghton, J. D. R. A paradigm shift in the trophic importance of jellyfish?. Trends Ecol. Evol. 33, 874–884 (2018).

    PubMed  Article  Google Scholar 

  • 6.

    Gibbons, M. J. & Richardson, A. J. Patterns of jellyfish abundance in the North Atlantic. In Jellyfish Blooms: Causes, Consequences, and Recent Advances: Proceedings of the Second International Jellyfish Blooms Symposium, held at the Gold Coast, Queensland, Australia, 24–27 June, 2007 (eds. Pitt, K. A. & Purcell, J. E.) 51–65 (Springer Netherlands, 2009). https://doi.org/10.1007/978-1-4020-9749-2_4.

  • 7.

    Attrill, M. J., Wright, J. & Edwards, M. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol. Oceanogr. 52, 480–485 (2007).

    ADS  Article  Google Scholar 

  • 8.

    Brodeur, R. D., Sugisaki, H. & Hunt, G. L. Jr. Increases in jellyfish biomass in the Bering Sea: Implications for the ecosystem. Mar. Ecol. Prog. Ser. 233, 89–103 (2002).

    ADS  Article  Google Scholar 

  • 9.

    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Purcell, J. E. & Arai, M. N. Interactions of pelagic cnidarians and ctenophores with fish: A review. Hydrobiologia 451, 27–44 (2001).

    Article  Google Scholar 

  • 11.

    Robinson, K. L. et al. Jellyfish, forage fish, and the world’s major fisheries. Oceanography 27, 104–115 (2014).

    Article  Google Scholar 

  • 12.

    Uye, S. Blooms of the giant jellyfish Nemopilema nomurai: A threat to the fisheries sustainability of the East Asian Marginal Seas. Plankton Benthos Res. 3, 125–131 (2008).

    Article  Google Scholar 

  • 13.

    Wright, R. M., Le Quéré, C., Buitenhuis, E., Pitois, S. & Gibbons, M. Unique role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-136 (2020).

    Article  Google Scholar 

  • 14.

    Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean. Proc. Natl. Acad. Sci. 105, 11458–11465 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Kintner, A. & Brierley, A. S. Cryptic hydrozoan blooms pose risks to gill health in farmed North Atlantic salmon (Salmo salar). J. Mar. Biol. Assoc. 99, 539–550 (2019).

    Article  Google Scholar 

  • 16.

    Flynn, B. A. et al. Temporal and spatial patterns in the abundance of jellyfish in the northern Benguela upwelling ecosystem and their link to thwarted pelagic fishery recovery. Afr. J. Mar. Sci. 34, 131–146 (2012).

    Article  Google Scholar 

  • 17.

    Luo, J. Y. et al. Gelatinous zooplankton-mediated carbon flows in the global oceans: A data-driven modeling study. Glob. Biogeochem. Cycles 34, e2020GB006704 (2020).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Hays, G. C., Richardson, A. J. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).

    PubMed  Article  Google Scholar 

  • 20.

    Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the northeast Atlantic. Science 305, 1609–1612 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 21.

    Suikkanen, S. et al. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8, e66475 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Wiafe, G., Yaqub, H. B., Mensah, M. A. & Frid, C. L. J. Impact of climate change on long-term zooplankton biomass in the upwelling region of the Gulf of Guinea. ICES J. Mar. Sci. 65, 318–324 (2008).

    Article  Google Scholar 

  • 23.

    Reid, P. C., Colebrook, J. M., Matthews, J. B. L. & Aiken, J. The Continuous Plankton Recorder: Concepts and history, from Plankton Indicator to undulating recorders. Prog. Oceanogr. 58, 117–173 (2003).

    ADS  Article  Google Scholar 

  • 24.

    Edwards, M. et al. Plankton, jellyfish and climate in the North-East Atlantic. MCCIP Sci. Rev. 2020, 322–353. https://doi.org/10.14465/2020.arc15.plk (2020).

    Article  Google Scholar 

  • 25.

    ICES. Report of the Working Group on the Celtic Seas Ecoregion (WGCSE), 11–19 May 2011, Copenhagen, Denmark. (2011).

