in

Long-term dynamics of plant communities after biological remediation of oil-contaminated soils in far north

  • 1.

    Liste, H.-H. & Felgentreu, D. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil. Ecol. 31, 43–52 (2006).

    Article  Google Scholar 

  • 2.

    Smith, M. J., Flowers, T. H., Duncan, H. J. & Alder, J. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Pollut. 141, 519–525 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Meudec, A., Poupart, N., Dussauze, J. & Deslandes, E. Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis. Sci. Total Environ. 381, 146–156 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Euliss, K., Ho, C.-H., Schwab, A. P., Rock, S. & Banks, M. K. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresour. Technol. 99, 1961–1971 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Hutchinson, T. C. & Freedman, W. Effects of experimental crude oil spills on subarctic boreal forest vegetation near Norman Wells, N.W.T., Canada. Can. J. Bot. 56, 2424–2433 (1978).

    Article  Google Scholar 

  • 6.

    Lin, Q. & Mendelssohn, I. A. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol. Eng. 10, 263–274 (1998).

    Article  Google Scholar 

  • 7.

    Racine, C. H. Long-term recovery of vegetation on two experimental crude oil spills in interior Alaska black spruce taiga. Can. J. Bot. 72, 1171–1177 (1994).

    Article  Google Scholar 

  • 8.

    Fatima, K., Afzal, M., Imran, A. & Khan, Q. M. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull. Environ. Contam. Toxicol. 94, 314–320 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Hashmat, A. J. et al. Characterization of hydrocarbon-degrading bacteria in constructed wetland microcosms used to treat crude oil polluted water. Bull. Environ. Contam. Toxicol. 102, 358–364 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Khan, F. I., Husain, T. & Hejazi, R. An overview and analysis of site remediation technologies. J. Environ. Manag. 71, 95–122 (2004).

    Article  Google Scholar 

  • 11.

    Sarkar, D., Ferguson, M., Datta, R. & Birnbaum, S. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136, 187–195 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Gan, S., Lau, E. V. & Ng, H. K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 172, 532–549 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Anchugova, E. M., Melekhina, E. N., Markarova, MYu. & Shchemelinina, T. N. Approaches to the assessment of the efficiency of remediation of oil-polluted soils. Eurasian Soil Sci. 49, 234–237 (2016).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Erkenova, M. I., Tolpeshta, I. I., Trofimov, S. Y., Aptikaev, R. S. & Lazarev, A. S. Changes of the content of oil products in the oil-polluted peat soil of a high-moor bog in a field experiment with application of lime and fertilizers. Eurasian Soil Sci. 49, 1310–1318 (2016).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Sorkhoh, N. A. et al. Bioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (Cynodon sp.) and broad bean (Vicia faba) leaves. Int. Biodeterior. Biodegrad. 65, 797–802 (2011).

    CAS  Article  Google Scholar 

  • 16.

    Roy, A. S. et al. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int. Biodeterior. Biodegrad. 94, 79–89 (2014).

    CAS  Article  Google Scholar 

  • 17.

    Cai, B. et al. Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil. Biochem. Eng. J. 112, 170–177 (2016).

    CAS  Article  Google Scholar 

  • 18.

    Murygina, V., Gaydamaka, S., Gladchenko, M. & Zubaydullin, A. Method of aerobic-anaerobic bioremediation of a raised bog in Western Siberia affected by old oil pollution. A pilot test. Int. Biodeterior. Biodegrad. 114, 150–156 (2016).

    CAS  Article  Google Scholar 

  • 19.

    Tahseen, R. et al. Rhamnolipids and nutrients boost remediation of crude oil-contaminated soil by enhancing bacterial colonization and metabolic activities. Int. Biodeterior. Biodegrad. 115, 192–198 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Baoune, H. et al. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Ecotoxicol. Environ. Saf. 184, 109591 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Ra, T., Zhao, Y. & Zheng, M. Comparative study on the petroleum crude oil degradation potential of microbes from petroleum-contaminated soil and non-contaminated soil. Int. J. Environ. Sci. Technol. 16, 7127–7136 (2019).

