Differences in the insect fauna associated to a monocultural pasture and a silvopasture in Southeastern Brazil
1.
IBGE. (ed Desenvolvimento e Gestão Instituto Brasileiro de Geografia e Estatística—Ministério do Planejamento) 108 (Ministério do Planejamento, Desenvolvimento e Gestão, Rio de Janeiro, RJ, 2018).
2.
Dias-Filho, M. B. Diagnóstico das Pastagens no Brasil. 36 (Embrapa Amazônia Oriental, Belém, 2014).
Google Scholar
3.
Ferraz, J. B. & Felicio, P. E. Production systems—an example from Brazil. Meat Sci. 84, 238–243. https://doi.org/10.1016/j.meatsci.2009.06.006 (2010).
Article PubMed Google Scholar
4.
Dias-Filho, M. B. Os desafios da produção animal em pastagens na fronteira agrícola brasileira. Revista Brasileira de Zootecnia 40, 243–252 (2011).
Google Scholar
5.
Murgueitio, E., Calle, Z., Uribe, F., Calle, A. & Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 261, 1654–1663. https://doi.org/10.1016/j.foreco.2010.09.027 (2011).
Article Google Scholar
6.
Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 76, 1–10. https://doi.org/10.1007/s10457-009-9229-7 (2009).
Article Google Scholar
7.
Leme, T., Pires, M. D. A., Verneque, R. D., Alvim, M. J. & Aroeira, L. J. M. Behavior of holstein x zebu crossbreed cows grazing Brachiaria decumbens in a silvipastoral system. Cienc. Agrotecnol. 29, 668–675. https://doi.org/10.1590/s1413-70542005000300023 (2005).
Article Google Scholar
8.
Stern, V. M., Adkisson, P. L., G., O. B. & Viktorov, G. A. In Theory and Practice of Biological Control (eds C.B. Huffaker & P.S. Messenger) 593–613 (Academic Press, Cambridge, 1976).
9.
Arellano, L., León-Cortés, J. L., Halffter, G. & Montero, J. Acacia woodlots, cattle and dung beetles (Coleoptera: Scarabaeinae) in a Mexican silvopastoral landscape. Rev. Mexicana Biodivers. 84, 650–660. https://doi.org/10.7550/rmb.32911 (2013).
Article Google Scholar
10.
Auad, A. M., Carvalho, C. A., Clemente, M. A. & Prezoto, F. Diversity of social wasps (Hymenoptera) in a silvipastoral system. Sociobiology 55, 627–636 (2010).
Google Scholar
11.
Auad, A. M. & de Carvalho, C. A. Faunistic analysis of beetles (coleoptera) in a silvopastoral system. Cienc. Florest. 21, 31–39 (2011).
Article Google Scholar
12.
Auad, A. M., Resende, T. T., da Silva, D. M. & das Graças Fonseca, M. Hymenoptera (Insecta: Hymenoptera) associated with silvopastoral systems. Agrofor. Syst. 85, 113–119. https://doi.org/10.1007/s10457-011-9449-5 (2012).
Article Google Scholar
13.
Giraldo, C., Escobar, F., Chará, J. D. & Calle, Z. The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv. Divers. 4, 115–122. https://doi.org/10.1111/j.1752-4598.2010.00112.x (2011).
Article Google Scholar
14.
Jerrentrup, J. S., Wrage-Mönnig, N., Röver, K.-U., Isselstein, J. & McKenzie, A. Grazing intensity affects insect diversity via sward structure and heterogeneity in a long-term experiment. J. Appl. Ecol. 51, 968–977. https://doi.org/10.1111/1365-2664.12244 (2014).
Article Google Scholar
15.
Auad, A. M. et al. Does the silvopastoral system alter hymenopteran fauna (Insecta: Hymenoptera) in Brachiaria decumbens monocultures?. Ann. Entomol. Soc. Am. 108, 468–473. https://doi.org/10.1093/aesa/sav035 (2015).
Article Google Scholar
16.