  • 26.

    Bartolino, V. et al. Herring assessment working group for the area south of 62° N (HAWG). (2019) https://doi.org/10.17895/ices.pub.5460.

  • 27.

    ICES Advice Book 5. https://www.ices.dk/sites/pub/Publication%20Reports/Advice/2007/may/her-nirs.pdf (2007).

  • 28.

    Beaugrand, G. The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr. 60, 245–262 (2004).

    ADS  Article  Google Scholar 

  • 29.

    Gregory, B., Christophe, L. & Martin, E. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Change Biol. 15, 1790–1803 (2009).

    ADS  Article  Google Scholar 

  • 30.

    deYoung, B. et al. Regime shifts in marine ecosystems: Detection, prediction and management. Trends Ecol. Evol. 23, 402–409 (2008).

    PubMed  Article  Google Scholar 

  • 31.

    Bastian, T. et al. Large-scale sampling reveals the spatio-temporal distributions of the jellyfish Aurelia aurita and Cyanea capillata in the Irish Sea. Mar. Biol. 158, 2639–2652 (2011).

    Article  Google Scholar 

  • 32.

    Houghton, J. D. R., Doyle, T. K., Davenport, J. & Hays, G. C. Developing a simple, rapid method for identifying and monitoring jellyfish aggregations from the air. Mar. Ecol. Prog. Ser. 314, 159–170 (2006).

    ADS  Article  Google Scholar 

  • 33.

    Bastian, T., Lilley, M. K. S., Beggs, S. E., Hays, G. C. & Doyle, T. K. Ecosystem relevance of variable jellyfish biomass in the Irish Sea between years, regions and water types. Estuar. Coast. Shelf Sci. 149, 302–312 (2014).

    ADS  Article  Google Scholar 

  • 34.

    Heckerman, D., Geiger, D. & Chickering, D. M. Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20, 197–243 (1995).

    MATH  Google Scholar 

  • 35.

    Milns, I., Beale, C. M. & Smith, V. A. Revealing ecological networks using Bayesian network inference algorithms. Ecology 91, 1892–1899 (2010).

    PubMed  Article  Google Scholar 

  • 36.

    Mitchell, E. G. & Neutel, A.-M. Feedback spectra of soil food webs across a complexity gradient, and the importance of three-species loops to stability. Theor. Ecol. 5, 153–159 (2012).

    Article  Google Scholar 

  • 37.

    Olff, H. et al. Parallel ecological networks in ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 364, 1755–1779 (2009).

    Article  Google Scholar 

  • 38.

    Mitchell, E. G., Whittle, R. & Griffths, H. J. Benthic ecosystem cascade effects in Antarctica using Bayesian network inference. Commun. Biol. 3, 582 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J. & Jarvis, E. D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Yu, J., Smith, V. A., Wang, P. P., Hartemink, E. J. & Jarvis, E. D. Using Bayesian network inference algorithms to recover molecular genetic regulatory networks. In Prof. of Int. (2002).

  • 41.

    Smith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J. & Jarvis, E. D. Computational inference of neural information flow networks. PLOS Comput. Biol. 2, e161 (2006).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    Mitchell, E. G. & Butterfield, N. J. Spatial analyses of Ediacaran communities at Mistaken Point. Paleobiology 44, 40–57 (2018).

    Article  Google Scholar 

  • 43.

    Mitchell, E. G., Durden, J. M. & Ruhl, H. A. First network analysis of interspecific associations of abyssal benthic megafauna reveals potential vulnerability of abyssal hill community. Prog. Oceanogr. 187, 102401 (2020).

    Article  Google Scholar 

  • 44.

    Mitchell, E. G. & Harris, S. Mortality, population and community dynamics of the glass sponge dominated community “The Forest of the Weird” from the RIDGE seamount, Johnston Atoll, Pacific Ocean. Front. Mar. Sci. 7, 872 (2020).

    Article  Google Scholar 

  • 45.

    Reid, P. C., Borges, M. D. F. & Svendsen, E. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fish. Res. 50, 163–171 (2001).

    Article  Google Scholar 

  • 46.

    Brierley, A. S. et al. Acoustic observations of jellyfish in the Namibian Benguela. Mar. Ecol. Prog. Ser. 210, 55–66 (2001).

    ADS  Article  Google Scholar 

  • 47.

    Brierley, A. S. et al. Towards the acoustic estimation of jellyfish abundance. Mar. Ecol. Prog. Ser. 295, 105–111 (2005).

    ADS  Article  Google Scholar 

  • 48.

    MacLennan, D. N. & Simmonds, E. J. Fisheries Acoustics (Springer, Berlin, 2013).

    Google Scholar 

  • 49.

    Planque, B. & Fromentin, J. Calanus and environment in the eastern North Atlantic. I. Spatial and temporal patterns of C. finmarchicus and C. helgolandicus. Mar. Ecol. Prog. Ser. 134, 101–109 (1996).

    ADS  Article  Google Scholar 

  • 50.

    Batten, S. D. et al. CPR sampling: The technical background, materials and methods, consistency and comparability. Prog. Oceanogr. 58, 193–215 (2003).

    ADS  Article  Google Scholar 

  • 51.

    Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74 (2006).

    ADS  Article  Google Scholar 

  • 52.

    John, E. H. et al. Continuous plankton records stand the test of time: Evaluation of flow rates, clogging and the continuity of the CPR time-series. J. Plankton Res. 24, 941–946 (2002).

    Article  Google Scholar 

  • 53.

    Beaugrand, G., Ibañez, F., Lindley, J. A. & Reid, P. C. Diversity of calanoid copepods in the North Atlantic and adjacent seas: Species associations and biogeography. Mar. Ecol. Prog. Ser. 232, 179–195 (2002).

    ADS  Article  Google Scholar 

  • 54.

    Yu, J. Developing Bayesian Network Inference Algorithms to Predict Causal Functional Pathways in Biological Systems (Duke University, Durham, 2005).

    Google Scholar 

  • 55.

    Chickering, D. M. Learning Bayesian Networks is NP-Complete. In Learning from Data: Artificial Intelligence and Statistics V (eds. Fisher, D. & Lenz, H.-J.) 121–130 (Springer, Berlin, 1996). https://doi.org/10.1007/978-1-4612-2404-4_12.

  • 56.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, (2003).

  • 57.

    Jones, P. D., Jonsson, T. & Wheeler, D. Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).

    Article  Google Scholar 

  • 58.

    Mitchell, E. G. Functional programming through deep time: Modeling the first complex ecosystems on earth. ACM SIGPLAN Not. 46, 28–31 (2011).

    MATH  Article  Google Scholar 

  • 59.

    Jones, S. P. Haskell 98 Language and Libraries: The Revised Report (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  • 60.

    Friedman, N., Geiger, D. & Goldszmidt, M. Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997).

    MATH  Article  Google Scholar 

  • 61.

    Dickey-Collas, M., Nash, R. D. M. & Brown, J. The location of spawning of Irish sea herring (Clupea harengus). J. Mar. Biol. Assoc. 81, 713–714 (2001).

    Article  Google Scholar 

  • 62.

    Nash, R. D. M. & Geffen, A. J. Seasonal and interannual variation in abundance of Calanus finmarchicus (Gunnerus) and Calanus helgolandicus (Claus) in inshore waters (west coast of the Isle of Man) in the central Irish Sea. J. Plankton Res. 26, 265–273 (2004).

    Article  Google Scholar 

  • 63.

    Hurrell, J. W. & Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 78, 28–41 (2009).

    Article  Google Scholar 

  • 64.

    Brotz, L., Cheung, W. W. L., Kleisner, K., Pakhomov, E. & Pauly, D. Increasing jellyfish populations: trends in Large Marine Ecosystems. In Jellyfish Blooms IV: Interactions with Humans and Fisheries (eds. Purcell, J. et al.) 3–20 (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-5316-7_2.

  • 65.

    Purcell, J. E. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annu. Rev. Mar. Sci. 4, 209–235 (2012).