    CAS  Article  Google Scholar 

  • 22.

    Rajkumari, J., Bhuyan, B., Das, N. & Pandey, P. Environmental applications of microbial extremophiles in the degradation of petroleum hydrocarbons in extreme environments. Environ. Sustain. 2, 311–328 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Newman, L. A. & Reynolds, C. M. Phytodegradation of organic compounds. Curr. Opin. Biotechnol. 15, 225–230 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Unterbrunner, R. et al. Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status. Plant Soil 300, 117–126 (2007).

    CAS  Article  Google Scholar 

  • 25.

    Muratova, A. Y., Dmitrieva, T. V., Panchenko, L. V. & Turkovskaya, O. V. Phytoremediation of oil-sludge-contaminated soil. Int. J. Phytorem. 10, 486–502 (2008).

    CAS  Article  Google Scholar 

  • 26.

    Shirdam, R., Zand, A., Bidhendi, G. & Mehrdadi, N. Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phyto 89, 21–29 (2008).

    CAS  Article  Google Scholar 

  • 27.

    Farias, V. et al. Phytodegradation Potential of Erythrina crista-galli L., Fabaceae petroleum-contaminated soil. Appl. Biochem. Biotechnol. 157, 10–22 (2009).

    PubMed  Article  CAS  Google Scholar 

  • 28.

    Peng, S., Zhou, Q., Cai, Z. & Zhang, Z. Phytoremediation of petroleum contaminated soils by Mirabilis jalapa L. in a greenhouse plot experiment. J. Hazard. Mater. 168, 1490–1496 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Basumatary, B., Saikia, R., Bordoloi, S., Das, H. C. & Sarma, H. P. Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of upper Assam, India. J. Chem. Technol. Biotechnol. 87, 1329–1334 (2012).

    CAS  Article  Google Scholar 

  • 30.

    Moubasher, H. A. et al. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int. Biodeterior. Biodegrad. 98, 113–120 (2015).

    CAS  Article  Google Scholar 

  • 31.

    Fatima, K., Imran, A., Amin, I., Khan, Q. M. & Afzal, M. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ. Sci. Pollut. Res. Int. 23, 6188–6196 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Khan, S., Afzal, M., Iqbal, S. & Khan, Q. M. Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90, 1317–1332 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 33.

    Yavari, S., Malakahmad, A. & Sapari, N. B. A review on phytoremediation of crude oil spills. Water Air Soil Pollut. 226, 279 (2015).

    ADS  Article  CAS  Google Scholar 

  • 34.

    Okoh, E., Yelebe, Z. R., Oruabena, B., Nelson, E. S. & Indiamaowei, O. P. Clean-up of crude oil-contaminated soils: bioremediation option. Int. J. Environ. Sci. Technol. 17, 1185–1198 (2020).

    CAS  Article  Google Scholar 

  • 35.

    Naeem, U. & Qazi, M. A. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environ. Sci. Pollut. Res. 27, 27370–27382 (2019).

  • 36.

    Tyagi, M., da Fonseca, M. M. R. & de Carvalho, C. C. C. R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22, 231–241 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Fatima, K., Imran, A., Amin, I., Khan, Q. M. & Afzal, M. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int. J. Phytoremediat. 20, 675–681 (2018).

    CAS  Article  Google Scholar 

  • 38.

    Walker, D. A. et al. Cumulative impacts of oil fields on Northern Alaskan Landscapes. Science 238, 757–761 (1987).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Maganov, R. U., Markarova, M. Y., Mulyak, V. V., Zagvozdkin, V. E. & Zaikin, I. A. Nature conservation management at the oil and gas companies. Part 1. Reclamation of oil-polluted lands in the Usinsky district of the Komi Republic (Komi Science Center Ural Branch of RAS, Syktyvkar, 2006) ((in Russian)).

