More stories

  • in

    Reduced ecosystem services of desert plants from ground-mounted solar energy development

    1.
    Halmo, D. B., Stoffle, R. W. & Evans, M. J. Paitu Nanasuagaindu Pahonupi (Three Sacred Valleys): cultural significance of Gosiute, Paiute, and Ute plants. Hum. Organ. 52, 142–150 (1993).
    Google Scholar 
    2.
    Stoffle, R. W., Halmo, D. B. & Austin, D. E. Cultural landscapes and traditional cultural properties: a southern Paiute view of the Grand Canyon and Colorado River. Am. Indian Q. 21, 229–249 (1997).
    Google Scholar 

    3.
    Lee, R. B. in Man the Hunter (eds Lee, R. B. & DeVore, I.) 30–48 (Aldine, 1968).

    4.
    Smith, M., Veth, P., Hiscock, P. & Wallis, L. A. in Desert Peoples, Archaeological Perspectives Vol. 1 (eds Veth, P. et al.) Ch. 1 (Blackwell, 2005).

    5.
    Stoffle, R. W. & Evans, M. J. Holistic conservation and cultural triage: American Indian perspectives on cultural resources. Hum. Organ 49, 91–99 (1990).
    Google Scholar 

    6.
    Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (UC Press, 2005).

    7.
    Saenz-Hernandez, C., Corrales-Garcia, J. & Aquino-Perez, G. in Cacti: Biology and Uses (ed. Nobel, P. S.) 211–234 (UC Press, 2002).

    8.
    Larsen, L. & Harlan, S. L. Desert dreamscapes: residential landscape preference and behavior. Landsc. Urban Plan. 78, 8–100 (2006).
    Google Scholar 

    9.
    Rokeach, M. The Nature of Human Values (Free Press, 1973).

    10.
    Schwartz, S. H. & Bilksy, W. Toward a universal psychology structure of human values. J. Person. Soc. Psychol. 58, 878–891 (1987).
    Google Scholar 

    11.
    Kamakura, W. A. & Novak, T. P. Value system segmentation: exploring the meaning of LOV. J. Consum. Res. 19, 119–132 (1992).
    Google Scholar 

    12.
    Moore-O’Leary, K. A. et al. Sustainability of utility-scale solar energy—critical ecological concepts. Front. Ecol. Environ. 15, 385–394 (2017).
    Google Scholar 

    13.
    Hernandez, R. R. et al. Techno-ecological synergies of solar energy produce beneficial outcomes across industrial-ecological boundaries to mitigate global change. Nat. Sustain. 2, 560–568 (2019).
    Google Scholar 

    14.
    Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).
    CAS  Google Scholar 

    15.
    Folke, C. et al. Resilience and sustainable development: building adaptive capacity in a world of transformations. AMBIO 31, 437–440 (2002).
    Google Scholar 

    16.
    Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).
    CAS  Google Scholar 

    17.
    Chan, K. M. A. et al. Where are cultural and social in ecosystem services? A framework for constructive engagement. BioScience 62, 744–756 (2012).
    Google Scholar 

    18.
    Farber, S. C., Constanza, R. & Wilson, M. A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375–392 (2002).
    Google Scholar 

    19.
    Copeland, S. M., Bradford, J. B., Duniway, M. C. & Schuster, R. M. Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere 8, e01823 (2017).

    20.
    Durant, S. M. et al. Forgotten biodiversity in desert ecosystems. Science 336, 1379–1380 (2012).
    CAS  Google Scholar 

    21.
    McDonald, R. I. et al. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS ONE 4, e6802 (2009).
    Google Scholar 

    22.
    Hernandez, R. R. et al. Solar energy development impacts on terrestrial ecosystems. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015a).
    CAS  Google Scholar 

    23.
    Hernandez, R. R. et al. The land-use efficiency of big solar. Environ. Sci. Technol. 48, 1315–1323 (2014).
    CAS  Google Scholar 

    24.
    Lovich, J. E. & Bainbridge, D. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration. Environ. Manag. 24, 309–326 (1999).
    CAS  Google Scholar 

    25.
    Hoffacker, M. K., Allen, M. F. & Hernandez, R. R. Land sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, USA. Environ. Sci. Technol. 51, 14472–14482 (2017).
    CAS  Google Scholar 

    26.
    Potter, C. Landsat time series analysis of vegetation changes in solar energy development areas of the Lower Colorado Desert, southern California. J. Geosci. Environ. Prot. 4, 1–6 (2016).
    Google Scholar 

    27.
    Li, Y. et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361, 1019–1022 (2018).
    CAS  Google Scholar 

    28.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    CAS  Google Scholar 

    29.
    Bidak, L. M., Kamal, S. A., Halmy, M. W. A. & Heneidy, S. Z. Goods and services provided by native plants in desert ecosystems: examples from the northwestern coastal desert of Egypt. Glob. Ecol. Conserv. 3, 433–447 (2015).
    Google Scholar 

    30.
    Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).
    CAS  Google Scholar 

    31.
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).
    CAS  Google Scholar 

    32.
    Brooks, M. L. & Matchett, J. R. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980-2004. J. Arid Environ. 67, 148–164 (2006).
    Google Scholar 

    33.
    Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015).
    CAS  Google Scholar 

    34.
    Drennan, P. M. & Nobel, P. S. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 23, 767–781 (2000).
    CAS  Google Scholar 

    35.
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).
    Google Scholar 

    36.
    Daily, G. C. & Matson, P. A. Ecosystem services: from theory to implementation. Proc. Natl Acad. Sci. USA 105, 9455–9456 (2008).
    CAS  Google Scholar 

    37.
    Kuletz, V. L. The Tainted Desert: Environmental and Social Ruin in the American West (Routledge, 1998).

    38.
    Adamson, J. American Indian Literature, Environmental Justice, and Ecocriticism (Univ. Arizona Press, 2001).

    39.
    Romero, H., Mendez, M. & Smith, P. Mining development and environmental injustice in the Atacama Desert of northern Chile. Environ. Justice 5, 70–76 (2012).
    Google Scholar 

    40.
    Vine, D. Base Nation: How U.S. Military Bases Abroad Harm America and the World (Henry Holt and Co., 2015).

    41.
    Tsosie, R. Indigenous people and environmental justice: the impact of climate change. Univ. Col. Law Rev. 78, 1625–1678 (2007).
    Google Scholar 

    42.
    Mulvaney, D. Identifying the roots of Green Civil War over utility-scale solar energy projects on public lands across the American Southwest. J. Land Use Sci. 12, 493–515 (2017).
    Google Scholar 

    43.
    Brookshire, D. & Kaza, N. Planning for seven generations: energy planning of American Indian tribes. Energy Policy 62, 1506–1514 (2013).
    Google Scholar 

    44.
    Bronin, S. C. The promise and perils of renewable energy on tribal lands. Tulane Environ. Law J. 26, 221–237 (2013).
    Google Scholar 

    45.
    Polis, G. A. The Ecology of Desert Communities (Univ. Arizona Press, 1991).

    46.
    Aranda-Rickert, A., Diez, P. & Marazzi, B. Extrafloral nectar fuels ant life in deserts. AoB PLANTS 6, plu068 (2014).
    Google Scholar 

    47.
    Rickleffs, R. E. & Hainsworth, F. R. Tenperature regulation in nestling cactus wren: the nest environment. Condor 71, 32–37 (1969).
    Google Scholar 

    48.
    Pfeiler, E. & Markow, T. A. Phylogeography of the cactophilic Drosophila and other arthropods associated with cactus necroses in the Sonoran Desert. Insects 2, 218–231 (2011).
    Google Scholar 

    49.
    Pellmyr, O., Thompson, J. N., Brown, J. M. & Harrison, R. G. Evolution of pollination and mutualism in the yucca moth lineage. Am. Nat. 148, 827–847 (1996).
    Google Scholar 

    50.
    Abella, S. R. & Berry, K. H. Enhancing and restoring habitat for the desert tortoise. J. Fish. Wildl. Manag. 7, 255–279 (2016).
    Google Scholar 

    51.
    Hernandez, R. R. et al. Efficient use of land to meet sustainable energy needs. Nat. Clim. Change 5, 353–358 (2015).
    Google Scholar 

    52.
    Clark, W. C., van Kerkhoff, L., Lebel, L. & Gallopin, G. C. Crafting usable knowledge for sustainable development. Proc. Natl Acad. Sci. USA 113, 4570–4578 (2016).
    CAS  Google Scholar  More

  • in

    Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability

    Study area
    The study area is located in the north-eastern Italian Alps (Argentario range, in Val di Cembra and Valsugana; Autonomous Province of Trento), covers c. 16 km2 and ranges between 500 and 1,000 m a.s.l. The topography is generally mild, but steeper slopes ( > 30°) occur in the northern portion. The climate is continental and characterized by a mean temperature of 1.0 °C in January and 21.0 °C in July, and a mean annual rainfall of 966 mm (average 2000–2018; https://www.meteotrentino.it). There is occasional snow cover between December and March, although the soil is mostly frozen at night. The study area is covered by 80.0% forest, mostly as relatively homogeneous secondary growth stands interspersed with small pastures. The forests are dominated by Pinus sylvestris with abundant shrub undergrowth, and by mixed stands of Fagus sylvatica, Picea abies and Abies alba and, to a lower extent, by Quercus petraea stands.
    Roe deer is the primary large herbivore in the study area (6–9 individuals km−2; ref. values from Autonomous Province of Trento Wildlife Office). Adult roe deer do not have natural predators in this landscape, but young fawns may be predated by red fox (Vulpes vulpes). The fine-scale food selection of roe deer in the Alps has been described as mainly dependent on shrubs or regeneration of tree species as well as a diversity of herbaceous plants from the undergrowth from spring to fall, switching between items according to the temporal trends of availability48. In the winter time, roe deer strongly select for forested environments and opportunistically for supplemental food where available22.
    Supplemental feeding management of roe deer is conducted at  > 50 distinct feeding sites within the study area (FS; Supplementary Information S1: Fig. S1) and authorized year-round within a larger zone of c. 45 km2 (official authorization: “Autonomous Province of Trento order n. 2852/2013”). FS are typically shaped as wooden hopper dispensers that provide a continuous supply of corn accessible through a tray (Fig. 1). They have been deployed and provided continuously with food (at least in fall and winter) for many years (i.e., for longer that the average lifespan of roe deer in our study area). They are managed by private hunters for roe deer but are also attended sporadically by red deer (Cervus elaphus), as well as non-target mammals (Meles meles, Sciurus vulgaris, Apodemus sp., Microtus sp.) and birds (Garrulus glandarius, Columba palumbus).
    Experimental design
    We took advantage of roe deer use of a focal, identifiable resource—the FS—to design an in situ experimental manipulation of resource availability. We created three successive experimental phases based on the availability of this resource—pre-closure, closure and post-closure—by physically managing the accessibility of food at the FS. During the closure phase, access to forage at FS was transitorily restricted by placing wooden boards obstructing the tray; boards were then removed again in the post-closure phase (Fig. 1).
    The experiment was conducted between January and April, when the use of high-nutritional supplemental feed (i.e., corn) by roe deer is the most intense17, for three consecutive winters (2017, 2018 and 2019). We implemented the experiment on 18 individuals, of which seven could be manipulated in two consecutive years—five individuals were recaptured and two collar deployments spanned two winters—leading to a total of 25 individual winter trajectories i.e., “animal-years” (21 adults: 15 females, 6 males; 4 yearlings: 2 females, 2 males; sample size n = 4, 11 and 10 in 2017, 2018 and 2019 respectively; see Supplementary Information S1 for details). Because roe deer captures at middle to low density in Alpine, heavily forested environments are rare events that have to rely on low-efficiency techniques such as box traps and because we had to account for stakeholder acceptance, repeating the experiment on single individuals in consecutive years allowed us to take full advantage of our sample.
    Roe deer were captured using baited box traps (n = 21 capture events) or net drives (n = 2), and were fitted with GPS-GSM radio collars programmed to acquire hourly GPS locations for a year, after which they were released via a drop-off mechanism. Captures and marking were performed complying with ethical and welfare rules, under authorization of the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015); all methods and experiments were carried out in accordance with the relevant guidelines and regulations. Radio-collared roe deer moved an average of 61.2 m per hour. This value of the average hourly movement distance (l) was subsequently utilized in the analyses described below.
    For all captured animals, we assumed a post-capture response in ranging behaviour. We therefore considered the first re-visitation of the capture location as a likely sign of resettlement in the original range and we used this time as onset of the experimental pre-closure phase. Although not all the individuals were manipulated at the same time, we avoided interference between capture operations and FS manipulations, and between co-occurring different manipulation phases (i.e., ensuring that co-occurring manipulations occurred in separate areas).
    During the pre-closure phase, we ensured a continuous supply of food at all managed FS—i.e., that were provisioned at least once in the month prior to the experiment—located within 500 m of each roe deer locations (known through twice-daily download of GSM-transmitted GPS relocations). At the end of the pre-closure phase, we identified the “manipulated” FS (M) for each individual as the managed FS with the largest number of locations within a radius (l) during this initial phase, and considered it as the FS to which an individual is most familiar. All other managed FS were considered as “alternate” (A) FS. During the closure phase, corn was made inaccessible at M for a duration of approximately 15 days, depending on personnel availabilities (min = 14.0 days, max = 18.1, mean = 15.5). M was then re-opened, thereby initiating the post-closure phase. During both pre- and post-closure phases, corn was available ad libitum at M. All A FS had corn available ad libitum throughout the duration of the experiment. To ensure a continuous supply of food during the experiment, field personnel visited and replenished the FS every third day. Across the experimental manipulations, we used a total of twelve distinct FS as M, and 23 distinct FS as A (mean = 4.04 A sites per animal-year, (sigma hspace{0.17em})= 1.43; of these, an average of 1.76, (sigma hspace{0.17em})= 1.13, were actually used by roe deer; see Supplementary Information S1: Table S1 for details on the identity of M and A for all animal-years). M sites were separate from A sites by an average distance of 702.5 m ((sigma hspace{0.17em})= 310.5), and M and used A sites by an averaged distance of 567.5 m ((sigma hspace{0.17em})= 235.7).
    Data preparation
    To ensure meaningful comparisons between animal-years, we homogenized the durations of each experimental phase to the minimum length of the closure phase in our sample (i.e., 14 days). Specifically, we truncated the movement data by removing initial excess positions for the pre-closure and closure phases, and terminal excess positions for the post-closure phase. GPS acquisition success was extremely high (99.57% during the experiment) and we did not interpolate missing fixes in the collected data.
    The analyses of space-use and movement behaviour were based on spatially-explicit, raw movement trajectories. The analyses of resource use, instead, relied on spatially-implicit, state time series derived from the underlying movement data. To this end, we created an initial time series, for each animal-year, by intersecting the relocations with three spatial domains: vegetation (the matrix; V), manipulated FS (M) and alternate FS (A). We converted FS locations (M and A) into areas by buffering them. To investigate the sensitivity of buffer choice we considered six buffer sizes: l (i.e., 61.2 m) multiplied by 0.5, 1, 1.5, 2, 3 and 4. We associated all locations falling outside M and A to the state V. The three-state time series was then converted into three single-state presence/absence time series.
    Preference for feeding sites
    We calculated each individual’s preference for FS (({h}_{FS})) as the relative use of FS over natural vegetation during the pre-closure phase (i.e., the proportion of GPS fixes classified as either M or A). Because preference is considered to be temporally dynamic37, we chose to evaluate ({h}_{FS}) for each year separately in case individuals were manipulated in two separate winters. This reasoning allowed to account for the influence of individual condition and of the relative quality and quantity of vegetation resources on ({h}_{FS}). We included ({h}_{FS}) in all space-use, movement, and resource use analyses described below.
    The variability of ({h}_{FS}) across animal-years was maximal when FS attendance was defined as a GPS location within a distance equal to the population mean hourly step length (l) i.e., 61.2 m from the FS (interquartile range = 0.278, mean = 0.343; Supplementary Information S2: Table S1). Accordingly, the results described below are based on this definition (see Supplementary Information S6 for a sensitivity analysis). At this scale, ({h}_{FS}) did not differ consistently between sex (mean for females = 0.346; mean for males = 0.336; t-test: p value = 0.901).
    Analysis
    We analysed how the experimental manipulation, and its interaction with both preference for FS and sex, affected roe deer space-use, movement behaviour, and resource use.
    General modelling approach
    We analysed the roe deer responses to the experiment using mixed effect models. The final fixed-effect structure was developed progressively, beginning with simple formulations and evaluating the consistency of our results to ascertain that our data could support more complex formulations. For example, regarding the analysis of home range size, we first fitted a simple function of the experimental phase (i.e., home range size ~ Phase), then evaluated a potential additive effect of preference for feeding sites (i.e., home range size ~ Phase + ({h}_{FS})), and then an interaction between the two covariates (i.e., home range size ~ Phase + ({h}_{FS})+ Phase:({h}_{FS})). We repeated this procedure when evaluating the effects of sex, and eventually, assessed the full fixed effect structure. We did not find irregularities in the behaviour of the nested models (i.e., marked changes in absolute parameter values or sign). In the full model, fixed effect terms were dropped when statistically non-significant (p value  > 0.05). We considered “animal-year” as the sampling unit to account for the fact that an individual may respond independently to manipulations in different years. The choice of an “animal-year” random effect (instead of an “animal” random effect) did not qualitatively affect our results (Supplementary Information S8).
    Space-use
    We assessed the changes of home range and core area sizes (P1.1), and space-use overlap (P1.2, P3.1) between experimental phases. We calculated utilization distributions (UD)49 for each animal-year and experimental phase using a Gaussian kernel density estimation. After visual inspection, we chose to compute the UDs at a spatial resolution of 10 m and with a fixed bandwidth set to half the average hourly movement distance (i.e., l/2 = 30.6 m).
    For home range and core area sizes, we calculated the area (in hectares) corresponding to the 95% and 50% UD contours, respectively, during each experimental phase (Phase; three levels; reference level: Pre-closure). We then analysed the log-transformed areas using a linear mixed-effect model (LMM) with five fixed effects: Phase, ({h}_{FS}), Sex (categorical predictor; reference level: Female), and two interaction terms (Phase:({h}_{FS}) and Phase:Sex). We included animal-year (ind) as random intercept.
    We estimated the space-use overlaps for three pairs of UDs—pre- and post-closure, pre-closure and closure, and closure and post-closure (Contrast; three levels; reference level: Pre-/Closure)—using the volume of intersection statistic (VI)50. VI ranges from 0 (no overlap) to 1 (complete overlap). We analysed the logit-transformed overlaps using an LMM with Contrast, hFS, Sex, Contrast:hFS and Contrast:Sex as fixed effects, and ind as random intercept.
    Movement behaviour
    We investigated the movement responses of roe deer to the experiment (P1.3) by analysing the changes in hourly step length (Euclidean distance between two successive relocations) and turning angle ({theta }_{t}) (angle between two successive movement steps). We analysed the log-transformed step length, ({s}_{t}) and, because turning angles range between (-pi) and (pi), and were symmetric around 0, the logit-transformed absolute turning angle, ({varphi }_{t}=logleft(frac{left|{theta }_{t}right|}{1-left|{theta }_{t}right|}right)). We used LMMs with Phase, ({h}_{FS}), Sex, Phase:hFS and Phase:Sex as fixed effects, and ind as random intercept. Because step length was characterized by strong serial autocorrelation at short temporal lags and at circadian periodicities (a common pattern in animal movement trajectories51), we also included step length measured at lags 1, 2 and 24 h (i.e., ({s}_{t-1},{s}_{t-2}),({s}_{t-24})) as fixed effects to reduce the autocorrelation of the model residuals.
    Resource use
    To test whether the experiment led to a transitory change in resource use (P1.4a–b, P3.2), we fitted separate mixed-effect logistic regression models to the three single-state presence/absence time series (({u}_{M,t}), ({u}_{A,t}) and ({u}_{V,t})) using Phase, ({h}_{FS}), Sex, Phase:({h}_{FS}) and Phase:Sex as fixed effects, and ind as random intercept. The pre-closure level for Phase was dropped for ({u}_{V}) to avoid circularity (({h}_{FS}=1-{{stackrel{-}{u}}_{V,t}}_{Pre-closure})). We also included the response variables measured at lags 1, 2 and 24 h (e.g., ({u}_{M,t-1},{u}_{M,t-2}),({u}_{M,t-24})) as fixed effects to reduce the autocorrelation of the model residuals. However, for the sake of conciseness and clarity, we omitted these response lags when visualizing resource use predictions. Because the model results were consistent regardless of the inclusion of the response lags (Supplementary Information S5: Tables S1, S2), this decision had no impact on the interpretation. Two animal-years were excluded from the analyses of resource use due to the absence of suitable A-state: F4-2017 did not seem to have visited any alternate FS (A) prior to the experiment; and F16-2016 had two distinct, highly-used FS during pre-closure, but only the second most visited FS could be manipulated (due to stakeholder acceptance). While the use of A was more variable when including these two outliers, the general patterns remained unchanged (Supplementary Information S5: Tables S1, S3).
    Software
    All analyses were conducted in the R environment52. We used the packages adehabitatLT and adehabitatHR53 for the spatial analyses, fitted all mixed-effect models via Maximum Likelihood with the package lme454. We obtained the p-values for the fixed effects using afex55 and coefficients of determination using MuMin56.
    Ethical statement
    All experimental protocols and data collection were approved by the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015). All experiments and methods were performed in accordance with relevant guideline and regulations. More

  • in

    Global wind patterns and the vulnerability of wind-dispersed species to climate change

    1.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    Google Scholar 
    2.
    Hampe, A. Plants on the move: the role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol. 37, 666–673 (2011).
    Google Scholar 

    3.
    Kremer, A. et al. Long‐distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15, 378–392 (2012).
    Google Scholar 

    4.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 

    5.
    Felicísimo, Á. M., Muñoz, J. & González-Solis, J. Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS ONE 3, e2928 (2008).
    Google Scholar 

    6.
    Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).
    Google Scholar 

    7.
    Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
    Google Scholar 

    8.
    Smith, D. J. et al. Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 79, 1134–1139 (2013).
    CAS  Google Scholar 

    9.
    Austerlitz, F., Dutech, C., Smouse, P. E., Davis, F. & Sork, V. L. Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity 99, 193–204 (2007).
    CAS  Google Scholar 

    10.
    Bullock, J. M. & Clarke, R. T. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124, 506–521 (2000).
    CAS  Google Scholar 

    11.
    Gassmann, M. I. & Pérez, C. F. Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int. J. Biometeorol. 50, 280–291 (2006).
    Google Scholar 

    12.
    Skarpaas, O. & Shea, K. Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. Am. Naturalist 170, 421–430 (2007).
    Google Scholar 

    13.
    Wang, Z. F. et al. Pollen and seed flow under different predominant winds in wind-pollinated and wind-dispersed species Engelhardia roxburghiana. Tree Genet. Genomes 12, 19 (2016).
    CAS  Google Scholar 

    14.
    Soubeyrand, S., Enjalbert, J., Sanchez, A. & Sache, I. Anisotropy, in density and in distance, of the dispersal of yellow rust of wheat: experiments in large field plots and estimation. Phytopathology 97, 1315–1324 (2007).
    CAS  Google Scholar 

    15.
    Born, C., le Roux, P. C., Spohr, C., McGeoch, M. A. & van Vuuren, B. J. Plant dispersal in the sub‐Antarctic inferred from anisotropic genetic structure. Mol. Ecol. 21, 184–194 (2012).
    Google Scholar 

    16.
    Geremew, A., Woldemariam, M. G., Kefalew, A., Stiers, I. & Triest, L. Isotropic and anisotropic processes influence fine-scale spatial genetic structure of a keystone tropical plant. AoB Plants 10, plx076 (2018).
    Google Scholar 

    17.
    Brown, J. K. & Hovmøller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002).
    CAS  Google Scholar 

    18.
    Vanschoenwinkel, B., Gielen, S., Seaman, M. & Brendonck, L. Any way the wind blows—frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117, 125–134 (2008).
    Google Scholar 

    19.
    Ahmed, S., Compton, S. G., Butlin, R. K. & Gilmartin, P. M. Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc. Natl Acad. Sci. USA 106, 20342–20347 (2009).
    CAS  Google Scholar 

    20.
    Larson-Johnson, K. Field observations of Carpinus (Betulaceae) demonstrate high dispersal asymmetry and inform migration simulations with implications for times of rapid climate change. Int. J. Plant Sci. 177, 389–399 (2016).
    Google Scholar 

    21.
    Nathan, R. et al. Spread of North American wind‐dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).
    Google Scholar 

    22.
    Sorte, C. J. Predicting persistence in a changing climate: flow direction and limitations to redistribution. Oikos 122, 161–170 (2013).
    Google Scholar 

    23.
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
    CAS  Google Scholar 

    24.
    Molinos, J. G., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332 (2017).
    Google Scholar 

    25.
    Higgins, S. I. et al. Forecasting plant migration rates: managing uncertainty for risk assessment. J. Ecol. 91, 341–347 (2003).
    Google Scholar 

    26.
    Bullock, J. M. et al. Modelling spread of British wind‐dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).
    Google Scholar 

    27.
    Kuparinen, A., Katul, G., Nathan, R. & Schurr, F. M. Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc. R. Soc. B 276, 3081–3087 (2009).
    Google Scholar 

    28.
    Davis, H. G., Taylor, C. M., Lambrinos, J. G. & Strong, D. R. Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc. Natl Acad. Sci. USA 101, 13804–13807 (2004).
    CAS  Google Scholar 

    29.
    Dullinger, S., Dirnböck, T. & Grabherr, G. Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arct. Antarct. Alp. Res. 35, 434–441 (2003).
    Google Scholar 

    30.
    Payette, S. The range limit of boreal tree species in Québec-Labrador: an ecological and palaeoecological interpretation. Rev. Palaeobot. Palynol. 79, 7–30 (1993).
    Google Scholar 

    31.
    Sandel, B., Monnet, A. C., Govaerts, R. & Vorontsova, M. Late Quaternary climate stability and the origins and future of global grass endemism. Ann. Bot. 119, 279–288 (2016).
    Google Scholar 

    32.
    Svenning, J. C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).
    Google Scholar 

    33.
    Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Glob. Ecol. Biogeogr. 16, 449–459 (2007).
    Google Scholar 

    34.
    Saha, S. et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058 (2010).
    Google Scholar 

    35.
    Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).
    Google Scholar 

    36.
    Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D. & Hamilton, H. Multiple axes of ecological vulnerability to climate change. Glob. Change Biol. 26, 2798–2813 (2020).
    Google Scholar 

    37.
    Keeley, A. T. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018).
    Google Scholar 

    38.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Timing of propagule release significantly alters the deposition area of resulting aerial dispersal. Diversity Distrib. 16, 288–299 (2010).
    Google Scholar 

    39.
    Nathan, R. et al. Long‐distance biological transport processes through the air: can nature’s complexity be unfolded in silico? Divers. Distrib. 11, 131–137 (2005).
    Google Scholar 

    40.
    Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landsc. Ecol. 27, 777–797 (2012).
    Google Scholar 

    41.
    Treml, E. A., Halpin, P. N., Urban, D. L. & Pratson, L. F. Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc. Ecol. 23, 19–36 (2008).
    Google Scholar 

    42.
    Fernández‐López, J. & Schliep, K. rWind: download, edit and include wind data in ecological and evolutionary analysis. Ecography 42, 804–810 (2019).
    Google Scholar 

    43.
    Thompson, S. & Katul, G. Plant propagation fronts and wind dispersal: an analytical model to upscale from seconds to decades using superstatistics. Am. Naturalist 171, 468–479 (2008).
    Google Scholar 

    44.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Can mechanistically parameterised, anisotropic dispersal kernels provide a reliable estimate of wind-assisted dispersal? Ecol. Model. 222, 1673–1682 (2011).
    Google Scholar 

    45.
    Regal, P. J. Pollination by wind and animals: ecology of geographic patterns. Annu. Rev. Ecol. Syst. 13, 497–524 (1982).
    Google Scholar 

    46.
    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).
    Google Scholar 

    47.
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).
    Google Scholar 

    48.
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
    Google Scholar 

    49.
    Owens, J. N. The Reproductive Biology of Lodgepole Pine Extension Note 07 (Forest Genetics Council of British Columbia, 2006).

    50.
    Bontrager, M. & Angert, A. L. Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3, 55–68 (2019).
    Google Scholar 

    51.
    Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl Acad. Sci. USA 108, 11704–11709 (2011).
    CAS  Google Scholar 

    52.
    Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L. & Hamilton, D. A. Jr Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol. Monogr. 69, 375–407 (1999).
    Google Scholar 

    53.
    Wang, T., O’Neill, G. A. & Aitken, S. N. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20, 153–163 (2010).
    CAS  Google Scholar 

    54.
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).
    Google Scholar 

    55.
    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).
    Google Scholar 

    56.
    van Etten, J. R Package gdistance: distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).
    Google Scholar 

    57.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    58.
    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016).
    Google Scholar 

    59.
    Little, E. L. Jr Atlas of United States Trees. Volume 1, Conifers and Important Hardwoods Miscellaneous Publication 1146 (US Department of Agriculture, 1971).

    60.
    Wang, T., Hamann, A., Yanchuk, A., O’Neill, G. A. & Aitken, S. N. Use of response functions in selecting lodgepole pine populations for future climates. Glob. Change Biol. 12, 2404–2416 (2006).
    Google Scholar 

    61.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    62.
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 

    63.
    R Core Team (2017). R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/

    64.
    Kling, M. M. & Ackerly, D. D. Scripts and Data used in ‘Global Wind Patterns and the Vulnerability of Wind-Dispersed Species to Climate Change (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3860687

    65.
    Kling, M. M. Windscape R Package v.1.0.0 (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3857730 More

  • in

    Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish

    1.
    The Global Burden of Disease: 2004 Update (WHO, 2004).
    2.
    Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).
    CAS  PubMed  Google Scholar 

    3.
    Schmid-Hempel, P. Variation in immune defence as a question of evolutionary ecology. Proc. R. Soc. B. 270, 357–366 (2003).
    PubMed  Google Scholar 

    4.
    Schmid-Hempel, P. Evolutionary Parasitology (Oxford Univ. Press, 2013).

    5.
    Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc. Natl Acad. Sci. USA 110, 18360–18367 (2013).
    CAS  PubMed  Google Scholar 

    6.
    von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 12, 1089–1093 (2011).
    Google Scholar 

    7.
    Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Lambrecht, B. N. & Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 18, 1076–1083 (2017).
    CAS  PubMed  Google Scholar 

    9.
    Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).
    CAS  PubMed  Google Scholar 

    10.
    Rosenblum, M. D., Remedios, K. A. & Abbas, A. K. Mechanisms of human autoimmunity. J. Clin. Invest. 125, 2228–2233 (2015).
    PubMed  PubMed Central  Google Scholar 

    11.
    Lafferty, K. D. Biodiversity loss decreases parasite diversity: theory and patterns. Philos. Trans. R. Soc. Lond. B 367, 2814–2827 (2012).
    Google Scholar 

    12.
    Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).
    Google Scholar 

    13.
    McDade, T. W., Georgiev, A. V. & Kuzawa, C. W. Trade-offs between acquired and innate immune defenses in humans. Evol. Med. Public Health 2016, 1–16 (2016).
    PubMed  PubMed Central  Google Scholar 

    14.
    Lindstrom, K. M., Foufopoulos, J., Parn, H. & Wikelski, M. Immunological investments reflect parasite abundance in island populations of Darwin’s finches. Proc. R. Soc. B 271, 1513–1519 (2004).
    PubMed  Google Scholar 

    15.
    Mayer, A., Mora, T., Rivoire, O. & Walczak, A. M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl Acad. Sci. USA 113, 8630–8635 (2016).
    CAS  PubMed  Google Scholar 

    16.
    Scharsack, J. P., Kalbe, M., Harrod, C. & Rauch, G. Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc. R. Soc. B 274, 1523–1532 (2007).
    PubMed  Google Scholar 

    17.
    Kaczorowski, K. J. et al. Continuous immunotypes describe human immune variation and predict diverse responses. Proc. Natl Acad. Sci. USA 114, E6097–E6106 (2017).
    CAS  PubMed  Google Scholar 

    18.
    Herman, A. et al. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol. Ecol. 27, 4397–4416 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Fumey, J. et al. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol. Biol. 18, 43 (2018).
    PubMed  PubMed Central  Google Scholar 

    20.
    Gibert, J. & Deharveng, L. Subterranean ecosystems: a truncated functional biodiversity. BioScience 52, 473–481 (2002).

    21.
    Tabin, J. A. et al. Temperature preference of cave and surface populations of Astyanax mexicanus. Dev. Biol. 441, 338–344 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811 (2017).
    PubMed  PubMed Central  Google Scholar 

    23.
    Trama, A. M. et al. Lymphocyte phenotypes in wild-caught rats suggest potential mechanisms underlying increased immune sensitivity in post-industrial environments. Cell Mol. Immunol. 9, 163–174 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L. & Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc. Natl Acad. Sci. USA 112, 9668–9673 (2015).
    CAS  PubMed  Google Scholar 

    25.
    Xiong, S., Krishnan, J., Peuss, R. & Rohner, N. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev. Biol. 441, 297–304 (2018).
    CAS  PubMed  Google Scholar 

    26.
    Wiens, G. D. & Vallejo, R. L. Temporal and pathogen-load dependent changes in rainbow trout (Oncorhynchus mykiss) immune response traits following challenge with biotype 2 Yersinia ruckeri. Fish Shellfish Immunol. 29, 639–647 (2010).
    CAS  PubMed  Google Scholar 

    27.
    Krishnan, J. et al. Comparative transcriptome analysis of wild and lab populations of Astyanax mexicanus uncovers differential effects of environment and morphotype on gene expression. J. Exp. Zool. B https://doi.org/10.1002/jez.b.22933 (2020).

    28.
    Moller, A. M., Korytar, T., Kollner, B., Schmidt-Posthaus, H. & Segner, H. The teleostean liver as an immunological organ: intrahepatic immune cells (IHICs) in healthy and benzo[a]pyrene challenged rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol. 46, 518–529 (2014).
    CAS  PubMed  Google Scholar 

    29.
    Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 4, 1238–1246 (2003).
    CAS  PubMed  Google Scholar 

    30.
    Stockdale, W. T. et al. Heart regeneration in the Mexican cavefish. Cell Rep. 25, 1997–2007 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Ramsey, S. et al. Transcriptional noise and cellular heterogeneity in mammalian macrophages. Philos. Trans. R. Soc. Lond. B. 361, 495–506 (2006).
    CAS  Google Scholar 

    32.
    Ogryzko, N. V., Renshaw, S. A. & Wilson, H. L. The IL-1 family in fish: swimming through the muddy waters of inflammasome evolution. Dev. Comp. Immunol. 46, 53–62 (2014).

    33.
    Wittamer, V., Bertrand, J. Y., Gutschow, P. W. & Traver, D. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117, 7126–7135 (2011).
    CAS  PubMed  Google Scholar 

    34.
    Sunyer, J. O. Evolutionary and functional relationships of B cells from fish and mammals: Insights into their novel roles in phagocytosis and presentation of particulate antigen. Infect. Disord. Drug Targets 12, 200–212 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Lugo-Villarino, G. et al. Identification of dendritic antigen-presenting cells in the zebrafish. Proc. Natl Acad. Sci. USA 107, 15850–15855 (2010).
    CAS  PubMed  Google Scholar 

    36.
    Haugland, G. T. et al. Phagocytosis and respiratory burst activity in lumpsucker (Cyclopterus lumpus L.) leucocytes analysed by flow cytometry. PLoS ONE 7, e47909 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Lieschke, G. J. & Trede, N. S. Fish immunology. Curr. Biol. 19, R678–R682 (2009).
    CAS  PubMed  Google Scholar 

    38.
    Balla, K. M. et al. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116, 3944–3954 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Bolnick, D. I., Shim, K. C., Schmerer, M. & Brock, C. D. Population-specific covariation between immune function and color of nesting male threespine stickleback. PLoS ONE 10, e0126000 (2015).
    PubMed  PubMed Central  Google Scholar 

    40.
    Peuß, R. et al. Label-independent flow cytometry and unsupervised neural network method for de novo clustering of cell populations. Preprint at bioRxiv https://doi.org/10.1101/603035 (2020).

    41.
    van der Meer, W., Scott, C. S. & de Keijzer, M. H. Automated flagging influences the inconsistency and bias of band cell and atypical lymphocyte morphological differentials. Clin. Chem. Lab. Med. 42, 371–377 (2004).
    PubMed  Google Scholar 

    42.
    Getz, G. S. Thematic review series: the immune system and atherogenesis. Bridging the innate and adaptive immune systems. J. Lipid Res. 46, 619–622 (2005).
    CAS  PubMed  Google Scholar 

    43.
    Wan, F. et al. Characterization of gammadelta T cells from zebrafish provides insights into their important role in adaptive humoral immunity. Front. Immunol. 7, 675 (2016).
    PubMed  Google Scholar 

    44.
    Shilpi, Paul,S. & Lal, G. Role of gamma-delta (gammadelta) T cells in autoimmunity. J. Leukoc. Biol. 97, 259–271 (2015).
    PubMed  Google Scholar 

    45.
    Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Papotto, P. H., Reinhardt, A., Prinz, I. & Silva-Santos, B. Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 87, 26–37 (2018).
    CAS  PubMed  Google Scholar 

    47.
    Fay, N. S., Larson, E. C. & Jameson, J. M. Chronic Inflammation and gammadelta T. Cells Front. Immunol. 7, 210 (2016).
    PubMed  Google Scholar 

    48.
    Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).
    CAS  PubMed  Google Scholar 

    49.
    Bolli, N. et al. Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 115, 3329–3340 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Stachura, D. L. et al. Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 118, 1274–1282 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Reavie, L. et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex. Nat. Immunol. 11, 207–215 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).
    CAS  PubMed  Google Scholar 

    53.
    Cheng, J. et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87, 479–490 (1996).
    CAS  PubMed  Google Scholar 

    54.
    Anjos-Afonso, F. et al. CD34(–) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 13, 161–174 (2013).
    CAS  PubMed  Google Scholar 

    55.
    Amin, R. H. & Schlissel, M. S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Han, S., Zheng, B., Schatz, D. G., Spanopoulou, E. & Kelsoe, G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274, 2094–2097 (1996).
    CAS  PubMed  Google Scholar 

    57.
    Naito, Y. et al. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell Biol. 27, 3008–3022 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Laszlo, G., Hathcock, K. S., Dickler, H. B. & Hodes, R. J. Characterization of a novel cell-surface molecule expressed on subpopulations of activated T and B cells. J. Immunol. 150, 5252–5262 (1993).
    CAS  PubMed  Google Scholar 

    59.
    Fänge, R. & Nilsson, S. The fish spleen: structure and function. Experientia 41, 152–158 (1985).
    PubMed  Google Scholar 

    60.
    Steinel, N. C. & Bolnick, D. I. Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Front. Immunol. 8, 827 (2017).
    PubMed  PubMed Central  Google Scholar 

    61.
    Cervenak, L., Magyar, A., Boja, R. & Laszlo, G. Differential expression of GL7 activation antigen on bone marrow B cell subpopulations and peripheral B cells. Immunol. Lett. 78, 89–96 (2001).
    CAS  PubMed  Google Scholar 

    62.
    Secombes, C. J., Wang, T. & Bird, S. The interleukins of fish. Dev. Comp. Immunol. 35, 1336–1345 (2011).
    CAS  PubMed  Google Scholar 

    63.
    Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 e114 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    66.
    Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Mitchell, R. G., Russell, W. H. & Elliott, W. R. Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution (Texas Tech Press, 1977).

    68.
    Espinasa, L. et al. A new cave locality for Astyanax cavefish in Sierra de El Abra, Mexico. Subterr. Biol. 26, 39–53 (2018).
    Google Scholar 

    69.
    Embryo Surface Sanitation (Egg Bleaching) Protocol https://zebrafish.org/wiki/protocols/ess (ZIRC, 2019).

    70.
    Peuß, R., Eggert, H., Armitage, S. A. & Kurtz, J. Downregulation of the evolutionary capacitor Hsp90 is mediated by social cues. Proc. R. Soc. B 282, 20152041 (2015).
    PubMed  Google Scholar 

    71.
    Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, 36e (2002).
    Google Scholar 

    72.
    Zhang, Y. A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11, 827–835 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Rowe, R. G., Mandelbaum, J., Zon, L. I. & Daley, G. Q. Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell 18, 707–720 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Stachura, D. L. et al. The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood 122, 3918–3928 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    de Jong, J. L. & Zon, L. I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Ann. Rev. Genet. 39, 481–501 (2005).
    PubMed  Google Scholar 

    76.
    Athanasiadis, E. I. et al. Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis. Nat. Commun. 8, 2045 (2017).
    PubMed  PubMed Central  Google Scholar 

    77.
    Zeng, A. et al. Prospectively isolated tetraspanin(+) neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173, 1593–1608 (2018).
    CAS  PubMed  Google Scholar 

    78.
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    CAS  Google Scholar 

    79.
    Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).
    PubMed  PubMed Central  Google Scholar 

    80.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

    81.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar  More

  • in

    A seawater-sulfate origin for early Earth’s volcanic sulfur

    1.
    Farquhar, J., Zerkle, A. L. & Bekker, A. in The Atmosphere – History 2nd edn, Vol. 6 (ed. Farquhar, J.) 91–138 (Elsevier, 2014).
    2.
    Lyons, T. W., Reinhard, C. T. & Planesky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
    Google Scholar 

    3.
    Holland, H. D. Volcanic gases, black smokers and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).
    Google Scholar 

    4.
    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).
    Google Scholar 

    5.
    Korenaga, J. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. R. Soc. A 376, 2017048 (2018).
    Google Scholar 

    6.
    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).
    Google Scholar 

    7.
    Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B. 363, 903–915 (2006).
    Google Scholar 

    8.
    Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 228–232 (2011).
    Google Scholar 

    9.
    Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
    Google Scholar 

    10.
    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).
    Google Scholar 

    11.
    Symonds, R. B., Rose, W. I., Bluth, G. J. S. & Gerlach, T. M. in Volatiles in Magmas Vol. 30 (eds Caroll, M. R. & Halloway, J. R.) 1–66 (Mineralogical Society of America, 1994).

    12.
    Oppenheimer, C., Fischer, T. P. & Scaillet, B. in The Crust 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 111–179 (Elsevier, 2014).

    13.
    National Academies of Sciences, Engineering and Medicine. Volcanic Eruptions and their Repose, Unrest, Precursors, and Timing (The National Academy Press, 2017).

    14.
    Drummond, S. E. Jr Boiling and Mixing of Hydrothermal Fluids: Chemical Effects on Mineral Precipitation. PhD thesis, Pennsylvania State Univ. (1981).

    15.
    German, C. R. & Von Damm, K. L. in The Oceans and Marine Geochemistry Vol. 6 (ed. Elderfield, H.) 181–222 (Elsevier, 2006).

    16.
    Giggenbach, W. F. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143–161 (1987).
    Google Scholar 

    17.
    Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochim. Cosmochim. Acta 66, 361–381 (2002).
    Google Scholar 

    18.
    Ohmoto, H. in The Precambrian Earth: Tempos and Events Vol. 12 (eds Erickson, P. G. et. al.) 361–387 (Elsevier, 2004).

    19.
    Ohmoto, H. et al. Oxygen, iron and sulfur geochemical cycles on early Earth: paradigms and contradictions. Geol. Soc. Am. Spec. Pap. 504, 55–95 (2014).
    Google Scholar 

    20.
    Burnham, C. W. & Ohmoto, H. in Granitic Magmatism and Related Mineralization Vol. 8 (eds. Ishihara, S. & Takenouchi, S.) 1–11 (1980).

    21.
    Berry, A. J. et al. A re-assessment of the oxidation state of iron in MORB glasses. Earth Planet. Sci. Lett. 483, 114–123 (2018).
    Google Scholar 

    22.
    Carroll, M. R. & Webster, J. D. in Volatiles in Magmas Vol. 30 (eds Caroll, M. R. & Halloway, J. R.) 231–280 (Mineralogical Society of America, 1994).

    23.
    Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source region? Contrib. Mineral. Petrol. 106, 129–141 (1991).
    Google Scholar 

    24.
    Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).
    Google Scholar 

    25.
    Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).
    Google Scholar 

    26.
    Richards, J. P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallurgy. Lithos 233, 27–45 (2015).
    Google Scholar 

    27.
    Chappell, B. W. & White, A. J. R. Two contrasting granite types. Pac. Geol. 8, 173–174 (1974).
    Google Scholar 

    28.
    Ishihara, S. The magnetite-series and ilmenite-series granitic rocks. Min. Geol. 27, 291–305 (1977).
    Google Scholar 

    29.
    Savarino, J. et al. UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys. Res. Lett. 30, 2131 (2003).
    Google Scholar 

    30.
    Hattori, S. et al. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism. Proc. Natl Acad. Sci. USA 110, 17661–17656 (2019).
    Google Scholar 

    31.
    Whitehill, A. R., Jiang, B., Guo, H. & Ono, S. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospheric aerosols. Atmos. Chem. Phys. 15, 1843–1864 (2015).
    Google Scholar 

    32.
    Sasaki, A. & Ishihara, S. Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan. Contrib. Mineral. Petrol. 68, 107–115 (1979).
    Google Scholar 

    33.
    Alt, J. C., Shanks, W. C. & Jackson, M. C. Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet. Sci. Lett. 119, 477–494 (1993).
    Google Scholar 

    34.
    Ohmoto, H. et al. Chemical processes of Kuroko formation. Econ. Geol. Mon. 5, 570–604 (1983).

    35.
    Ohmoto, H. Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol. Rev. 10, 135–177 (1996).
    Google Scholar 

    36.
    Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits 3rd edn (ed. Barnes, H. L.) 517–611 (Wiley, 1997).

    37.
    Kishima, N. A thermodynamic study on the pyrite–pyrrhotite–magnetite–water system at 300–500 °C with relevance to the fugacity/concentration quotient of aqueous H2S. Geochim. Cosmochim. Acta 53, 2143–2155 (1989).
    Google Scholar 

    38.
    Schoonen, M. A. A. & Barnes, H. L. Mechanisms of pyrite and marcasite formation from solutions. III. Hydrothermal processes. Geochim. Cosmochim. Acta 55, 3491–3504 (1991).
    Google Scholar 

    39.
    Graham, U. M. & Ohmoto, H. Experimental study of formation mechanisms of hydrothermal pyrite. Geochim. Cosmochim. Acta 58, 2187–2202 (1994).
    Google Scholar 

    40.
    Kerrich, R. & Said, N. Extreme positive Ce anomalies in a 3.0 Ga submarine volcanic sequence, Murchison Province: oxygenated marine bottom waters. Chem. Geol. 280, 232–241 (2011).
    Google Scholar 

    41.
    Kerrich, R., Said, N., Manikyamba, C. & Wyman, D. Sampling oxygenated Archean hydrosphere: implications from fractionations of Th/U and Ce/Ce* in hydrothermally altered volcanic sequences. Gondwana Res. 23, 506–525 (2013).
    Google Scholar 

    42.
    van Keken, P. E., Kiefer, B. & Peacock, S. M. High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem. Geophys. Geosyst. 3, 1056 (2002).
    Google Scholar 

    43.
    Hyndman, R. D. & Peacock, S. M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417–432 (2003).
    Google Scholar 

    44.
    Tomkins, A. G. & Evans, K. A. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth Planet. Sci. Lett. 428, 73–83 (2015).
    Google Scholar 

    45.
    Scaillet, B., Clemente, B., Evans, B. & Pichavant, M. Redox control of sulfur degassing in silicic magmas. J. Geophys. Res. 103, 23937–23949 (1998).
    Google Scholar 

    46.
    Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusions and volcanic gas data. J. Volcanol. 140, 217–240 (2005).
    Google Scholar 

    47.
    Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).
    Google Scholar 

    48.
    Ishihara, S. et al. in Evolution of Early Earth’s Atmosphere, Hydrosphere and Biosphere—Constraints from Ore Deposits Vol. 198 (eds Kesler, S. E. & Ohmoto, H.) 67–80 (Geological Society of America, 2006).

    49.
    Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 2017, 1602365 (2017).
    Google Scholar 

    50.
    Delano, J. W. Redox history of the Earth’s interior since ~3,900 Ma: implications for prebiotic molecules. Orig. Life Evol. Biosphere 31, 311–341 (2001).
    Google Scholar 

    51.
    Nicklas, R. W., Puchtel, I. S. & Ash, R. D. Redox state of the Archean mantle: evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochim. Cosmochim. Acta 222, 447–446 (2018).
    Google Scholar 

    52.
    Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004).
    Google Scholar 

    53.
    Trail, D., Watson, E. B. & Tailby, N. D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480, 79–83 (2011).
    Google Scholar 

    54.
    Watanabe, Y., Farquhar, J. & Ohmoto, H. Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324, 370–373 (2008).
    Google Scholar 

    55.
    Oduro, H. et al. Evidence of magnetic isotope effects during thermochemical sulfate reduction. Proc. Natl Acad. Sci. USA 108, 17635–17638 (2011).
    Google Scholar 

    56.
    Ohmoto et al. (Bio)geochemical cycles of S, C, Fe, and O on the hotter Archean Earth. Goldschmidt Abstr. 2018, abstr. 1913 (2018).

    57.
    Ohmoto, H., Watanabe, Y. & Kumazawa, K. Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billion years ago. Nature 429, 395–399 (2004).
    Google Scholar 

    58.
    Finlayson-Pitts, B. J. & Pitts, J. N. Chemistry of the Upper and Lower Atmosphere (Academic Press, 1999).

    59.
    Seccombe, P. K. Sulphur isotope and trace metal composition of stratiform sulphides as an ore guide in the Canadian Shield. J. Geochem. Explor. 8, 117–137 (1977).
    Google Scholar 

    60.
    Jamieson, J. W., Wing, B. A., Farquhar, J. & Hamington, M. D. Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nat. Geosci. 6, 61–64 (2013).
    Google Scholar 

    61.
    Vaughan, D. J. & Craig, J. R. in Geochemistry of Hydrothermal Ore Deposits 2nd edn (ed. Barnes, H. L.) 367–434 (Wiley, 1979).

    62.
    Mysen, B. & Boettcher, A. L. Melting of a hydrous mantle. I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J. Petrol. 16, 520–548 (1975).
    Google Scholar 

    63.
    Gaetani, G. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131, 323–346 (1998).
    Google Scholar 

    64.
    Henderson, P. & Henderson, G. M. The Cambridge Handbook of Earth Science Data (Cambridge Univ. Press, 2009).

    65.
    Deines, P. & Harris, J. W. Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochim. Cosmochim. Acta 59, 3173–3188 (1995).
    Google Scholar 

    66.
    Rudnick, R. L., Eldridge, C. S. & Bulanova, G. P. Diamond growth history from in situ measurement of Pb and S isotopic compositions of sulfide inclusions. Geology 21, 13–16 (1993).
    Google Scholar 

    67.
    Farquhar, J. et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298, 2369–2371 (2002).
    Google Scholar 

    68.
    Hickman, A. H. Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. Isl. Arc 21, 1–31 (2012).
    Google Scholar 

    69.
    van Kranendonk, M. J., Smithies, R. H., Hickman, A. H. & Champion, D. C. in Earth’s Oldest Rocks (eds van Kranendonk, M. J. et al.) 307–337 (Elsevier, 2007). More

  • in

    Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins

    1.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.
    CAS  PubMed  Google Scholar 
    2.
    Moran NA, Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol. 2014;68:195–215.
    CAS  PubMed  Google Scholar 

    3.
    Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.
    CAS  PubMed  Google Scholar 

    4.
    Engelstädter J, Hurst GDD. The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst. 2009;40:127–49.
    Google Scholar 

    5.
    Ma WJ, Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evol Biol. 2017;30:868–88.
    PubMed  Google Scholar 

    6.
    Bondy EC, Hunter MS. Sex ratios in the haplodiploid herbivores, aleyrodidae and thysanoptera: a review and tools for study. Adv Insect Physiol. 2019;56:251–81.
    Google Scholar 

    7.
    Hunter MS, Perlman SJ, Kelly SE. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc Natl Acad Sci USA. 2003;270:2185–90.
    Google Scholar 

    8.
    Beckmann JF, Ronau JA, Hochstrasser MA. Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2017;2:17007.
    PubMed  PubMed Central  Google Scholar 

    9.
    Harumoto T, Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature 2018;557:252–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA. 2010;107:769–74.
    CAS  PubMed  Google Scholar 

    11.
    Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol. 2014;80:5844–53.
    PubMed  PubMed Central  Google Scholar 

    12.
    Moriyama M, Nikoh N, Hosokawa T, Fukatsu T. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio . 2015;6:e01732–15.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Snyder AK, Rio RVM. ‘Wigglesworthia morsitans’ folate (vitamin B9) biosynthesis contributes to tsetse host fitness. Appl Environ Microbiol. 2015;81:5375–86.
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Ju JF, Bing XL, Zhao DS, Guo Y, Xi Z, Hoffmann AA, et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:676–87.
    PubMed  Google Scholar 

    15.
    Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol. 2002;11:2123–35.
    CAS  PubMed  Google Scholar 

    16.
    Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–89.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, et al. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 2008;22:2591–9.
    CAS  PubMed  Google Scholar 

    18.
    Sloan DB, Moran NA. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 2012;29:3781–92.
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Skaljac M, Zanic K, Ban SG, Kontsedalov S, Ghanim M. Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol. 2010;10:142.
    PubMed  PubMed Central  Google Scholar 

    20.
    McCutcheon JP, Von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011;21:1366–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 2013;153:1567–78.
    CAS  PubMed  Google Scholar 

    22.
    Koga R, Meng XY, Tsuchida T, Fukatsu T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc Natl Acad Sci USA. 2012;109:E1230–E1237.
    CAS  PubMed  Google Scholar 

    23.
    Fukatsu T, Nikoh N. Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl Environ Microbiol. 1998;64:3599–606.
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA. 2009;106:9063–8.
    CAS  PubMed  Google Scholar 

    25.
    Rao Q, Wang S, Su YL, Bing XL, Liu SS, Wang XW. Draft genome sequence of ‘Candidatus Hamiltonella defensa’ an endosymbiont of the whitefly Bemisia tabaci. J Bacteriol. 2012;194:3558.
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Xue J, Zhou X, Zhang CX, Yu LL, Fan HW, Wang Z, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 2014;15:521.
    PubMed  PubMed Central  Google Scholar 

    27.
    Santos-Garcia D, Juravel K, Freilich S, Zchori-Fein E, Latorre A, Moya A, et al. To B or not to B: comparative genomics suggests Arsenophonus as a source of B vitamins in whiteflies. Front Microbiol. 2018;9:2254–70.
    PubMed  PubMed Central  Google Scholar 

    28.
    Ouvrard D, Martin JH. The whiteflies: taxonomic checklist of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). 2019. http://www.hemiptera-databases.org/whiteflies/.

    29.
    Yang P. The greenhouse whiteflies and plant quarantine. Chin Bull Entomol. 1981;18:69–71.
    Google Scholar 

    30.
    Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science . 2007;318:1769–72.
    CAS  PubMed  Google Scholar 

    31.
    Zchori-Fein E, Lahav T, Freilich S. Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front Microbiol. 2014;5:310.
    PubMed  PubMed Central  Google Scholar 

    32.
    Luan JB, Shan HW, Isermann P, Huang JH. Cellular and molecular remodelling of a host cell for vertical transmission of bacterial symbionts. Proc R Soc B. 2016;283:20160580.
    PubMed  Google Scholar 

    33.
    Luan JB, Sun XP, Fei ZJ, Douglas AE. Maternal inheritance of a single somatic animal cell displayed by the bacteriocyte in the whitefly Bemisia tabaci. Curr Biol. 2018;28:459–65.
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Shan HW, Luan JB, Liu YQ, Douglas AE, Liu SS. The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host. Proc R Soc B. 2019;286:20191677.
    CAS  PubMed  Google Scholar 

    35.
    Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genom. 2015;16:226.
    Google Scholar 

    36.
    Scott IAW, Workman PJ, Drayton GM, Burnip GM. First record of Bemisia tabaci biotype Q in New Zealand. N Z Plant Prot. 2007;60:264–70.
    CAS  Google Scholar 

    37.
    Qin L, Pan LL, Liu SS. Further insight into reproductive incompatibility between putative cryptic species of the Bemisia tabaci whitefly complex. Insect Sci. 2016;23:215–24.
    CAS  PubMed  Google Scholar 

    38.
    Xu XR, Li NN, Bao XY, Douglas AE, Luan JB. Patterns of host cell inheritance in the bacterial symbiosis of whiteflies. Insect Sci. 2019; https://doi.org/10.1111/1744-7917.12708.

    39.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.
    CAS  PubMed  Google Scholar 

    40.
    Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, et al. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol. 2006;72:3646–52.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Hadjistylli M, Schwartz SA, Brown JK, Roderick GK. Isolation and characterization of nine microsatellite loci from Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. J Insect Sci. 2014;14:148.
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Bondy EC, Hunter MS. Determining the egg fertilization rate of Bemisia tabaci using a cytogenetic technique. J Vis Exp. 2019;https://doi.org/10.3791/59213.

    43.
    Ankrah NYD, Luan JB, Douglasa AE. Cooperative metabolism in a three-partner insect-bacterial symbiosis revealed by metabolic modeling. J Bacteriol 2017;199:e00872–16.
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Ren FR, Bai B, Hong JS, Huang YZ, Luan JB. A microbiological assay for biotin determination in insects. Insect Sci. 2020; https://doi.org/10.1111/1744-7917.12827.

    45.
    Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc R Soc B. 2014;281:1838.
    Google Scholar 

    46.
    Duron O, Morel O, Noël V, Buysse M, Binetruy F, Lancelot R, et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr Biol. 2018;28:1896–902.
    CAS  PubMed  Google Scholar 

    47.
    Pant NC, Fraenkel G. The function of the symbiotic yeasts of two insect species, Lasioderma serricorne F. and Stegobium (Sitodrepa) paniceum L. Science. 1950;112:498–500.
    CAS  PubMed  Google Scholar 

    48.
    Byrne DN, Bellows TS Jr. Whitefly biology. Annu Rev Entomol. 1991;36:431–57.
    Google Scholar 

    49.
    Giorgini M, Monti MM, Caprio E, Stouthamer R, Hunter MS. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity. 2009;102:365–71.
    CAS  PubMed  Google Scholar 

    50.
    Ma WJ, Pannebakker BA, van de Zande L, Schwander T, Wertheim B, Beukeboom LW. Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp. BMC Evol Biol. 2015;15:84.
    PubMed  PubMed Central  Google Scholar 

    51.
    Sloan DB, Moran NA. The evolution of genomic instability in the obligate endosymbionts of whiteflies. Genome Biol Evol. 2013;5:783–93.
    PubMed  PubMed Central  Google Scholar 

    52.
    Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan JB, et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 2016;14:110.
    PubMed  PubMed Central  Google Scholar 

    53.
    Luan JB, Chen W, Hasegawa DK, Simmons A, Wintermantel WM, Ling KS, et al. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol. 2015;7:2635–47.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Russell JA, Latorre A, Sabater-Muñoz B, Moya A, Moran NA. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2003;12:1061–75.
    CAS  PubMed  Google Scholar 

    55.
    Manzano-Marı́n A, Coeur d’acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 2020;14:259–73.
    Google Scholar 

    56.
    Ayoubi A, Talebi AA, Fathipour Y, Mehrabadi M. Coinfection of the secondary symbionts, Hamiltonella defensa and Arsenophonus sp. contribute to the performance of the major aphid pest, Aphis gossypii (Hemiptera: Aphididae). Insect Sci. 2020;27:86–98.
    PubMed  Google Scholar 

    57.
    Thao MLL, Baumann P. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol. 2004;48:140–4.
    CAS  PubMed  Google Scholar 

    58.
    Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:143.
    PubMed  PubMed Central  Google Scholar 

    59.
    Nováková E, Husník F, Šochová E, Hypša V. Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wigglesworthia and Sodalis system in tsetse flies. Appl Environ Microbiol. 2015;81:6189–99.
    PubMed  PubMed Central  Google Scholar 

    60.
    Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 2014;111:10257–62.
    CAS  PubMed  Google Scholar 

    61.
    Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 2006;4:e188.
    PubMed  PubMed Central  Google Scholar 

    62.
    McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104:19392–7.
    CAS  PubMed  Google Scholar 

    63.
    McCutcheon JP, McDonald BR, Moran NA. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA. 2009;106:15394–9.
    CAS  PubMed  Google Scholar 

    64.
    Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M, Meng XY, et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc Natl Acad Sci USA. 2018;115:E5970–E5979.
    CAS  PubMed  Google Scholar 

    65.
    Kapantaidaki DE, Ovcarenko I, Fytrou N, Knott KE, Bourtzis K, Tsagkarakou A. Low levels of mitochondrial DNA and symbiont diversity in the worldwide agricultural pest, the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). J Hered. 2014;106:80–92.
    PubMed  Google Scholar 

    66.
    Douglas AE. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci. 2017;23:65–69.
    PubMed  Google Scholar 

    67.
    Smykal V, Raikhel AS. Nutritional control of insect reproduction. Curr Opin Insect Sci. 2015;11:31–38.
    PubMed  PubMed Central  Google Scholar 

    68.
    Wheeler D. The role of nourishment in oogenesis. Ann Rev Entomol. 1996;41:407–31.
    CAS  Google Scholar 

    69.
    Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science. 2011;332:254–6.
    CAS  PubMed  Google Scholar  More

  • in

    Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms

    1.
    Ponomarova O, Patil KR. Metabolic interactions in microbial communities: untangling the Gordian knot. Curr Opin Microbiol. 2015;27:37–44.
    PubMed  Google Scholar 
    2.
    D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.
    PubMed  Google Scholar 

    3.
    Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61:262–80.
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA. 2008;105:7052–7.
    CAS  PubMed  Google Scholar 

    5.
    Men Y, Feil H, Verberkmoes NC, Shah MB, Johnson DR, Lee PKH, et al. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. ISME J. 2012;6:410–21.
    CAS  PubMed  Google Scholar 

    6.
    Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449–54.
    CAS  PubMed  Google Scholar 

    7.
    Marchal M, Goldschmidt F, Derksen-Müller SN, Panke S, Ackermann M, Johnson DR. A passive mutualistic interaction promotes the evolution of spatial structure within microbial populations. BMC Evol Biol. 2017;17:106.
    PubMed  PubMed Central  Google Scholar 

    8.
    Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science. 2012;337:1546–50.
    CAS  PubMed  Google Scholar 

    9.
    Zengler K, Palsson BO. A road map for the development of community systems (CoSy) biology. Nat Rev Microbiol. 2012;10:366–72.
    CAS  PubMed  Google Scholar 

    10.
    Sachs JL, Hollowell AC. The origins of cooperative bacterial communities. MBio. 2012;3:1–3.

    11.
    Johnson DR, Goldschmidt F, Lilja EE, Ackermann M. Metabolic specialization and the assembly of microbial communities. ISME J. 2012;6:1985–91.
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Bull JJ, Rice WR. Distinguishing mechanisms for the evolution of co-operation. J Theor Biol. 1991;149:63–74.
    CAS  PubMed  Google Scholar 

    13.
    Foster KR, Wenseleers T. A general model for the evolution of mutualisms. J Evol Biol. 2006;19:1283–93.
    CAS  PubMed  Google Scholar 

    14.
    Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol. 2006;4:752–64.
    CAS  PubMed  Google Scholar 

    15.
    Lüdecke C, Reiche M, Eusterhues K, Nietzsche S, Küsel K. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen. Environ Microbiol. 2010;12:2814–25.
    PubMed  Google Scholar 

    16.
    Emerson D, Fleming EJ, McBeth JM. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol. 2010;64:561–83.
    CAS  PubMed  Google Scholar 

    17.
    Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L, Munk C, et al. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front Microbiol. 2013;4:254.
    PubMed  PubMed Central  Google Scholar 

    18.
    Fabisch M, Beulig F, Akob DM, Küsel K. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations. Front Microbiol. 2013;4:390.
    PubMed  PubMed Central  Google Scholar 

    19.
    Fleming EJ, Cetinić I, Chan CS, Whitney King D, Emerson D. Ecological succession among iron-oxidizing bacteria. ISME J. 2014;8:804–15.
    CAS  PubMed  Google Scholar 

    20.
    Byrne JM, van der Laan G, Figueroa AI, Qafoku O, Wang C, Pearce CI, et al. Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles. Sci Rep. 2016;6:1–13.
    Google Scholar 

    21.
    Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, Kappler A. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science. 2015;347:1473–6.

    22.
    Braunschweig J, Bosch J, Meckenstock RU. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation. N. Biotechnol. 2013;30:793–802.
    CAS  PubMed  Google Scholar 

    23.
    Bosch J, Heister K, Hofmann T, Meckenstock RU. Nanosized iron oxide colloids strongly enhance microbial iron reduction. Appl Environ Microbiol. 2010;76:184–9.
    CAS  PubMed  Google Scholar 

    24.
    Küsel K, Blöthe M, Schulz D, Reiche M, Drake HL. Microbial reduction of iron and porewater biogeochemistry in acidic peatlands. Biogeosci Discuss. 2008;5:2165–96.
    Google Scholar 

    25.
    Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA. 2008;105:3968–73.
    CAS  PubMed  Google Scholar 

    26.
    Royer RA, Burgos WD, Fisher AS, Unz RF, Dempsey BA. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation. Environ Sci Technol. 2002;36:1939–46.
    CAS  PubMed  Google Scholar 

    27.
    Beckwith CR, Edwards MJ, Lawes M, Shi L, Butt JN, Richardson DJ, et al. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth. Front Microbiol. 2015;6:332.
    PubMed  PubMed Central  Google Scholar 

    28.
    Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ, et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci USA. 2009;106:22169–74.
    CAS  PubMed  Google Scholar 

    29.
    White GF, Shi Z, Shi L, Wang Z, Dohnalkova AC, Marshall MJ, et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc Natl Acad Sci USA. 2013;110:6346–51.
    CAS  PubMed  Google Scholar 

    30.
    Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol. 1999;49:705–24.
    CAS  PubMed  Google Scholar 

    31.
    Myers CR, Nealson KH. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 1988;240:1319–21.
    CAS  PubMed  Google Scholar 

    32.
    Myers CR, Nealson KH. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciensMR-1. J Bacteriol. 1990;172:6232–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D. Neutrophilic iron-oxidizing ‘Zetaproteobacteria’ and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol. 2011;77:1405–12.
    CAS  PubMed  Google Scholar 

    34.
    Mori JF, Ueberschaar N, Lu S, Cooper RE, Pohnert G, Küsel K. Sticking together: inter-species aggregation of bacteria isolated from iron snow is controlled by chemical signaling. ISME J. 2017;11:1075–86.
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Tamura H, Goto K, Yotsuyanagi T, Nagayama M. Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta. 1974;21:314–8.
    CAS  PubMed  Google Scholar 

    36.
    Cooper RE, Wegner C-E, McAllister SM, Shevchenko O, Chan CS, Küsel K. Draft genome sequence of Sideroxydanssp. Strain CL21, an Fe(II)-oxidizing bacterium. Microbiol Resour Announc. 2020;9:1–2.

    37.
    Wegner C-E, Gaspar M, Geesink P, Herrmann M, Marz M, Küsel K. Biogeochemical regimes in shallow aquifers reflect the metabolic coupling of the elements nitrogen, sulfur, and carbon. Appl Environ Microbiol. 2019;8:1–19.

    38.
    Andrews S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc..40.

    39.
    Bushnell B. BBMap short read aligner. https://www.sourceforge.net/projects/bbmap/..41.

    40.
    Kopylova E, Noé L, Touzet H, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.
    CAS  PubMed  Google Scholar 

    41.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Google Scholar 

    42.
    Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013;41:D226–32.
    CAS  PubMed  Google Scholar 

    43.
    Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol. 2002;20:1118–23.
    CAS  PubMed  Google Scholar 

    44.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAM tools. Bioinformatics. 2009;25:2078–9.
    PubMed  PubMed Central  Google Scholar 

    45.
    Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:e108.
    PubMed  PubMed Central  Google Scholar 

    46.
    Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
    CAS  Google Scholar 

    47.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018.

    48.
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
    CAS  Google Scholar 

    49.
    Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem. 2012;84:5035–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Stettin D, Poulin RX, Pohnert G. Metabolomics benefits fom orbitrap GC-MS—Comparison of low- and high-resolution GC-MS. Metabolites. 2020;10:1–16.
    Google Scholar 

    51.
    Chong J, Yamamoto M, Xia J. MetaboAnalystR 2.0: from raw spectra to biological insights. Metabolites. 2019;9:1–10.

    52.
    Hummel J, Strehmel N, Bölling C, Schmidt S, Walther D, Kopka J. Mass Spectral search and analysis using the golm metabolome database. In: Weckwerth W, Kahl G (eds). The handbook of plant metabolomics. 2013. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p. 321–43.

    53.
    Lueder U, Druschel G, Emerson D, Kappler A, Schmidt C. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria. FEMS Microbiol Ecol. 2018;94:1–15.

    54.
    Lefevre E, Bossa N, Wiesner MR, Gunsch CK. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ. 2016;565:889–901.
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Kirschling TL, Gregory KB, Minkley EG Jr, Lowry GV, Tilton RD. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol. 2010;44:3474–80.
    CAS  PubMed  Google Scholar 

    56.
    Wu S, Cajthaml T, Semerád J, Filipová A, Klementová M, Skála R, et al. Nano zero-valent iron aging interacts with the soil microbial community: a microcosm study. Environ Sci: Nano. 2019;6:1189–206.
    CAS  Google Scholar 

    57.
    Auffan M, Rose J, Wiesner MR, Bottero J-Y. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut. 2009;157:1127–33.
    CAS  Google Scholar 

    58.
    Anza M, Salazar O, Epelde L, Alkorta I, Garbisu C. The application of nanoscale zero-valent iron promotes soil remediation while negatively affecting soil microbial biomass and activity. Front Environ Sci. 2019;7:1–6.
    Google Scholar 

    59.
    Friedrich B, Magasanik B. Enzymes of agmatine degradation and the control of their synthesis in Klebsiella aerogenes. J Bacteriol. 1979;137:1127–33.
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, et al. A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. J Biol Chem. 2005;280:4602–8.
    CAS  PubMed  Google Scholar 

    61.
    Hädrich A, Taillefert M, Akob DM, Cooper RE, Litzba U, Wagner FE, et al. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids. FEMS Microbiol Ecol. 2019;95:1–19.

    62.
    Cooper RE, Eusterhues K, Wegner C-E, Totsche KU, Küsel K. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia. Biogeosciences. 2017;14:5171–88.
    CAS  Google Scholar 

    63.
    Liu J, Wang Z, Belchik SM, Edwards MJ, Liu C, Kennedy DW, et al. Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front Microbiol. 2012;3:37.
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    DiChristina TJ, Moore CM, Haller CA. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene. J Bacteriol. 2002;184:142–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Meshulam-Simon G, Behrens S, Choo AD, Spormann AM. Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microbiol. 2007;73:1153–65.
    CAS  PubMed  Google Scholar 

    66.
    Shi L, Belchik SM, Plymale AE, Heald S, Dohnalkova AC, Sybirna K, et al. Purification and characterization of the [NiFe]-hydrogenase of Shewanella oneidensis MR-1. Appl Environ Microbiol. 2011;77:5584–90.
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Vignais PM, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. FEMS Microbiol Rev. 2001;25:455–501.
    CAS  PubMed  Google Scholar 

    68.
    Reiche M, Torburg G, Küsel K. Competition of Fe(III) reduction and methanogenesis in an acidic fen. FEMS Microbiol Ecol. 2008;65:88–101.
    CAS  PubMed  Google Scholar 

    69.
    Reiche M, Haedrich A, Lischeid G, Kuesel K, Hädrich A, Lischeid G, et al. Impact of manipulated drought and heavy rainfall events on peat mineralization processes and source-sink functions of an acidic fen. J Geophys Res-Biogeosci. 2009;114:1–13.
    Google Scholar 

    70.
    Hädrich A, Heuer VB, Herrmann M, Hinrichs K-U, Küsel K. Origin and fate of acetate in an acidic fen. FEMS Microbiol Ecol. 2012;81:339–54.
    PubMed  Google Scholar 

    71.
    Hamberger A, Horn MA, Dumont MG, Murrell JC, Drake HL. Anaerobic consumers of monosaccharides in a moderately acidic fen. Appl Environ Microbiol. 2008;74:3112–20.
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Wüst PK, Horn MA, Drake HL. Trophic links between fermenters and methanogens in a moderately acidic fen soil. Environ Microbiol. 2009;11:1395–409.
    PubMed  Google Scholar 

    73.
    Tabor CW, Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–90.
    CAS  PubMed  Google Scholar 

    74.
    Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73:310–47.
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Bachrach U, Heimer YM. The physiology of polyamines. 1989. CRC Press Taylor and Francis Group, Boca Raton, FL, USA.

    76.
    Karatan E, Duncan TR, Watnick PI. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol. 2005;187:7434–43.
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Cockerell SR, Rutkovsky AC, Zayner JP, Cooper RE, Porter LR, Pendergraft SS, et al. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport. Microbiology. 2014;160:832–43.
    CAS  PubMed  PubMed Central  Google Scholar 

    78.
    Matthysse AG, Yarnall HA, Young N. Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens. J Bacteriol. 1996;178:5302–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Sauer K, Camper AK. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol. 2001;183:6579–89.
    CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA. Polyamines are essential for the formation of plague biofilm. J Bacteriol. 2006;188:2355–63.
    CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Capdevila DA, Wang J, Giedroc DP. Bacterial strategies to maintain zinc metallostasis at the host–pathogen interface. J Biol Chem. 2016;291:20858–68.
    CAS  PubMed  PubMed Central  Google Scholar 

    82.
    Schoepp-Cothenet B, van Lis R, Philippot P, Magalon A, Russell MJ, Nitschke W. The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life. Sci Rep. 2012;2:263.
    PubMed  PubMed Central  Google Scholar 

    83.
    Reda T, Plugge CM, Abram NJ, Hirst J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA. 2008;105:10654–8.
    CAS  PubMed  Google Scholar 

    84.
    Hartmann T, Schwanhold N, Leimkühler S. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria. Biochim Biophys Acta. 2015;1854:1090–1100.
    CAS  PubMed  Google Scholar 

    85.
    Ilbert M, Bonnefoy V. Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta. 2013;1827:161–75.
    CAS  PubMed  Google Scholar 

    86.
    Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Micro Physiol. 2004;49:219–86.
    CAS  Google Scholar 

    87.
    Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol. 2014;12:797–808.
    CAS  PubMed  Google Scholar 

    88.
    Maisch M, Lueder U, Laufer K, Scholze C, Kappler A, Schmidt C. Contribution of microaerophilic Iron(II)-oxidizers to Iron(III) mineral formation. Environ Sci Technol. 2019;53:8197–204.
    CAS  PubMed  Google Scholar 

    89.
    Hong Y, Wu J, Wilson S, Song B. Vertical stratification of sediment microbial communities along geochemical gradients of a subterranean estuary located at the Gloucester Beach of Virginia, United States. Front Microbiol. 2018;9:3343.
    PubMed  Google Scholar 

    90.
    Liptzin D, Silver WL. Spatial patterns in oxygen and redox sensitive biogeochemistry in tropical forest soils. Ecosphere. 2015;6:art211.
    Google Scholar 

    91.
    Borer B, Tecon R, Or D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat Commun. 2018;9:769.
    PubMed  PubMed Central  Google Scholar 

    92.
    Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 2016;10:2557–68.
    PubMed  PubMed Central  Google Scholar 

    93.
    Frey PA, Reed GH. The ubiquity of iron. ACS Chem Biol. 2012;7:1477–81.
    CAS  PubMed  Google Scholar 

    94.
    Edwards KJ, Bach W, McCollom TM, Rogers DR. Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J. 2004;21:393–404.
    CAS  Google Scholar 

    95.
    Bondici VF, Khan NH, Swerhone GDW, Dynes JJ, Lawrence JR, Yergeau E, et al. Biogeochemical activity of microbial biofilms in the water column overlying uranium mine tailings. J Appl Microbiol. 2014;117:1079–94.
    CAS  PubMed  Google Scholar 

    96.
    Lee AK, Newman DK. Microbial iron respiration: impacts on corrosion processes. Appl Microbiol Biotechnol. 2003;62:134–9.
    CAS  PubMed  Google Scholar 

    97.
    Glasser NR, Saunders SH, Newman DK. The colorful world of extracellular electron shuttles. Annu Rev Microbiol. 2017;71:731–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    98.
    Philips J, Verbeeck K, Rabaey K, Arends JBA. Electron transfer mechanisms in biofilms. In: Scott K, Yu EH (eds). Microbial electrochemical and fuel cells. 2016. Woodhead Publishing, Sawston, Cambridge, United Kingdom, p. 67–113.

    99.
    Gao L, Lu X, Liu H, Li J, Li W, Song R, et al. Mediation of extracellular polymeric substances in microbial reduction of hematite by Shewanella oneidensis MR-1. Front Microbiol. 2019;10:575.
    PubMed  PubMed Central  Google Scholar 

    100.
    Roden EE, McBeth JM, Blöthe M, Percak-Dennett EM, Fleming EJ, Holyoke RR, et al. The microbial ferrous wheel in a neutral pH groundwater seep. Front Microbiol. 2012;3:172.
    PubMed  PubMed Central  Google Scholar  More

  • in

    The gut microbiota of brood parasite and host nestlings reared within the same environment: disentangling genetic and environmental effects

    1.
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Parfrey LW, Moreau CS, Russell JA. Introduction: the host-associated microbiome: pattern, process and function. Mol Ecol. 2018;27:1749–65.
    PubMed  Google Scholar 

    3.
    Moran NA, Ochman H, Hammer TJ. Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst. 2019;50:451–75.
    Google Scholar 

    4.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Colston TJ, Jackson CR. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol. 2016;25:3776–800.
    PubMed  Google Scholar 

    6.
    O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.
    PubMed  PubMed Central  Google Scholar 

    7.
    Browne HP, Neville BA, Forster SC, Lawley TD. Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol. 2017;15:531–43.
    PubMed  PubMed Central  Google Scholar 

    8.
    Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N, Martins AJ, et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature. 2018;554:255–9.
    CAS  PubMed  Google Scholar 

    9.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–41.
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF. Microbiota and the social brain. Science. 2019;366:eaar2016.
    CAS  PubMed  Google Scholar 

    11.
    Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13:790–801.
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26:493–501.
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Knowles SCL, Eccles RM, Baltrūnaitė L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22:826–37.
    CAS  PubMed  Google Scholar 

    16.
    Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Carmody Rachel N, Gerber Georg K, Luevano Jesus M Jr., Gatti Daniel M, Somes L, Svenson Karen L, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17:72–84.
    CAS  PubMed  Google Scholar 

    19.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
    CAS  PubMed  Google Scholar 

    20.
    Seedorf H, Griffin Nicholas W, Ridaura Vanessa K, Reyes A, Cheng J, Rey Federico E, et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell. 2014;159:253–66.
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Hildebrand F, Nguyen TLA, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 2013;14:R4.
    PubMed  PubMed Central  Google Scholar 

    22.
    Schloss PD, Iverson KD, Petrosino JF, Schloss SJ. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome. 2014;2:25.
    PubMed  PubMed Central  Google Scholar 

    23.
    Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. eLife. 2013;2:e00458.
    PubMed  PubMed Central  Google Scholar 

    24.
    Maurice CF, Cl Knowles S, Ladau J, Pollard KS, Fenton A, Pedersen AB, et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 2015;9:2423–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Ren T, Boutin S, Humphries MM, Dantzer B, Gorrell JC, Coltman DW, et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome. 2017;5:163.
    PubMed  PubMed Central  Google Scholar 

    26.
    Wang J, Chen L, Zhao N, Xu X, Xu Y, Zhu B. Of genes and microbes: solving the intricacies in host genomes. Protein Cell. 2018;9:446–61.
    PubMed  PubMed Central  Google Scholar 

    27.
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.
    CAS  PubMed  Google Scholar 

    28.
    Amato KR, G. Sanders J, Song SJ, Nute M, Metcalf JL, Thompson LR, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2019;13:576–87.
    CAS  PubMed  Google Scholar 

    29.
    Nishida AH, Ochman H. Rates of gut microbiome divergence in mammals. Mol Ecol. 2018;27:1884–97.
    PubMed  PubMed Central  Google Scholar 

    30.
    Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 2016;14:e2000225.
    PubMed  PubMed Central  Google Scholar 

    31.
    Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, Hahn BH, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8:e1000546.
    PubMed  PubMed Central  Google Scholar 

    32.
    Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM. Covariation of diet and gut microbiome in African megafauna. Proc Natl Acad Sci USA. 2019;116:23588–93.
    CAS  PubMed  Google Scholar 

    33.
    Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, González A, Knight R. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol. 2014;23:1301–17.
    CAS  PubMed  Google Scholar 

    35.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Ruiz-Rodríguez M, Martín-Vivaldi M, Martínez-Bueno M, Soler JJ. Gut microbiota of great spotted cuckoo nestlings is a mixture of those of their foster magpie siblings and of cuckoo adults. Genes. 2018;9:381.
    PubMed Central  Google Scholar 

    37.
    Davies NB. Cuckoo adaptations: trickery and tuning. J Zool. 2011;284:1–14.
    Google Scholar 

    38.
    Payne RB. The cuckoos. New York: Oxford University Press; 2005.
    Google Scholar 

    39.
    Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–73.
    CAS  Google Scholar 

    40.
    Soler M, Martínez JG, Soler JJ, Møller AP. Preferential allocation of food by magpie Pica pica to great spotted cuckoo Clamator glandarius chicks. Behav Ecol Sociobiol. 1995;37:7–13.
    Google Scholar 

    41.
    Soler JJ, Martínez JG, Soler M, Møller AP. Coevolutionary interactions in a host-parasite system. Ecol Lett. 2001;4:470–6.
    Google Scholar 

    42.
    Birkhead TR. The Magpies. The ecology and behaviour of black-billed and yellow-billed magpies. London: T & A D Poyser; 1991.
    Google Scholar 

    43.
    Ruiz-Rodríguez M, Lucas FS, Heeb P, Soler JJ. Differences in intestinal microbiota between avian brood parasites and their hosts. Biol J Linn Soc. 2009;96:406–14.
    Google Scholar 

    44.
    Soler JJ, Martin-Galvez D, De Neve L, Soler M. Brood parasitism correlates with the strength of spatial autocorrelation of life history and defensive traits in Magpies. Ecology. 2013;94:1338–46.
    PubMed  Google Scholar 

    45.
    Moreno-Rueda G, Soler M, Soler JJ, Martínez JG, Pérez-Contreras T. Rules of food allocation between nestlings of the black-billed magpie Pica pica, a species showing brood reduction. Ardeola. 2007;54:15–25.
    Google Scholar 

    46.
    Soler M, Soler JJ, Martínez JG. Duration of sympatry and coevolution between the great spotted cuckoo (Clamator glandarius) and its primary host, the magpie (Pica pica). In: Rothstein SI, SK Robinson SK, editors. Parasitic Birds and their hosts, studies in coevolution. Oxford: Oxford University Press; 1998. p. 113–28.

    47.
    Soler M, Soler JJ. Growth and development of great spotted cuckoos and their magpie host. Condor. 1991;93:49–54.
    Google Scholar 

    48.
    Martín-Gálvez D, Pérez-Contreras T, Soler M, Soler JJ. Benefits associated with escalated begging behaviour of black-billed magpie nestlings overcompensate the associated energetic costs. J Exp Biol. 2011;214:1463–72.
    PubMed  Google Scholar 

    49.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2:e00191–00116.
    PubMed  PubMed Central  Google Scholar 

    52.
    Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3:e00021–00018.
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
    PubMed  PubMed Central  Google Scholar 

    55.
    de Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones DS, et al. Recognizing the reagent microbiome. Nat Microbiol. 2018;3:851–3.
    PubMed  Google Scholar 

    56.
    Whittaker RH. Evolution and measurement of species diversity. Taxon. 1972;21:213–51.
    Google Scholar 

    57.
    Shannon CE. A mathematical theory of communication. Bell Labs Tech J. 1948;27:379–423.
    Google Scholar 

    58.
    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22:i07.
    Google Scholar 

    61.
    Moeller A, Suzuki T, Lin D, Lacey E, Wasser S, Nachman M. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc Natl Acad Sci USA. 2017;114:13768–73.
    CAS  PubMed  Google Scholar 

    62.
    Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8:14319.
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Soler M, Soler JJ. Innate versus learned recognition of conspecifics in great spotted cuckoos Clamator glandarius. Anim Cogn. 1999;2:97–102.
    Google Scholar 

    65.
    Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360:795–800.
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.
    CAS  PubMed  Google Scholar 

    67.
    Sicard J-F, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387.
    PubMed  PubMed Central  Google Scholar 

    68.
    Soler JJ, Møller AP, Soler M, Martíne1z JG. Interactions between a brood parasite and its host in relation to parasitism and immune defence. Evol Ecol Res. 1999;1:189–210.
    Google Scholar 

    69.
    Ruiz-Rodríguez M, Soler JJ, Lucas FS, Heeb P, Palacios M, Martín-Gálvez D, et al. Bacterial diversity at the cloaca relates to an immune response in magpie Pica pica and to body condition of great spotted cuckoo Clamator glandarius nestlings. J Avian Biol. 2009;40:42–8.
    Google Scholar 

    70.
    Soler JJ, De Neve L, Pérez-Contreras T, Soler M, Sorci G. Trade-off between immunocompetence and growth in magpies: an experimental study. Proc R Soc Lond B Biol Sci. 2003;270:241–8.
    Google Scholar 

    71.
    Soler M, Rubio LA, Perez-Contreras T, Ontanilla J, De Neve L. Intestinal digestibility of great spotted cuckoo nestlings is less efficient than that of magpie host nestlings. Biol J Linn Soc. 2017;122:675–80.
    Google Scholar 

    72.
    Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, et al. Captivity humanizes the primate microbiome. Proc Natl Acad Sci USA. 2016;113:10376–81.
    CAS  PubMed  Google Scholar 

    73.
    Kohl K, Skopec M, Dearing MD. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Cons Physiol. 2014;2:cou009.
    Google Scholar  More