in

Photosynthetic parameters of a sedge-grass marsh as a big-leaf: effect of plant species composition

  • 1.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, 2013).

  • 2.

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Matson, P. A., Harriss, a. R. C. (ed.) Biogenic Trace Gases: Measuring Emissions from Soil and Water. Methods in ecology (Blackwell Science, Oxford [England]; Cambridge, Mass., USA, 1995).

  • 4.

    Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorl. Soc. 82, 2415–2434 (2001).

    ADS  Article  Google Scholar 

  • 5.

    Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B. & Hall, F. G. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 42, 187–216 (1992).

    ADS  Article  Google Scholar 

  • 6.

    de Pury, D. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557 (1997).

    Article  Google Scholar 

  • 7.

    Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208 (2010).

    ADS  Article  Google Scholar 

  • 8.

    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1995).

    Article  Google Scholar 

  • 10.

    Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 1999, 95–113 (1999).

    Article  Google Scholar 

  • 11.

    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Tilman, D. Functional diversity. Ecyclopedia Biodivers. 2001, 109–121 (2001).

    Article  Google Scholar 

  • 13.

    Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (Springer, Berlin, 2003).

    Google Scholar 

  • 14.

    Crawford, R. M. M. Studies in Plant Survival: Ecological Case Histories of Plant Adaptation to Adversity (Blackwell Scientific Publications, Oxford, 1989).

    Google Scholar 

  • 15.

    Kaplan, Z. (ed.) Klíč ke květeně: České republiky. Second editions. (Academia, Prague, 2019).

  • 16.

    Jeník, J., Kurka, R. & Husák, Š. Wetlands of the Třeboň Basin Biosphere Reserve in the central European context, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 11–18 (CRC Press, New York, 2002).

  • 17.

    Holubičková, B. Příspěvek ke studiu rašeliništní vegetace. I. Mokré louky u Třeboně (A contribution to the study of peatland vegetation. I. Mokré louky near Třeboň). (1959).

  • 18.

    Blažková, D. Pflanzensoziologische Studie über die Wiesen der Südböhmischen Becken. Stud. CSAV 73, 1–172 (1973).

    Google Scholar 

  • 19.

    Prach, K. Vegetational changes in a wet meadow complex, south-bohemia, Czech Republic. Folia Geobot. Phytotaxon. 28, 1–13 (1993).

    ADS  Article  Google Scholar 

  • 20.

    Prach, K. Vegetation changes in a wet meadow complex during the past half-century. Folia Geobot. 43, 119–130 (2008).

    Article  Google Scholar 

  • 21.

    Prach, K. & Soukupová, L. Alterations in the Wet Meadows vegetation pattern, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 243–254 (CRC Press, 2002).

  • 22.

    Balátová-Tuláčková, E. Die Nass- und Feuchtwiesen Nordwest-Böhmens mit besonderer Berücksichtigung Der Magnocaricetalia-Gesellschaften. Rozpr. Českoslov. Akad. Věd, Řada Mat. Přír. Věd 1978.

  • 23.

    Květ, J. (ed.) Freshwater Wetlands and their Sustainable Future: A Case of the Třeboň Basin Biosphere Reserve, Czech Republic. Man and the biosphere series 28. (UNESCO, Paris, 2002).

  • 24.

    Honissová, M. et al. Seasonal dynamics of biomass partitioning in a tall sedge Carex acuta L. Aquat. Bot. 125, 64–71 (2015).

    Article  Google Scholar 

  • 25.

    Hejný, S. Dynamic changes in the macrophyte vegetation of South Bohemian fishponds after 35 years. Folia Geobot. Phytotaxon. 25, 245–255 (1990).

    Article  Google Scholar 

  • 26.

    Káplová, M., Edwards, K. R. & Květ, J. The effect of nutrient level on plant structure and production in a wet grassland: a field study. Plant Ecol. 212, 809–819 (2011).