Wink, C., Guedes, J. V. C., Fagundes, C. K. & Rovedder, A. P. Insetos edáficos como indicadores de qualidade ambiental. Revista de Ciências Agroveterinárias 4, 60–71 (2005).
Google Scholar
17.
Santos, M. S. et al. Riqueza de formigas (Hymenoptera, Formicidae) da serapilheira em fragmentos de floresta semidecídua da Mata Atlântica na região do Alto do Rio Grande, MG, Brasil. Iheringia Série Zool. 96, 95–101 (2006).
Article Google Scholar
18.
Huber, J. T. In Insect Biodiversity (eds Robert, G. F. & Peter, H. A.) 419–462 (Wiley-Blackwell, Hoboken, 2017).
19.
Barbieri, C. A. & Dias, A. M. P. Braconidae (Hymenoptera) fauna in native, degraded and restoration areas of the Vale do Paraiba, Sao Paulo state, Brazil. Braz. J. Biol. 72, 305–310. https://doi.org/10.1590/s1519-69842012000200011 (2012).
Article Google Scholar
20.
Morato, E. F. Efeitos da fragmentação florestal sobre vespas e abelhas solitárias na Amazônia Central. II. Estratificação vertical. Revista Brasileira de Zoologia 18, 737–747 (2001).
Article Google Scholar
21.
Morato, E. F. & Campos, L. A. D. O. Efeitos da fragmentação florestal sobre vespas e abelhas solitárias em uma área da Amazônia Central. Rev. Bras. Zool. 17, 429–444 (2000).
Article Google Scholar
22.
Rocha, W. D. O., Dorval, A., Peres Filho, O., Vaez, C. D. A. & Ribeiro, E. S. Formigas (Hymenoptera: Formicidae) Bioindicadoras de Degradação Ambiental em Poxoréu, Mato Grosso, Brasil. Floresta e Ambiente 22, 88–98. https://doi.org/10.1590/2179-8087.0049 (2015).
Article Google Scholar
23.
Cosenza, G. W., Andrade, R. P. D., Gomes, D. T. & Rocha, C. M. C. D. Resistência de gramíneas forrageiras à cigarrinha-das-pastagens. Pesqui. Agropecu. Bras. 24, 961–968 (1989).
Google Scholar
24.
Hewitt, G. B. Grazing management as a means of regulating spittlebug (homoptera: cercopidae) numbers in central Brazil. Pesqui. Agropecu. Bras. 23, 697–707 (1988).
Google Scholar
25.
Souza, J. C., Silva, R. A., Reis, P. R., Queiroz, D. S. & Silva, D. B. Cigarrinhas das pastagens: histórico, bioecologia, prejuízos, monitoramento e medidas de controle. 8 (Epamig, Belo Horizonte, 2008).
26.
Aguirre, L. M., Cardona, C., Miles, J. W. & Sotelo, G. Characterization of resistance to adult spittlebugs (Hemiptera: Cercopidae) in Brachiaria spp.. J. Econ. Entomol. 106, 1871–1877. https://doi.org/10.1603/ec11189 (2013).
Article PubMed Google Scholar
27.
Shi, L., Feng, W., Xu, J. & Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 29, 3886–3897. https://doi.org/10.1002/ldr.3136 (2018).
Article Google Scholar
28.
Kruess, A. & Tscharntke, T. Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conserv. Biol. 16, 1570–1580. https://doi.org/10.1046/j.1523-1739.2002.01334.x (2002).
Article Google Scholar
29.
Nemec, K. T. & Bragg, T. B. Plant-feeding hemiptera and orthoptera communities in native and restored mesic tallgrass prairies. Restor. Ecol. 16, 324–335. https://doi.org/10.1111/j.1526-100X.2007.00306.x (2008).
Article Google Scholar
30.
Moir, M. L., Brennan, K. E. C., Koch, J. M., Majer, J. D. & Fletcher, M. J. Restoration of a forest ecosystem: The effects of vegetation and dispersal capabilities on the reassembly of plant-dwelling arthropods. For. Ecol. Manag. 217, 294–306. https://doi.org/10.1016/j.foreco.2005.06.012 (2005).
Article Google Scholar
31.
Cajaiba, R. L. Seasonal patterns in the diversity of histerid beetles (Histeridae) are ecosystem specific? A case in Para State, Northern Brazil. Appl. Ecol. Environ. Res. 15, 1227–1237. https://doi.org/10.15666/aeer/1504_12271237 (2017).
Article Google Scholar
32.
Garcia-Martinez, M. A. et al. Taxonomic, species and functional group diversity of ants in a tropical anthropogenic landscape. Trop. Conserv. Sci. 8, 1017–1032. https://doi.org/10.1177/194008291500800412 (2015).
Article Google Scholar
33.
Zhang, W., Ricketts, T. H., Kremen, C., Carney, K. & Swinton, S. M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64, 253–260. https://doi.org/10.1016/j.ecolecon.2007.02.024 (2007).
Article Google Scholar
34.
Schweiger, O. et al. Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe. Oikos 116, 461–472. https://doi.org/10.1111/j.2007.0030-1299.15372.x (2007).
Article PubMed Google Scholar
35.
Marchao, R. L. et al. Soil macrofauna under integrated crop-livestock systems in a Brazilian Cerrado Ferralsol. Pesqui. Agropecu. Bras. 44, 1011–1020. https://doi.org/10.1590/s0100-204×2009000800033 (2009).
Article Google Scholar
36.
Tidon-Sklorz, R. & Sene, F. D. M. Vertical and temporal distribution of Drosophila (Diptera, Drosophilidae) species in a wooded area in the State of São Paulo, Brazil. Rev. Bras. Biol. 52, 311–317 (1992).
Google Scholar
37.
Medeiros, H. R. et al. Non-crop habitats modulate alpha and beta diversity of flower flies (Diptera, Syrphidae) in Brazilian agricultural landscapes. Biodivers. Conserv. 27, 1309–1326. https://doi.org/10.1007/s10531-017-1495-5 (2017).
Article Google Scholar
38.
Schirmel, J. et al. Landscape complexity promotes hoverflies across different types of semi-natural habitats in farmland. J. Appl. Ecol. 55, 1747–1758. https://doi.org/10.1111/1365-2664.13095 (2018).
Article Google Scholar
39.
Ricarte, A., Ángeles Marcos-García, M. & Moreno, C. E. Assessing the effects of vegetation type on hoverfly (Diptera: Syrphidae) diversity in a Mediterranean landscape: Implications for conservation. J. Insect Conserv. 15, 865–877. https://doi.org/10.1007/s10841-011-9384-9 (2011).
Article Google Scholar
40.
Letourneau, D. K., Allen, S. G. B. & Stireman, J. O. Perennial habitat fragments, parasitoid diversity and parasitism in ephemeral crops. J. Appl. Ecol. 49, 1405–1416. https://doi.org/10.1111/1365-2664.12001 (2012).
Article Google Scholar
41.
Giménez Gómez, V. C. et al. Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conserv. Divers. 11, 554–564. https://doi.org/10.1111/icad.12299 (2018).
Article Google Scholar
42.
Emerich, P., Valadao, H., Silva, J. & Tidon, R. High abundance of neotropical drosophilids (Diptera: Drosophilidae) in four cultivated areas of central Brazil. Neotrop. Entomol. 41, 83–88. https://doi.org/10.1007/s13744-011-0004-x (2012).
Article PubMed Google Scholar
43.
Furtado, I. S. & Martins, M. B. The impacts of land use intensification on the assembly of drosophilidae (Diptera). Glob. Ecol. Conserv. 16, e00432. https://doi.org/10.1016/j.gecco.2018.e00432 (2018).
Article Google Scholar
44.
Eo, J., Kim, M.-H., Na, Y.-E., Oh, Y.-J. & Park, S. Abiotic effects on the distributions of major insect species in agricultural fields. Entomol. Res. 47, 160–166. https://doi.org/10.1111/1748-5967.12207 (2017).
Article Google Scholar
45.
Alignan, J.-F., Debras, J.-F. & Dutoit, T. Effects of ecological restoration on Orthoptera assemblages in a Mediterranean steppe rangeland. J. Insect Conserv. 18, 1073–1085. https://doi.org/10.1007/s10841-014-9717-6 (2014).
Article Google Scholar
46.
Kuppler, J., Fricke, J., Hemp, C., Steffan-Dewenter, I. & Peters, M. K. Conversion of savannah habitats to small-scale agriculture affects grasshopper communities at Mt. Kilimanjaro, Tanzania. J. Insect Conserv. 19, 509–518. https://doi.org/10.1007/s10841-015-9772-7 (2015).
Article Google Scholar
47.
Poniatowski, D. & Fartmann, T. The classification of insect communities: Lessons from orthopteran assemblages of semi-dry calcareous grasslands in central Germany. Eur. J. Entomol. 105, 659–671. https://doi.org/10.14411/eje.2008.090 (2008).
Article Google Scholar
48.
Vieira, L., Nascimento, P. K. S. & Leivas, F. W. T. Habitat association promotes diversity of histerid beetles (Coleoptera: Histeridae) in neotropical ecosystems. Coleopt. Bull. 72, 541–549. https://doi.org/10.1649/0010-065x-72.3.541 (2018).
Article Google Scholar
49.
Martinez-Falcon, A. P., Zurita, G. A., Ortega-Martinez, I. J. & Moreno, C. E. Populations and assemblages living on the edge: Dung beetles responses to forests-pasture ecotones. PeerJ 6, e6148. https://doi.org/10.7717/peerj.6148 (2018).
Article PubMed PubMed Central Google Scholar
50.
da Mata, R. A., McGeoch, M. & Tidon, R. Drosophilid assemblages as a bioindicator system of human disturbance in the Brazilian Savanna. Biodivers. Conserv. 17, 2899–2916. https://doi.org/10.1007/s10531-008-9403-7 (2008).
Article Google Scholar
51.
Parsons, P. A. Biodiversity conservation under global climatic-change—the insect Drosophila as a biological indicator. Glob. Ecol. Biogeogr. Lett. 1, 77–83. https://doi.org/10.2307/2997493 (1991).
Article Google Scholar
52.
Popov, S. et al. Phytophagous hoverflies (Diptera: Syrphidae) as indicators of changing landscapes. Community Ecol. 18, 287–294. https://doi.org/10.1556/168.2017.18.3.7 (2017).
Article Google Scholar
53.
Sommaggio, D. & Burgio, G. The use of Syrphidae as functional bioindicator to compare vineyards with different managements. Bull. Insectol. 67, 147–156 (2014).
Google Scholar
54.
García-Tejero, S., Taboada, Á, Tárrega, R. & Salgado, J. M. Land use changes and ground dwelling beetle conservation in extensive grazing dehesa systems of north-west Spain. Biol. Conserv. 161, 58–66. https://doi.org/10.1016/j.biocon.2013.02.017 (2013).
Article Google Scholar
55.
Tripathi, G., Ram, S., Sharma, B. M. & Singh, G. Soil faunal biodiversity and nutrient status in silvopastoral systems of Indian desert. Environ. Conserv. 32, 178–188. https://doi.org/10.1017/s0376892905002109 (2005).
CAS Article Google Scholar
56.
Brosi, B. J., Daily, G. C. & Ehrlich, P. R. Bee community shifts with landscape context in a tropical countryside. Ecol. Appl. 17, 418–430. https://doi.org/10.1890/06-0029 (2007).
Article PubMed Google Scholar
57.
Matos, M. C. B., Sousa-Souto, L., Almeida, R. S. & Teodoro, A. V. Contrasting patterns of species richness and composition of solitary wasps and bees (Insecta: Hymenoptera) according to land-use. Biotropica 45, 73–79. https://doi.org/10.1111/j.1744-7429.2012.00886.x (2013).
Article Google Scholar
58.
Gonzalez-Moreno, A., Bordera, S., Leirana-Alcocer, J., Delfin-Gonzalez, H. & Ballina-Gomez, H. S. Explaining variations in the diversity of parasitoid assemblages in a biosphere reserve of Mexico: Evidence from vegetation, land management and seasonality. Bull. Entomol. Res. 108, 602–615. https://doi.org/10.1017/S0007485317001134 (2018).
CAS Article PubMed Google Scholar
59.
Mazon, M. & Bordera, S. Effectiveness of two sampling methods used for collecting Ichneumonidae (Hymenoptera) in the Cabaneros National Park (Spain). Eur. J. Entomol. 105, 879–888. https://doi.org/10.14411/eje.2008.116 (2008).
Article Google Scholar
60.
Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes: A review. J. Appl. Ecol. 48, 619–629. https://doi.org/10.1111/j.1365-2664.2010.01939.x (2011).
Article Google Scholar
61.
Mumme, S., Jochum, M., Brose, U., Haneda, N. F. & Barnes, A. D. Functional diversity and stability of litter-invertebrate communities following land-use change in Sumatra, Indonesia. Biol. Conserv. 191, 750–758. https://doi.org/10.1016/j.biocon.2015.08.033 (2015).
Article Google Scholar
62.
Norgrove, L. & Beck, J. Biodiversity Function and resilience in tropical agroforestry systems including shifting cultivation. Curr. For. Rep. 2, 62–80. https://doi.org/10.1007/s40725-016-0032-1 (2016).
Article Google Scholar
63.
Orford, K. A., Murray, P. J., Vaughan, I. P. & Memmott, J. Modest enhancements to conventional grassland diversity improve the provision of pollination services. J. Appl. Ecol. 53, 906–915. https://doi.org/10.1111/1365-2664.12608 (2016).
Article PubMed PubMed Central Google Scholar
64.
Ruiz-Guerra, B., López-Acosta, J. C., Zaldivar-Riverón, A. & Velázquez-Rosas, N. Braconidae (Hymenoptera: Ichneumonoidea) abundance and richness in four types of land use and preserved rain forest in southern Mexico. Rev. Mexicana Biodivers. 86, 164–171. https://doi.org/10.7550/rmb.43865 (2015).
Article Google Scholar
65.
Sanabria, C., Lavelle, P. & Fonte, S. J. Ants as indicators of soil-based ecosystem services in agroecosystems of the Colombian Llanos. Appl. Soil. Ecol. 84, 24–30. https://doi.org/10.1016/j.apsoil.2014.07.001 (2014).
Article Google Scholar
66.
Marinho, C. G. S., Zanetti, R., Delabie, J. H. C., Schlindwein, M. N. & Ramos, L. S. Diversidade de Formigas (Hymenoptera: Formicidae) da Serapilheira em Eucaliptais (Myrtaceae) e Área de Cerrado de Minas Gerais. Neotrop. Entomol. 31, 187–195 (2002).
Article Google Scholar
67.
Mazon, M., Sanchez-Angarita, D., Diaz, F. A., Gutierrez, N. & Jaimez, R. Entomofauna Associated with agroforestry systems of timber species and Cacao in the Southern Region of the Maracaibo Lake Basin (Merida, Venezuela). Insects. https://doi.org/10.3390/insects9020046 (2018).
Article PubMed PubMed Central Google Scholar
68.
Riedel, J., Dorn, S. & Mody, K. Assemblage composition of ants (Hymenoptera: Formicidae) affected by tree diversity and density in native timber tree plantations on former tropical pasture. Myrmecol. News 20, 113–127 (2014).
Google Scholar
69.
Lubertazzi, D. & Tschinkel, W. R. Ant community change across a ground vegetation gradient in north Florida’s longleaf pine flatwoods. J. Insect Sci. 3, 1–17. https://doi.org/10.1673/031.003.2101 (2003).
Article Google Scholar
70.
Yanoviak, S. P. & Kaspari, M. Community structure and the habitat templet: Ants in the tropical forest canopy and litter. Oikos 89, 259–266. https://doi.org/10.1034/j.1600-0706.2000.890206.x (2000).
Article Google Scholar
71.
Ramirez, M., Herrera, J. & Armbrecht, I. Do ants predating in Colombian pastures and coffee plantations come down from the trees?. Rev. Colomb. Entomol. 36, 106–115 (2010).
Google Scholar
72.
Queiroz, J. M., Almeida, F. S. & Pereira, M. P. D. S. Conservação da biodiversidade e o papel das formigas (Hymenoptera: Formicidae) em agroecossistemas. Floresta e Ambiente 13, 37–45 (2006).
Google Scholar
73.
Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880. https://doi.org/10.1111/ele.12277 (2014).
Article PubMed Google Scholar
74.
Bar-Massada, A. & Wood, E. M. The richness-heterogeneity relationship differs between heterogeneity measures within and among habitats. Ecography 37, 528–535. https://doi.org/10.1111/j.1600-0587.2013.00590.x (2014).
Article Google Scholar
75.
Yang, L., Maron, J. L. & Callaway, R. M. Inhibitory effects of soil biota are ameliorated by high plant diversity. Oecologia 179, 519–525. https://doi.org/10.1007/s00442-015-3351-1 (2015).
ADS Article PubMed Google Scholar
76.
Jacques, G. C., Souza, M. M., Coelho, H. J., Vicente, L. O. & Silveira, L. C. P. Diversity of social wasps (Hymenoptera: Vespidae: Polistinae) in an agricultural environment in Bambui, Minas Gerais, Brazil. Sociobiology 62, 439–445. https://doi.org/10.13102/sociobiology.v62i3.738 (2015).
Article Google Scholar
77.
Prezoto, F., Santos-Prezoto, H. H., Machado, V. L. L. & Zanuncio, J. C. Prey captured and used in Polistes versicolor (Olivier) (Hymenoptera: Vespidae) nourishment. Neotrop. Entomol. 35, 707–709. https://doi.org/10.1590/s1519-566×2006000500021 (2006).
Article PubMed Google Scholar
78.
Korösi, Á, Batáry, P., Orosz, A., Rédei, D. & Báldi, A. Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conserv. Divers. 5, 57–66. https://doi.org/10.1111/j.1752-4598.2011.00153.x (2012).
Article Google Scholar
79.
Burdine, J. D., Dominguez Martinez, G. H. & Philpott, S. M. Predictors of leafhopper abundance and richness in a coffee agroecosystem in Chiapas, Mexico. Environ. Entomol. 43, 328–335. https://doi.org/10.1603/EN13251 (2014).
Article PubMed Google Scholar
80.
Genung, W. G. & Mead, F. W. Leafhopper populations (Homoptera: Cicadellidae) on five pasture grasses in the Florida Everglades. Fla. Entomol. 52, 165–170 (1969).
Article Google Scholar
81.
Quisenberry, S. S., Yonke, T. R. & Huggans, J. L. Leafhoppers Associated with Mixed Tall Fescue Pastures in Missouri (Homoptera: Cicadellidae). J. Kansas Entomol. Soc. 52, 421–437 (1979).
Google Scholar
82.
Bhandari, K. B., West, C. P. & Longing, S. D. Communities of canopy-dwelling arthropods in response to diverse forages. Ael. https://doi.org/10.2134/ael2018.07.0037 (2018).
Article Google Scholar
83.
Wolcott, G. N. An animal census of two pastures and a Meadow in Northern New York. Ecol. Monogr. 7, 1–90 (1937).
Article Google Scholar
84.
Auad, A. M. et al. Seleção de genótipos de capim-elefante quanto à resistência à cigarrinha-das-pastagens. Pesqui. Agropecu. Bras. 42, 1077–1081 (2007).
Article Google Scholar
85.
Valerio, J. R. & Nakano, O. Damage caused by the pasture spittlebug Zulia entreriana on production and quality of Brachiaria decumbens. Pesqui. Agropecu. Bras. 23, 447–453 (1988).
Google Scholar
86.
Holzinger, W. E., Emeljanov, A. F. & Kammerlander, I. In Zikaden—Leafhoppers, Planthoppers and Cicadas (Insecta: Hemiptera: Auchenorrhyncha) Vol. 4 Denisia (ed. Holzinger, W.E.) 113–138 (Biologiezentrum, Linz, 2002).
87.
Urban, J. M. & Cryan, J. R. Evolution of the planthoppers (Insecta: Hemiptera: Fulgoroidea). Mol. Phylogenet. Evol. 42, 556–572. https://doi.org/10.1016/j.ympev.2006.08.009 (2007).
CAS Article PubMed Google Scholar
88.
Klimes, P., Borovanska, M., Plowman, N. S. & Leponce, M. How common is trophobiosis with hoppers (Hemiptera: Auchenorrhyncha) inside ant nests (Hymenoptera: Formicidae)? Novel interactions from New Guinea and a worldwide overview. Myrmecol. News 26, 31–45 (2018).
Google Scholar
89.
Bachtold, A., Alves-Silva, E., Kaminski, L. A. & Del-Claro, K. The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies. Die Naturwissenschaften 101, 913–919. https://doi.org/10.1007/s00114-014-1232-9 (2014).
ADS CAS Article PubMed Google Scholar
90.
Kaminski, L. A., Freitas, A. V. & Oliveira, P. S. Interaction between Mutualisms: Ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am. Nat. 176, 322–334. https://doi.org/10.1086/655427 (2010).
Article PubMed Google Scholar
91.
Kaminski, L. A. & Rodrigues, D. Species-specific levels of ant attendance mediate performance costs in a facultative myrmecophilous butterfly. Physiol. Entomol. 36, 208–214. https://doi.org/10.1111/j.1365-3032.2011.00785.x (2011).
Article Google Scholar
92.
Mota, L. L. & Oliveira, P. S. Myrmecophilous butterflies utilise ant-treehopper associations as visual cues for oviposition. Ecol. Entomol. 41, 338–343. https://doi.org/10.1111/een.12302 (2016).
Article Google Scholar
93.
Sendoya, S. F. & Oliveira, P. S. Ant-caterpillar antagonism at the community level: Interhabitat variation of tritrophic interactions in a neotropical savanna. J. Anim. Ecol. 84, 442–452. https://doi.org/10.1111/1365-2656.12286 (2015).
Article PubMed Google Scholar
94.
Townes, H. A light-weight Malaise trap. Entomol. News 83, 239–247 (1972).
Google Scholar
95.
Rafael, J. A., Melo, G. A. R., Carvalho, C. J. B. D., Casari, S. A. & Constantino, R. Insetos do Brasil: Diversidade e Taxonomia (Holos Editora, Ribeirão Preto, 2012).
Google Scholar
96.
Triplehorn, C. A. & Johnson, N. F. Estudo dos Insetos 2nd edn, 757 (Cengage Learning, Boston, 2015).
Google Scholar
97.
Fujihara, R. T., Forti, L. C., Almeida, M. C. D. & Baldin, E. L. L. Insetos de Importância Econômica: Guia Ilustrado para Identificação de Famílias. 391 (FEPAF, 2011).
98.
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).
99.
Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).
Article Google Scholar
100.
EstimateS: statistical estimation of species richness and shared species from samples. (University of Connecticut, Connecticut, 2013).
101.
Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication 117 (The University of Illinois Press, Champaign, 1949).
Google Scholar
102.
Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Google Scholar
103.
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x (1993).
Article Google Scholar
104.
PRIMER v7 (PRIMER-E, Plymouth, 2015). More