    Google Scholar 

  • 40.

    Vervaeke, P. et al. Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ. Pollut. 126, 275–282 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Huang, X.-D., El-Alawi, Y., Gurska, J., Glick, B. R. & Greenberg, B. M. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 81, 139–147 (2005).

    CAS  Article  Google Scholar 

  • 42.

    Robson, D. B., Knight, J. D., Farrell, R. E. & Germida, J. J. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands. Can. J. Bot. 82, 22–30 (2004).

    Article  Google Scholar 

  • 43.

    Grime, J. P. & Pierce, S. The evolutionary strategies that shape ecosystems (Wiley-Blackwell, Chichester, 2012).

    Google Scholar 

  • 44.

    Ramenskiy, L. G. On principal rules, basic concepts, and terms of land typology, geobotany, and ecology. Sov. Bot. 4, 25–42 (1935).

    Google Scholar 

  • 45.

    Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative plant ecology: a functional approach to common British species (Unwin Hyman, London, 1988).

    Google Scholar 

  • 46.

    Thompson, K. Predicting the fate of temperate species in response to human disturbance and global change. In Biodiversity, temperate ecosystems, and global change (eds Boyle, T. J. B. & Boyle, C. E. B.) 61–76 (springer, Berlin, 1994).

    Google Scholar 

  • 47.

    Massant, W., Godefroid, S. & Koedam, N. Clustering of plant life strategies on meso-scale. Plant Ecol. 205, 47–56 (2009).

    Article  Google Scholar 

  • 48.

    Novakovsky, A. B. & Panyukov, A. N. Analysis of successional dynamics of a sown meadow using Ramenskii–Grime’s System of ecological strategies. Russ. J. Ecol. 49, 119–127 (2018).

    Article  Google Scholar 

  • 49.

    Novakovskiy, A. B. & Elsakov, V. V. Hydrometeorological database (HMDB) for practical research in ecology. Data Sci. J. 13, 57–63 (2014).

    Article  Google Scholar 

  • 50.

    PND F 16.1: 2.21-98. Quantitative chemical analysis of soils. The method of measuring the mass fraction of oil products in soil and soil samples by the fluorimetric method on the Fluorat-02 fluid analyzer. https://www.russiangost.com/p-275219-fr131201213170.aspx

  • 51.

    Archegova, I. B., Markarova, M. Y. & Gromova, O. V. Method for reclaiming posttechnogenic lands and lands in remote districts of extreme North. US Patent RU2093974C1 (1997).

  • 52.

    Archegova, I. B., Markarova, M. Y. & Gromova, O. V. Method for producing granular fertilizing-seeding material. US Patent RU2099917C1 (1997).

  • 53.

    Murygina, V. P., Vojshvillo, N. E. & Kaljuzhnyj, S. V. Biological preparation ‘Roder’ for cleaning soils, soil grounds, sweet and mineralized waters to remove crude oil and petroleum products. US Patent RU2174496C2 (2001).

  • 54.

    Murygina, V. P., Markarova, M. Y. & Kalyuzhnyi, S. V. Application of biopreparation “Rhoder” for remediation of oil polluted polar marshy wetlands in Komi Republic. Environ. Int. 31, 163–166 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Lavorel, S. et al. Assessing functional diversity in the field—methodology matters!. Funct. Ecol. 22, 134–147 (2008).

    Google Scholar 

  • 56.

    Kindt, R. & Coe, R. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies (World Agroforestry Centre, Nairobi, 2006).

  • 57.

    Hodgson, J. G., Wilson, P. J., Hunt, R., Grime, J. P. & Thompson, K. Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85, 282–294 (1999).

    Article  Google Scholar 

  • 58.

    Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).

    Article  Google Scholar 

  • 59.

    Magguran, A. E. Measuring biological diversity (Blackwell Publishing, Oxford, 2004).

    Google Scholar 

  • 60.

    Peet, R. K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974).

    Article  Google Scholar 

  • 61.

    Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964).

    MathSciNet  Article  MATH  Google Scholar 

  • 62.

    McCune, B. & Grace, J. B. Analysis of ecological communities (MjM Software Design, Gleneden Beach, 2002).

    Google Scholar 

  • 63.

    Melekhina, E. N., Markarova, MYu., Shchemelinina, T. N., Anchugova, E. M. & Kanev, V. A. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods. Eurasian Soil Sci. 48, 643–653 (2015).

    ADS  Article  Google Scholar 

  • 64.

    Borowik, A., Wyszkowska, J., Gałązka, A. & Kucharski, J. Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil. Environ. Sci. Pollut. Res. Int. 26, 27738–27751 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Wyszkowska, J., Borowik, A. & Kucharski, J. The resistance of Lolium perenne L. × hybridum, Poa pratensis, Festuca rubra, F. arundinacea, Phleum pratense and Dactylis glomerata to soil pollution by diesel oil and petroleum. Plant Soil Environ. 65, 307–312 (2019).

    CAS  Article  Google Scholar 

  • 66.

    Freedman, W. & Hutchinson, T. Physical and biological effects of experimental crude-oil spills on Low Arctic Tundra in Vicinity of Tuktoyaktuk, Nwt, Canada. Can. J. Bot.-Rev. Can. Bot. 54, 2219–2230 (1976).

    Article  Google Scholar 

  • 67.

    Kazantseva, M. N. The effect of oil extraction on ground cover of West Siberian taiga forests. Contemp. Probl. Ecol. 4, 582–587 (2011).

    Article  Google Scholar 

  • 68.

    Lapshina, E. D. & Bleuten, W. Types of deterioration and self-restoration of vegetation of olygotrophic bogs in oil-production areas of Tomsk province, Krylovia. Siberian Bot. J. 1, 129–140 (1999).

    Google Scholar 

  • 69.

    Cook, R. L., Landmeyer, J. E., Atkinson, B., Messier, J.-P. & Nichols, E. G. Field note: successful establishment of a phytoremediation system at a petroleum hydrocarbon contaminated shallow aquifer: trends, trials, and tribulations. Int. J. Phytorem. 12, 716–732 (2010).

    Article  Google Scholar 

  • 70.

    Nichols, E. G. et al. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA. Remediat. J. 24, 29–46 (2014).

    Article  Google Scholar 

  • 71.

    Seburn, D. C., Kershaw, G. P. & Kershaw, L. J. Vegetation response to a subsurface crude oil spill on a subarctic right-of-way, Tulita (Fort Norman), Northwest Territories, Canada. Arctic 49, 321–327 (1996).

    Article  Google Scholar 

  • 72.

    Melekhina, E. N., Markarova, M. Y. U., Anchugova, E. M., Shchemelinina, T. N. & Kanev, V. A. The efficiency assessment of oil polluted soil recultivation methods. Bull. Komi Sci. Center Ural Branch of RAS 27, 61–70 (2016) ((in Russian)).

    Google Scholar 

  • 73.

    Ma, X. & Burken, J. G. VOCs fate and partitioning in vegetation: use of tree cores in groundwater analysis. Environ. Sci. Technol. 36, 4663–4668 (2002).

    ADS  PubMed  Article  Google Scholar 

  • 74.

    Haroni, N. N., Badehian, Z., Zarafshar, M. & Bazot, S. The effect of oil sludge contamination on morphological and physiological characteristics of some tree species. Ecotoxicology 28, 507–519 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Banks, M. K., Kulakow, P., Schwab, A. P., Chen, Z. & Rathbone, K. Degradation of crude oil in the rhizosphere of sorghum bicolor. Int. J. Phytorem. 5, 225–234 (2003).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    DNA traces the origin of honey by identifying plants, bacteria and fungi

    SMART develops analytical tools to enable next-generation agriculture