    Article  Google Scholar 

  • 27.

    Chambers, J. M. Software for Data Analysis: Programming with R (Springer, Berlin, 2008).

    Google Scholar 

  • 28.

    Koyama, K. & Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 4, 4389 (2015).

    Article  CAS  Google Scholar 

  • 29.

    Nobel, P. S. Physicochemical and Environmental Plant Physiology (Academic Press, New York, 2009).

    Google Scholar 

  • 30.

    Gilmanov, T. G. et al. Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements: GPP OF SOUTHERN PLAINS ECOSYSTEMS. Glob. Biogeochem. Cycles 17, 1–15 (2003).

    Google Scholar 

  • 31.

    Bates, D. M. & Watts, D. G. Nonlinear Regression Analysis and Its Applications (Wiley, New York, 1988).

    Google Scholar 

  • 32.

    Ogren, E. Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiol. 101, 7 (1993).

    Article  Google Scholar 

  • 33.

    Hollander, M., Wolfe, D. A. & Chicken, E. Nonparametric Statistical Methods (Wiley, New York, 2014).

    Google Scholar 

  • 34.

    Best, D. J. & Roberts, D. E. Algorithm AS 89: the upper tail probabilities of Spearman’s Rho. Appl. Stat. 24, 377 (1975).

    Article  Google Scholar 

  • 35.

    Busch, J. & Losch, R. The gas exchange of Carex species from eutrophic wetlands and its dependence on microclimatic and soil wetness conditions. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 24, 117–120 (1999).

    ADS  Article  Google Scholar 

  • 36.

    Ondok, J. & Gloser, J. Leaf photosynthesis and dark respiration in a sedge-grass marsh. 1. model for mid-summer conditions. Photosynthetica 17, 77–88 (1983).

    Google Scholar 

  • 37.

    Caudle, K. L. & Maricle, B. R. Physiological relationship between oil tolerance and flooding tolerance in marsh plants. Environ. Exp. Bot. 107, 7–14 (2014).

    CAS  Article  Google Scholar 

  • 38.

    Ge, Z.-M. et al. Measured and modeled biomass growth in relation to photosynthesis acclimation of a bioenergy crop (Reed canary grass) under elevated temperature, CO2 enrichment and different water regimes. Biomass Bioenerg. 46, 251–262 (2012).

    CAS  Article  Google Scholar 

  • 39.

    Waring, E. F. & Maricle, B. R. Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding. Environ. Exp. Bot. 77, 77–86 (2012).

    CAS  Article  Google Scholar 

  • 40.

    Gloser, J. Net photosynthesis and dark respiration of reed estimated by gas-exchange measurements, in Pond Littoral Ecosystems. Structure and Functioning, vol. 1978, 227–234 (Springer, Berlin, 1978).

  • 41.

    Zhou, X., Liu, X., Wallace, L. L. & Luo, Y. Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. J. Integr. Plant Biol. 49, 270–281 (2007).

    CAS  Article  Google Scholar 

  • 42.

    Jones, H. G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  • 43.

    Smith, M. & Houpis, J. L. J. Gas exchange responses of the wetland plant Schoenoplectus hallii to irradiance and vapor pressure deficit. Aquat. Bot. 79, 267–275 (2004).

    CAS  Article  Google Scholar 

  • 44.

    Li, M., Yang, D. & Li, W. Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica 45, 222–228 (2007).

    Google Scholar 

  • 45.

    Li, M., Hou, G., Yang, D., Deng, G. & Li, W. Photosynthetic traits of Carex cinerascens in flooded and nonflooded conditions. Photosynthetica 48, 370–376 (2010).

    CAS  Article  Google Scholar 

  • 46.

    Vervuren, P., Beurskens, S. & Blom, C. Light acclimation, CO2 response and long-term capacity of underwater photosynthesis in three terrestrial plant species. Plant Cell Environ. 22, 959–968 (1999).

    Article  Google Scholar 

  • 47.

    Bouma, T. J., De Visser, R., Van Leeuwen, P. H., De Kock, M. J. & Lambers, H. The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature source leaves and their contribution to leaf dark respiration. J. Exp. Bot. 46, 1185–1194 (1995).

    CAS  Article  Google Scholar 

  • 48.

    McCutchan, C. L. & Monson, R. K. Night-time respiration rate and leaf carbohydrate concentrations are not coupled in two alpine perennial species. New Phytol. 149, 419–430 (2002).

    Article  Google Scholar 

  • 49.

    Emerson, R. The quantum yield of photosynthesis. Annu. Rev. Plant Physiol. 9, 1–24 (1958).

    CAS  Article  Google Scholar 

  • 50.

    Singsaas, E. L., Ort, D. R. & DeLucia, E. H. Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 128, 15–23 (2001).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    de Lobo, F. A. et al. Fitting net photosynthetic light-response curves with Microsoft Excel—a critical look at the models. Photosynthetica 51, 445–456 (2013).

    CAS  Article  Google Scholar 

  • 52.

    Busch, J. Characteristic values of key ecophysiological parameters in the genus Carex. FLORA 196, 405–430 (2001).

    Article  Google Scholar 

  • 53.

    Hull, J. C. Photosynthetic induction dynamics to sunflecks of four deciduous forest understory herbs with different phenologies1. Int. J. Plant Sci. 163, 913–924 (2002).

    ADS  Article  Google Scholar 

  • 54.

    Wayne, E. R. & Van Auken, O. W. Light responses of Carex planostachys from various microsites in a Juniperus community. J. Arid Environ. 73, 435–443 (2009).

    ADS  Article  Google Scholar 

  • 55.

    Colmer, T. D. & Pedersen, O. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol. 177, 918–926 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Mommer, L. & Visser, E. J. W. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann. Bot. 96, 581–589 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Dušek, J. Seasonal dynamic of nonstructural saccharides in a rhizomatous grass Calamagrostis epigeios. Biol. Plant. 45, 383–387 (2002).

    Article  Google Scholar 

  • 58.

    Mitsch, W. J. (ed.) Wetland Ecosystems (Wiley, Hoboken, NJ, 2009).

  • 59.

    Soukupová, L. Life strategy of graminoid populations in the wet meadows, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 255–267 (CRC Press, New York, 2002).

  • 60.

    Polechová, J. & Storch, D. Ecological Niche, in Encyclopedia of Ecology 72–80 (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/B978-0-12-409548-9.11113-3.

  • 61.

    Dykyjová, D. Production ecology of Acorus calamus. Folia Geobot. Phytotaxon. 15, 29–57 (1980).

    Article  Google Scholar 

  • 62.

    Westlake, D. F., Květ, J., Andrzej Szczepański, a International Biological Programme. (ed.) The Production Ecology of Wetlands: The IBP Synthesis (Cambridge University Press, Cambridge, UK; New York, NY, USA, 1998).

  • 63.

    Pai, A. & McCarthy, B. C. Variation in shoot density and rhizome biomass of Acorus calamus L. With respect to environment. Castanea 70, 263–275 (2005).

    Article  Google Scholar 

  • 64.

    Pai, A. & McCarthy, B. C. Suitability of the medicinal plant, Acorus calamus L, for wetland restoration. Nat. Areas J. 30, 380–386 (2010).

    Article  Google Scholar 

  • 65.

    Květ, J., Lukavská, J. & Tetter, M. Biomass and net primary production in graminoid vegetation. in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 293–299 (CRC Press, Boca Raton, 2002).

  • 66.

    Hejný, S. The dynamic characteristics of littoral vegetation with respect to changes of water level. Hidrobiol. Bucur. 1971, 71–85 (1971).

    Google Scholar 


  • Source: Ecology - nature.com

    Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps

    Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer