in

Ecological adaptability and population growth tolerance characteristics of Carex cinerascens in response to water level changes in Poyang Lake, China

  • 1.

    Bakker, E. S. & Hilt, S. Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquat. Ecol. 50, 485–498 (2016).

    CAS  Article  Google Scholar 

  • 2.

    Li, Q. et al. Impact of water level fluctuations on the development of phytoplankton in a large subtropical reservoir: implications for the management of cyanobacteria. Environ. Sci. Pollut. R. 25, 1306–1318 (2017).

    Article  CAS  Google Scholar 

  • 3.

    Sellheim, K. L., Vaghti, M. & Merz, J. E. Vegetation recruitment in an enhanced floodplain: ancillary benefits of salmonid habitat enhancement. Limnol. Ecol. Manag. Inland Waters 58, 94–102 (2016).

    Article  Google Scholar 

  • 4.

    Yuan, S., Yang, Z., Liu, X. & Wang, H. Key parameters of water level fluctuations determining the distribution of Carex in shallow lakes. Wetlands 37, 1005–1014 (2017).

    Article  Google Scholar 

  • 5.

    Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19, 397–441 (2003).

    Article  Google Scholar 

  • 6.

    Wang, M., Liu, Z., Luo, F., Lei, G. & Li, H. Do amplitudes of water level fluctuations affect the growth and community structure of submerged macrophytes. PLoS ONE 11, e0146528 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Wang, M., Qi, S. & Zhang, X. Wetland loss and degradation in the Yellow River Delta, Shandong Province of China. Environ. Earth Sci. 67, 185–188 (2011).

    Article  Google Scholar 

  • 8.

    Zhou, D., Gong, H., Wang, Y., Khan, S. & Zhao, K. Driving Forces for the Marsh Wetland Degradation in the Honghe National Nature Reserve in Sanjiang Plain Northeast China. Environ. Model. Assess. 14, 101–111 (2008).

    Article  Google Scholar 

  • 9.

    Zhang, J., Ma, K. & Fu, B. Wetland loss under the impact of agricultural development in the Sanjiang Plain NE China. Environ. Monit. Assess. 166, 139–148 (2009).

    PubMed  Article  Google Scholar 

  • 10.

    Coops, H., Beklioglu, M. & Crisman, T. L. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506–509, 23–27 (2003).

    Article  Google Scholar 

  • 11.

    Leira, M. & Cantonati, M. Effects of water-level fluctuations on lakes: an annotated bibliography. Ecol. Effect Water-Level Fluctuat. Lakes 613, 171–184 (2008).

    Article  Google Scholar 

  • 12.

    Cooke, G. D., Welch, E. B. & Peterson, S. Restoration and management of lakes and reservoirs 2nd edn. (Lewis Publishers, Boca Raton, FL, 1994).

    Google Scholar 

  • 13.

    Blindow, I. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biol. 28, 15–27 (2010).

    Article  Google Scholar 

  • 14.

    Gafny, S. Spatially and temporally sporadic appearance of macrophytes in the littoral zone of Lake Kinneret, Israel: taking advantage of a window of opportunity. Aquat. Bot. 62, 249–267 (1999).

    Article  Google Scholar 

  • 15.

    Lécrivain, N. et al. Water-level fluctuation enhances sediment and trace metal mobility in lake littoral. Chemosphere 264, 128451 (2021).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 16.

    Yin, D., Peng, F., He, T., Xu, Y. & Wang, Y. Ecological risks of heavy metals as influenced by water-level fluctuations in a polluted plateau wetland, southwest China. Sci. Total Environ. 742, 140319 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 17.

    Yin, D. et al. Production and migration of methylmercury in water-level-fluctuating zone of the Three Gorges Reservoir, China: Dual roles of flooding-tolerant perennial herb. J. Hazard. Mater. 381, 120962 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Gownaris, N. J. et al. Water level fluctuations and the ecosystem functioning of lakes. J. Great Lakes Res. 44, 1154–1163 (2018).

    Article  Google Scholar 

  • 19.

    Liu, J. F. et al. Water-level fluctuations are key for phytoplankton taxonomic communities and functional groups in Poyang Lake. Ecol. Indic. 104, 470–478 (2019).

    Article  Google Scholar 

  • 20.

    Liu, Q. et al. Vegetation dynamics under water-level fluctuations: Implications for wetland restoration. J. Hydrol. 581, 124418 (2019).

    Article  Google Scholar 

  • 21.

    Wang, P., Zhang, Q., Xu, Y. & Yu, F. Effects of water level fluctuation on the growth of submerged macrophyte communities. Flora Morphol. Distrib. Funct. Ecol. Plants. 223, 83–89 (2016).

    Article  Google Scholar 

  • 22.

    Yang, Z. et al. Discharge and water level fluctuations in response to flow regulation in impounded rivers: an analytical study. J. Hydrol. 590, 125519 (2020).

    Article  Google Scholar 

  • 23.

    Yuan, S., Yang, Z., Liu, X. & Wang, H. Water level requirements of a Carex hygrophyte in Yangtze floodplain lakes. Ecol. Eng. 129, 29–37 (2019).

    Article  Google Scholar 

  • 24.

    Zweig, C. L. & Kitchens, W. M. Multi-state succession in wetlands: a novel use of state and transition models. Ecology 90, 1900–1909 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Bovo-Scomparin, V. M. & Train, S. Long-term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema River State Park Brazil. Hydrobiologia 610, 331–344 (2008).

    Article  Google Scholar 

  • 26.

    Yang, Y., Cao, Y. & Zhang, S. Effects of soil moisture regime on rhizomatic germination and young shoot growth of Carex cinerascens. J. Ecol. Rural Environ. 31, 180–187 (2015).

    CAS  Google Scholar 

  • 27.

    Liu, L., Liu, D., Johnson, D. M., Yi, Z. Q. & Huang, Y. L. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: Implications for management. Water Res. 46, 2121–2130 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Souza, L. Morphology-based functional groups as the best tool to characterize shallow lake-dwelling phytoplankton on an Amazonian floodplain. Ecol. Indic. 95, 579–588 (2018).

    Article  CAS  Google Scholar 

  • 29.

    Stević, F., Mihaljević, M. & Špoljarić, D. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709, 143–158 (2013).

    Article  CAS  Google Scholar 

  • 30.

    Lytle, D. A. & Poff, L. R. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).

    Article  Google Scholar 

  • 31.

    Visser, E. J. W., Bogemann, G. M., Steeg, H. M. V. D., Pierik, R. & Blom, C. W. P. M. Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation. New Phytol. 148, 93–103 (2000).

    Article  Google Scholar 

  • 32.

    Huber, H. et al. Plasticity as a plastic response: How submergence-induced leaf elongation in rumex palustris depends on light and nutrient availability in its early life stage. New Phytol. 194, 572–582 (2012).

    PubMed  Article  Google Scholar 

  • 33.

    Fraser, L. H. & Karnezis, J. P. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences. Wetlands. 25, 520–530 (2005).

    Article  Google Scholar 

  • 34.

    Deng, H. et al. Morphology and physiological characteristics of Stachys lanata seedling under water stress. Acta Bot. Boreal 38, 1099–1108 (2018).

    Google Scholar 

  • 35.

    Tan, Z., Zhang, Q., Li, Y., Xu, X. & Jiang, J. Distribution of typical vegetation communities along elevation in Poyang Lake wetlands. Wetland Sci. 14, 506–515 (2016).

    Google Scholar 

  • 36.

    Scholte, P. Maximum flood depth characterizes above-Ground biomass in african seasonally shallowly flooded grasslands. J. Trop. Ecol. 23, 63–72 (2007).

    Article  Google Scholar 

  • 37.

    Yan, B., Dai, Q., Liu, X., Huang, S. & Wang, Z. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil. 179, 261–268 (2015).

    Article  Google Scholar 

  • 38.

    Shelford, V. E. Physiological animal geography. J. Morphol. 22, 551–618 (1911).

    Article  Google Scholar 

  • 39.

    Luan, Z., Wang, Z., Yan, D., Liu, G., Xu, Y. The ecological response of Carex lasiocarpa community in the Riparian Wetlands to the environmental gradient of water depth in Sanjiang Plain, Northeast China. Sci. World J. 1–7 (2013).

  • 40.

    Zhang J.T. Quantitative Ecology. Beijing: Science press. 592 (2004).

  • 41.

    Zhang, M. et al. Characteristics of the soil seed bank of planted and natural restored draw-down zones in the Three Gorges Reservoir Region. Ecol. Eng. 103, 127–133 (2017).

    Article  Google Scholar 

  • 42.

    Ma, Y.-R. et al. Effects of flooding on seed viability and nutrient composition in three riparian shrubs and implications for restoration. J. Freshwater Ecol. 33, 449–460 (2018).

    CAS  Article  Google Scholar 

  • 43.

    Chen, F. et al. Impact of regulated water level fluctuations on the sexual reproduction of remnant Myricaria laxiflora populations. Glob. Ecol. Conserv. 18, e00628 (2019).

    Article  Google Scholar 

  • 44.

    Webb, J. A., Wallis, E. M. & Stewardson, M. J. A. systematic review of published evidence linking wetland plants to water regime components. Aquat. Bot. 103, 1–14 (2012).

    Article  Google Scholar 

  • 45.

    Deegan, B. M., White, S. D. & Ganf, G. G. The influence of water level fluctuations on the growth of four emergent macrophyte species. Aquat. Bot. 86, 309–315 (2007).

    Article  Google Scholar 

  • 46.

    Sarneel, J. M., Janssen, R. H., Rip, W. J., Bender, I. & Bakker, E. S. Windows of opportunity for germination of riparian species after restoring water level fluctuations: a field experiment with controlled seed banks. J. Appl. Ecol. 51, 1006–1014 (2014).

    Article  Google Scholar 

  • 47.

    Wei, G. et al. Growth responses of eight wetland species to water level fluctuation with different ranges and frequencies. PLoS ONE 14, e0220231 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Crosby, S. C. et al. Flowering and biomass allocation in US Atlantic coast Spartina alterniflora. Am. J. Bot. 102, 669–676 (2015).

    PubMed  Article  Google Scholar 

  • 49.

    Mony, C., Mercier, E., Bonis, A. & Bouzillé, J. B. Reproductive strategies may explain plant tolerance to inundation: a mesocosm experiment using six marsh species. Aquat. Bot. 92, 99–104 (2010).

    Article  Google Scholar 

  • 50.

    Arias, M. E., Wittmann, F., Parolin, P., Murray-Hudson, M. & Cochrane, T. A. Interactions between flooding and upland disturbance drives species diversity in large river floodplains. Hydrobiologia 814, 5–17 (2016).

    Article  Google Scholar 

  • 51.

    Gattringer, J. P., Ludewig, K., Harvolk-Schöning, S., Donath, T. W. & Otte, A. Interaction between depth and duration matters: flooding tolerance of 12 floodplain meadow species. Plant Ecol. 219, 973–984 (2018).

    Article  Google Scholar 

  • 52.

    Feng, W., Xu, L., Wang, X., Li, H. & Jiang, J. Response of Carex cinerascens populations to groundwater level gradients in the Poyang Lake wetland. Acta Ecol. Sin. 36, 5109–5115 (2016).

    Google Scholar 

  • 53.

    Chen, D. et al. A multi-species comparison of selective placement patterns of ramets in invasive alien and native clonal plants to light, soil nutrient and water heterogeneity. Sci. Total Environ. 657, 1568–1577 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 54.

    Liu, B. et al. Differential flooding impacts on echinochloa caudata and scirpus planiculmis: implications for weed control in wetlands. Wetlands 36, 1–6 (2016).

    Google Scholar 

  • 55.

    Hao, S., Cao, H., Wang, H. & Pan, X. The physiological responses of tomato to water stress and re-water in different growth periods. Sci. Hortic. Amsterdam. 249, 143–154 (2019).

    CAS  Article  Google Scholar 

  • 56.

    Liang, F. et al. Growth and physiological response of Barringtonia acutangular to freshwater flooding stress. J. Southw. For. Univ. (Nat. Sci.). 39, 24–31 (2019).

    Google Scholar 

  • 57.

    Plazas, M. et al. Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiol. Biochem. 143, 72–78 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Juan-Ovejero, R., Benito, E., Barreal, M. E., Rodeiro, J. & Briones, M. J. I. Tolerance to fluctuating water regimes drives changes in mesofauna community structure and vertical stratification in peatlands. Pedobiologia 76, 150571 (2019).

    Article  Google Scholar 

  • 59.

    Wang, H., Liu, X. & Wang, H. The Yangtze River floodplain: threats and rehabilitation fishery resources, environment, and conservation in the Mississippi and Yangtze (Changjiang). River Basins 84, 263–291 (2016).

    Google Scholar 

  • 60.

    Casanova, M. T. & Brock, M. A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?. Plant Ecol. 147, 237–250 (2000).

    Article  Google Scholar 

  • 61.

    Wang, Q. et al. The growth responses of two emergent plants to the water depth. Acta Hydrobiol. Sin. 3, 583–587 (2012).

    Google Scholar 

  • 62.

    Zhang, Q. An investigation of enhanced recessions in Poyang Lake: comparison of Yangtze River and local catchment impacts. J. Hydrol. 517, 425–434 (2014).

    ADS  Article  Google Scholar 

  • 63.

    Fang, C., Cao, W., Mao, J. & Li, H. Relationship between Poyang Lake and Yangtze River and influence of Three Georges Reservoir. J. Hydraul. Eng. 39, 175–181 (2018).

    Google Scholar 

  • 64.

    Guo, H., Hu, Q. & Wang, Y. Annual variations in climatic and hydrological processes and related flood and drought occurrences in the Poyang Lake Basin. Acta Geogr. Sin. 67, 699–709 (2012).

    Google Scholar 

  • 65.

    Hu, Z. & Fu, J. Quantitative study on hydrology relationship between the Yangtze River and Poyang Lake and its changes. J. Hydraul. Eng. 49, 570–579 (2018).

    Google Scholar 

  • 66.

    Dai, X., Wan, R., Yang, G. & Wang, X. Temporal variation of hydrological rhythm in Poyang Lake and the associated water exchange with the Yangtze River. Sci. Geogr. Sin. 34, 1488–1496 (2014).

    Google Scholar 

  • 67.

    Feng, L. et al. MODIS observations of the bottom topography and its inter-annual variability of Poyang Lake. Remote Sens. Environ. 115, 2729–2741 (2011).

    ADS  Article  Google Scholar 

  • 68.

    Xie, F. & Wang, S. The meadow of poyang lake. Chin. J. Grassland 1, 8–14 (1984).

    Google Scholar 

  • 69.

    Wu, Z. & Chen, X. Flora reipublicae popularis sinicae (Science Press, Beijing, 2004).

    Google Scholar 

  • 70.

    Cao, Y., Wang, J., Guo, Z., Wu, H. & Luo, S. Study on natural distribution and influential factors of Phalaris Arundinacea in Poyang Lake National Wetland Park. Yangtze River 50, 59–64 (2018).

    Google Scholar 

  • 71.

    Cao, Y., Guo, Z., Yang, Y., Wang, G. & Xie, Z. The ecological amplitude of acorus calamus young shoots under water level gradient. Pol. J. Ecol. 63, 585–592 (2015).

    Article  Google Scholar 

  • 72.

    Liang, Q., Wang, Z., Lin, B. & Li, C. Effects of flooding stress on seedling physiological indexes and leaf fluorescence characteristics of Sorbus pohuashanensis. J. Jilin For. Sci. Technol. 48, 15–17 (2019).

    Google Scholar 

  • 73.

    Mommer, L., Lenssen, J. P. M., Huber, H., Visser, E. J. W. & Kroon, H. D. Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. J. Ecol. 94, 1117–1129 (2006).

    Article  Google Scholar 

  • 74.

    Wright, S. D. & Mcconnaughay, K. D. M. Interpreting phenotypic plasticity: the importance of ontogeny. Plant Spec. Biol. 17, 119–131 (2002).

    Article  Google Scholar 

  • 75.

    Coleman, M. C. S. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80, 2581–2593 (1999).

    Article  Google Scholar 

  • 76.

    Parolin, P. Submergence tolerance vs. escape from submergence: two strategies of seedling establishment in Amazonian floodplains. Environ. Exp. Bot. 48, 177–186 (2002).

    Article  Google Scholar 

  • 77.

    Zhang, D. et al. Effects of drought and re-flooding on growth and photosynthesis of Carex schmidtii Meinsh: Implication for tussock restoration. Ecol. Indic. 103, 134–144 (2019).

    CAS  Article  Google Scholar 

  • 78.

    Deegan, B. M., White, S. D. & Ganf, G. G. Nutrients and water level fluctuations: a study of three aquatic plants. River Res. Appl. 28, 359–368 (2012).

    Article  Google Scholar 

  • 79.

    Warwick, N. W. M. & Brock, M. A. Plant reproduction in temporary wetlands: the effects of seasonal timing, depth, and duration of flooding. Aquat Bot. 77, 153–167 (2003).

    Article  Google Scholar 

  • 80.

    André, M., Blanch, S. & Grillas, P. Effects of submergence on the growth of Phragmites australis seedlings. Aquat Bot. 69, 147–164 (2001).

    Article  Google Scholar 

  • 81.

    Venterink, H. O., Wassen, M. J., Belgers, J. D. M. & Verhoeven, J. T. A. Control of environmental variables on species density in fens and meadows: importance of direct effects and effects through community biomass. J. Ecol. 89, 1033–1040 (2001).

    Article  Google Scholar 

  • 82.

    Hu, Z., Ge, G., Liu, C., Chen, F. & Li, S. Structure of Poyang Lake wetland plants ecosystem and influence of lake water level for the structure. Resour. Environ. Yangtze Basin 19, 597–605 (2010).

    Google Scholar 

  • 83.

    Gause, G. F. The influence of ecological factors on the size of population. Am. Nat. 65, 70–76 (1931).

    Article  Google Scholar 

  • 84.

    Zhang, L., Yin, J., Jiang, Y. & Wang, H. Relationship between hydrological conditions and vegetation communities in Poyang Lake national nature reserve of China. Adv. Water Sci. 23, 755–768 (2012).

    Google Scholar 

  • 85.

    Wu, J. et al. Structure analysis of beach vegetation in Poyang Lake in autumn. Jiangxi Sci. 28, 549–554 (2010).

    Google Scholar 

  • 86.

    Qi, Q. et al. The driving mechanisms for community expansion in a restored Carex tussock wetland. Ecol. Ind. 121, 107040 (2021).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    DNA traces the origin of honey by identifying plants, bacteria and fungi

    SMART develops analytical tools to enable next-generation agriculture