    ADS  Article  Google Scholar 

  • 66.

    Pitt, K. A., Lucas, C. H., Condon, R. H., Duarte, C. M. & Stewart-Koster, B. Claims that anthropogenic stressors facilitate jellyfish blooms have been amplified beyond the available evidence: A systematic review. Front. Mar. Sci. 5, 451 (2018).

    Article  Google Scholar 

  • 67.

    Sanz-Martín, M. et al. Flawed citation practices facilitate the unsubstantiated perception of a global trend toward increased jellyfish blooms. Glob. Ecol. Biogeogr. 25, 1039–1049 (2016).

    Article  Google Scholar 

  • 68.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article  Google Scholar 

  • 69.

    Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 228, 784–784 (1970).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 70.

    Lawton, J. H. & Brown, V. K. Redundancy in ecosystems. In Biodiversity and Ecosystem Function (eds. Schulze, E.-D. & Mooney, H. A.) 255–270 (Springer, Berlin, 1994). https://doi.org/10.1007/978-3-642-58001-7_12.

  • 71.

    Thébault, E. & Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 166, E95–E114 (2005).

    PubMed  Article  Google Scholar 

  • 72.

    Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Van Voris, P., O’Neill, R. V., Emanuel, W. R. & Shugart, H. H. Functional complexity and ecosystem stability. Ecology 61, 1352–1360 (1980).

    Article  Google Scholar 

  • 74.

    Graham, W. M. & Kroutil, R. M. Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. J. Plankton Res. 23, 67–74 (2001).

    Article  Google Scholar 

  • 75.

    Marques, R., Bonnet, D., Carré, C., Roques, C. & Darnaude, A. M. Trophic ecology of a blooming jellyfish (Aurelia coerulea) in a Mediterranean coastal lagoon. Limnol. Oceanogr. n/a.

  • 76.

    Anninsky, B. E., Finenko, G. A., Datsyk, N. A. & Kıdeyş, A. E. Trophic ecology and assessment of the predatory impact of the Moon jellyfish Aurelia aurita (Linnaeus, 1758) on zooplankton in the Black Sea (2020) https://doi.org/10.21411/cbm.a.96dd01aa.

  • 77.

    Widmer, C. L., Fox, C. J. & Brierley, A. S. Effects of temperature and salinity on four species of northeastern Atlantic scyphistomae (Cnidaria: Scyphozoa). Mar. Ecol. Prog. Ser. 559, 73–88 (2016).

    ADS  Article  Google Scholar 

  • 78.

    Watson, D. I. & Barnes, D. K. A. Temporal and spatial components of variability in benthic recruitment, a 5-year temperate example. Mar. Biol. 145, 201–214 (2004).

    Article  Google Scholar 

  • 79.

    Arrhenius, F. & Hansson, S. Food consumption of larval, young and adult herring and sprat in the Baltic Sea. Mar. Ecol. Prog. Ser. 96, 125–137 (1993).

    ADS  Article  Google Scholar 

  • 80.

    Williams, R., Conway, D. V. P. & Hunt, H. G. The role of copepods in the planktonic ecosystems of mixed and stratified waters of the European shelf seas. Hydrobiologia 292, 521–530 (1994).

    Article  Google Scholar 

  • 81.

    Gowen, R. J., Mills, D. K., Trimmer, M. & Nedwell, D. B. Production and its fate in two coastal regions of the Irish Sea: The influence of anthropogenic nutrients. Mar. Ecol. Prog. Ser. 208, 51–64 (2000).

    ADS  Article  Google Scholar 

  • 82.

    Scorrano, S., Aglieri, G., Boero, F., Dawson, M. N. & Piraino, S. Unmasking Aurelia species in the Mediterranean Sea: An integrative morphometric and molecular approach. Zool. J. Linn. Soc. 180, 243–267 (2017).

    Google Scholar 

  • 83.

    Haussermann, V., Dawson, M. N. & Forsterra, G. First record of the moon jellyfish, Aurelia for Chile. Spixana 32, 3–7 (2009).

    Google Scholar 


  • Source: Ecology - nature.com

    Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps

    Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer