Juvenile hormone regulates the shift from migrants to residents in adult oriental armyworm, Mythimna separata
1.
Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015).
PubMed Google Scholar
2.
Zera, A. J. & Tiebel, K. C. Brachypterizing effect of group rearing, juvenile hormone-III, and methoprene on wing length development in the wingdimorphic cricket, Gryllus rubens. J. Insect. Physiol. 34, 489–498 (1988).
CAS Google Scholar
3.
Mittler, T. E. Juvenile hormone and aphid polymorphism. In: Morphogenetic Hormones of Arthropods (ed Gupta, A. P.). vol. 3. Rutgers Univ, New Brunswick. 453-474 (1991).
4.
Nijhout, H. F. Control mechanisms of polyphenic development in insects. Biosci 49, 181–192 (1999).
Google Scholar
5.
Rankin, M. A. & Rankin, S. Some factors affecting presumed migratory flight activity of the convergent ladybeetle, Hippodamia convergens (Coccinellidae: Coleoptera). Biol. Bull. 158(3), 356–369 (1980).
Google Scholar
6.
Wang, F. Y., Zhang, X. X. & Zhai, B. P. Flight and re-migration capacity of the rice leaf folder moth, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae). Acta Entomol. Sin 53(11), 1265–1272 (2010).
Google Scholar
7.
Nakasuji, F. & Nakano, A. Flight activity and oviposition characteristics of the seasonal form of a migrant skipper, Parnara guttata guttata (Lepidoptera: Hesperiidae). Res. Pop. Ecol. 32, 227–233 (1990).
Google Scholar
8.
Shirai, Y. Flight activity, reproduction, and adult nutrition of the beet webworm, Spoladea recurvalis (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 41, 405–414 (2006).
Google Scholar
9.
Cheng, Y. X., Luo, L. Z., Jiang, X. F. & Sappington, T. W. Synchronized oviposition triggered by migratory flight intensifies larval outbreaks of beet webworm. PLOS ONE 7, e31562, https://doi.org/10.1371/journal.pone.0031562 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
10.
Zhang, L., Pan, P., Sappington, T. W., Lu, W. X. & Luo, L. Z. Accelerated and synchronized oviposition induced by flight of young females may intensify larval outbreaks of the rice leaf roller. PLoS ONE. 8(5), e63554 (2015).
Google Scholar
11.
Zera, A. J. & Denno, R. F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42, 207–231 (1997).
CAS PubMed Google Scholar
12.
Zera, A. J. The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions. Integr. Comp. Biol. 43, 607–616 (2004).
Google Scholar
13.
Zera, A. J. Evolutionary genetics of juvenile hormone and ecdysteroid regulation in Gryllus: A case study in the microevolution of endocrine regulation. Comp. Biochem. Physiol. A 144, 365–379 (2006).
Google Scholar
14.
Zera, A. J. Endocrine analysis in evolutionary-developmental studies of insect polymorphism: hormone manipulation versus direct measurement of hormonal regulators. Evol. Dev 9, 499–513 (2007).
CAS PubMed Google Scholar
15.
Hardie, J. Juvenile hormone and photoperiodically controlled polymorphism in Aphis fabae: prenatal effects on presumptive oviparae. J. Insect Physiol. 27, 257–265 (1981).
CAS Google Scholar
16.
Hardie, J., Honda, K., Timar, T. & Varjas, L. Effects of 2, 2-dimethylchromene derivatives on wing determination and metamorphosis in the pea aphid, Acyrthosiphon pisum. Arch. Insect Biochem. Physiol. 30, 25–40 (1995).
CAS Google Scholar
17.
Ayoade, O., Morooka, S. & Tojo, S. Enhancement of short wing formation and ovarian growth in the genetically defined macropterous strain of the brown planthopper, Nilaparvata lugens. J. Insect Physiol. 45, 93–100 (1999).
CAS PubMed Google Scholar
18.
Sun, B. B. et al. Methoprene influences reproduction and flight capacity in adults of the rice leaf roller, Cnaphalocrocis Medinalis (Guenée) (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 82(1), 1–13 (2013).
CAS PubMed Google Scholar
19.
Tanaka, S. Endocrine control of ovarian development and flight muscle histolysis in a wing dimorphic cricket, Modicogryllus confirmatus. J. Insect Physiol. 40, 483–490 (1994).
CAS Google Scholar
20.
Zera, A. J. & Cisper, G. Genetic and diurnal variation in the juvenile hormone titer in a wing-polymorphic cricket: implications for the evolution of life histories and dispersal. Physiol. Biochem. Zool. 74, 293–306 (2001).
CAS PubMed Google Scholar
21.
Socha, R. & Kula, J. Differential allocation of protein resources to flight muscles and reproductive organs in the flightless wing-polymorphic bug, Pyrrhocoris apterus (L.) (Heteroptera). J. Comp. Physiol. B. 178, 179–188 (2008).
CAS PubMed Google Scholar
22.
Lu, K. et al. Nutritional signaling regulates vitellogenin synthesis and egg development through juvenile hormone in Nilaparvata lugens (Stål). Int. J. Mol. Sci. 17, 269 (2016).
Google Scholar
23.
Han, E. N. & Gatehouse, A. G. Effect of temperature and photoperiod on the calling behaviour of a migratory insect, the oriental armyworm Mythimna separata. Physiol. Entomol. 16, 419–427 (1991).
Google Scholar
24.
Luo, L. Z., Li, G. B., Cao, Y. Z. & Hu, Y. The influence of larval rearing density on flight capacity and fecundity of adult oriental armyworm, Mythimna separata (walker). Acta Entomol. Sin 38, 38–45 (1995).
Google Scholar
25.
Cao, Y. Z., Luo, L. Z. & Guo, J. Performance of adult reproduction and flight in relation to larval nutrition in the oriental armyworm, Mythimna separate (Walker). Acta Entomol. Sin 39, 105–108 (1996).
Google Scholar
26.
Jiang, X. F., Luo, L. Z. & Hu, Y. Influences of rearing temperature on flight and reproductive capacity of adult oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 20, 288–292 (2000).
Google Scholar
27.
Jiang, X. F., Luo, L. Z. & Hu, Y. Genetic characteristics of pre-oviposition period in the oriental armyworm Mythimna separata (Walker). Acta Entomol. Sin 25, 68–72 (2005).
Google Scholar
28.
Jiang, X. F., Luo, L. Z. & Zhang, L. Amplified fragment length polymorphism analysis of the oriental armyworm, Mythimna separata (Walker) geographic and melanic laboratory populations in China. J. Econ. Entomol 100, 1525–1532 (2007).
CAS PubMed Google Scholar
29.
Wang, Y. Z. & Zhang, X. X. Studies on the migratory behaviours of oriental armyworm, Mythimna separata (Walker). Acta Ecol. Sin 21, 772–779 (2001).
Google Scholar
30.
Zhang, L., Luo, L. Z., Jiang, X. F. & Hu, Y. Influences of starvation on the first day after emergence on ovarian development and flight potential in adults of the oriental armyworm, Mythimna separata (Walker) (Lepidopterea: Noctuidae). Acta Entomol. Sin 49, 895–902 (2006).
Google Scholar
31.
Zhang, L., Luo, L. Z. & Jiang, X. F. Starvation influences allatotropin gene expression and juvenile hormone titer in the female adult oriental armyworm, Mythimna separata. Arch Insect Biochem. Physiol. 68, 63–70 (2008a).
CAS PubMed Google Scholar
32.
Zhang, L., Jiang, X. F. & Luo, L. Z. Determination of sensitive stage for switching migrant oriental armyworms into residents. Environ. Entomol 37, 1389–1395 (2008b).
PubMed Google Scholar
33.
Jiang, X. F. & Luo, L. Z. Comparison of behavioral and physiological characteristics between the emigrant and immigrant populations of the oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 48, 61–67 (2005).
Google Scholar
34.
Jiang, X. F., Luo, L. Z., Zhang, L., Sappington, T. W. & Hu, Y. Regulation of migration in the oriental armyworm, Mythimna separata (Walker) in China: A review integrating environmental, physiological, hormonal, genetic, and molecular factors. Environ. Entomol. 40(3), 516–533 (2011).
CAS PubMed Google Scholar
35.
Li, K. B. et al. Influences of flight on energetic reserves and juvenile hormone synthesis by corpora allata of the oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 48, 155–160 (2005).
CAS Google Scholar
36.
Luo, L. Z., Li, K. B., Jiang, X. F. & Hu, Y. Regulation of flight capacity and contents of energy substances by methoprene in the moths of oriental armyworm, Mythimna separata. Acta Entomol. Sin 8, 63–72 (2001).
CAS Google Scholar
37.
Teal, P. E. A., Gomez-Simuta, Y. & Proveaux, A. T. Mating experience and juvenile hormone enhance sexual signaling and mating in male Caribbean fruit flies. Proc. Natl. Acad. Sci. USA 97, 3708–3712 (2000).
ADS CAS PubMed Google Scholar
38.
Rafaeli, A., Zakharova, T., Lapsker, Z. & Jurenka, R. A. The identification of an age- and female- specific putative PBAN membrane-receptor protein in pheromone glands of Helicoverpa armigera: possible up-regulation by Juvenile Hormone. Insect Biochem. Mol. Biol. 33, 371–380 (2003).
CAS PubMed Google Scholar
39.
Zera, A. J., Zhao, Z. & Kaliseck, K. Hormones in the field: evolutionary endocrinology of juvenile hormone and ecdysteroids in field populations of the wingdimorphic cricket Gryllus firmus. Physiol. Biochem. Zool. 80, 592–606 (2007).
CAS PubMed Google Scholar
40.
Nijhout, H. F. Development and evolution of adaptive polyphenisms. Evol. Dev. 5, 9–18 (2003).
PubMed Google Scholar
41.
Roy, S., Saha, T. T., Zou, Z. & Raikhel, A. S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489–511 (2018).
CAS PubMed Google Scholar
42.
Barbora, K. & Marek, J. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. USA 104, 10488–10493 (2007).
Google Scholar
43.
Baumann, A., Barry, J., Wang, S., Fujiwara, Y. & Wilson, T. G. Paralogous genes involved in juvenile hormone action in Drosophila melanogaster. Genetics 185, 1327–1336 (2010).
CAS PubMed PubMed Central Google Scholar
44.
Riddiford, L. M., Truman, J. W., Mirth, C. K. & Shen, Y. C. A role for juvenile hormone in the prepupal development of drosophila melanogaster. Development 137, 1117–1126 (2010).
CAS PubMed PubMed Central Google Scholar
45.
Abdou, M. A. et al. Drosophila met and gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 41, 938–945 (2011).
CAS PubMed Google Scholar
46.
Charles, J. P. et al. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. USA 108, 21128–21133 (2011).
ADS CAS PubMed Google Scholar
47.
Li, M., Mead, E. A. & Zhu, J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone- induced gene expression. Proc. Natl. Acad. Sci. USA 108, 638–643 (2011).
ADS CAS PubMed Google Scholar
48.
Bernardo, T. J. & Dubrovsky, E. B. The Drosophila juvenile hormone receptor candidates Methoprene-tolerant (Met) and germ cell-expressed (gce) utilize a conserved LIXXL motif to bind the FTZ-F1 nuclear receptor. J. Biol. Chem. 287, 7821–7833 (2012).
CAS PubMed PubMed Central Google Scholar
49.
Bernardo, T. J. & Dubrovsky, E. B. Molecular mechanisms of transcription activation by juvenile hormone: a critical role for bHLH-PAS and nuclear receptor proteins. Insects 3, 324–338 (2012).
PubMed PubMed Central Google Scholar
50.
Zhang, Z. L., Xu, J., Sheng, Z., Sui, Y. & Palli, S. R. Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, Methoprene tolerant. J. Biol. Chem. 286, 8437–8447 (2011).
CAS PubMed Google Scholar
51.
Jindra, M., Uhlirova, M., Charles, J. P., Smykal, V. & Hill, R. J. Genetic evidence for function of the bHLH-PAS protein Gce /Met as a juvenile hormone receptor. PLoS. Genet. 11(7), e1005394 (2015).
PubMed PubMed Central Google Scholar
52.
Parthasarathy, R. & Palli, S. R. Molecular analysis of nutritional and hormonal regulation of female reproduction in the red flour beetle. Tribolium castaneum. Insect Biochem. Mol. Biol 41, 294–305 (2011).
CAS PubMed Google Scholar
53.
Guo, W. et al. Juvenile hormone-receptor complex acts on Mcm4 and Mcm7 to promote polyploidy and vitellogenesis in the migratory locust. PLOS Genet. 10, e1004702 (2014).
PubMed PubMed Central Google Scholar
54.
Luo, M. et al. Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. J. Biol. Chem. 292, 8823–34 (2017).
CAS PubMed PubMed Central Google Scholar
55.
Song, J., Wu, Z., Wang, Z., Deng, S. & Zhou, S. Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. Insect Biochem. Mol. Biol. 52, 94–101 (2014).
CAS PubMed Google Scholar
56.
Wu, Z., Guo, W., Xie, Y. & Zhou, S. Juvenile hormone activates the transcription of cell-division-cycle 6 (Cdc6) for polyploidy-dependent insect vitellogenesis and oogenesis. J. Biol. Chem. 291, 5418–27 (2016).
CAS PubMed PubMed Central Google Scholar
57.
Wang, Z., Yang, L., Song, J., Kang, L. & Zhou, S. An isoform of Taiman that contains a PRD-repeat motif is indispensable for transducing the vitellogenic juvenile hormone signal in Locusta migratoria. Insect Biochem. Mol. Biol. 82, 31–40 (2017).
CAS PubMed Google Scholar
58.
Cruz, J., Martin, D., Pascual, N., Maestro, J. L. & Piulachs, M. D. Quantity does matter: juvenile hormone and the onset of vitellogenesis in the German cockroach. Insect Biochem. Mol. Biol. 33, 1219–25 (2003).
CAS PubMed Google Scholar
59.
Gujar, H. & Palli, S. R. Juvenile hormone regulation of female reproduction in the common bed bug, Cimex lectularius. Sci. Rep 6, 35546 (2016).
ADS CAS PubMed PubMed Central Google Scholar
60.
Marchal, E., Hult, E. F., Huang, J., Pang, Z. & Stay, B. Methoprene-tolerant (Met) knockdown in the adult female cockroach, Diploptera punctata, completely inhibits ovarian development. PLOS ONE 9, e106737 (2014).
ADS PubMed PubMed Central Google Scholar
61.
Luo, L. Z., Jiang, X. F., Li, K. B. & Hu, Y. Influences of flight on reproduction and longevity of the oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 42, 150–158 (1999).
Google Scholar
62.
Luo, L. Z. & Li, G. B. Ultrastructure of the flight muscle of adult oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 39(2), 141–148 (1996).
ADS Google Scholar
63.
Luo, L. Z. An ultrastructural study on the development of flight muscle in adult oriental armyworm, Mythimna separata (Walker). Acta Entomol. Sin 39(4), 366–374 (1996).
MathSciNet Google Scholar
64.
Socha, R. & Šula, J. Flight muscles polymorphism in a flightless bug, Pyrrhocoris apterus (L.): Developmental pattern, biochemical profile and endocrine control. J. Insect Physiol. 52, 231–239 (2006).
CAS PubMed Google Scholar
65.
SAS Institute. SAS/STAT User’s Guide, Release 6.03 Ed. SAS Instisute, Cary, NC. (1988). More