Philippa Kaur
More stories
163 Shares99 Views
in EcologyLichen-like association of Chlamydomonas reinhardtii and Aspergillus nidulans protects algal cells from bacteria
1.
Taylor TN, Remy W, Hass H. Parasitism in a 400-million-year-old green alga. Nature. 1992;357:493–4.
Google Scholar
2.
Taylor TN, Hass H, Remy W, Kerp H. The oldest fossil lichen. Nature. 1995;378:244.
CAS Google Scholar3.
Honegger R, Edwards D, Axe L. The earliest records of internally stratified cyanobacterial and algal lichens from the lower devonian of the welsh borderland. N Phytol. 2013;197:264–75.
Google Scholar4.
Selosse MA, Le Tacon F. The land flora: a phototroph-fungus partnership?. Trends Ecol Evol. 1998;13:15–20.
CAS PubMed Google Scholar5.
Schwendener S. Die Algentypen der Flechtengonidien. Universitätsbuchdruckerei von C Schultze, Basel. 1869.6.
Ahmadjian V, Jacobs JB. Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature. 1981;289:169–72.
Google Scholar7.
Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11:21–32.
CAS PubMed Google Scholar8.
Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, et al. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 2015;6:299.
PubMed PubMed Central Google Scholar9.
Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 2015;9:412–24.
CAS PubMed Google Scholar10.
Grube M, Cardinale M, de Castro JV Jr, Müller H, Berg G. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J. 2009;3:1105.
PubMed Google Scholar11.
Schneider O, Simic N, Aachmann FL, Rückert C, Kristiansen KA, Kalinowski J, et al. Genome mining of Streptomyces sp. YIM 130001 isolated from lichen affords new thiopeptide antibiotic. Front Microbiol. 2018;9:3139.
PubMed PubMed Central Google Scholar12.
Liu C, Jiang Y, Lei H, Chen X, Ma Q, Han L, et al. Four new nanaomycins produced by Streptomyces hebeiensis derived from lichen. Chem Biodivers. 2017;14:e1700057.
Google Scholar13.
Parrot D, Antony-Babu S, Intertaglia L, Grube M, Tomasi S, Suzuki MT. Littoral lichens as a novel source of potentially bioactive Actinobacteria. Sci Rep. 2015;5:15839.
CAS PubMed PubMed Central Google Scholar14.
Parrot D, Legrave N, Delmail D, Grube M, Suzuki M, Tomasi S. Review—Lichen-associated bacteria as a hot spot of chemodiversity: Focus on uncialamycin, a promising compound for future medicinal applications. Planta Med. 2016;82:1143–52.
CAS PubMed Google Scholar15.
Netzker T, Flak M, Krespach MKC, Stroe MC, Weber J, Schroeckh V, et al. Microbial interactions trigger the production of antibiotics. Curr Opin Microbiol. 2018;45:117–23.
CAS PubMed Google Scholar16.
Fischer J, Müller SY, Netzker T, Jäger N, Gacek-Matthews A, Scherlach K, et al. Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. eLife. 2018;7:e40969.
PubMed PubMed Central Google Scholar17.
Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J, et al. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci USA. 2009;106:14558–63.
CAS PubMed Google Scholar18.
Stöcker-Worgötter E. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep. 2008;25:188–200.
PubMed Google Scholar19.
Hom EFY, Murray AW. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science. 2014;345:94–8.
CAS PubMed PubMed Central Google Scholar20.
Netzker T, Schroeckh V, Gregory MA, Flak M, Krespach MKC, Leadlay PF, et al. An efficient method to generate gene deletion mutants of the rapamycin-producing bacterium Streptomyces iranensis HM 35. Appl Environ Microbiol. 2016;82:3481–92.
CAS PubMed PubMed Central Google Scholar21.
Xu W, Zhai G, Liu Y, Li Y, Shi Y, Hong K, et al. An iterative module in the azalomycin F polyketide synthase contains a switchable enoylreductase domain. Angew Chem Int Ed. 2017;56:5503–6.
CAS Google Scholar22.
Gorman D, Levine R. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci USA. 1965;54:1665–9.
CAS PubMed Google Scholar23.
Sjoblad RD, Frederikse PH. Chemotactic responses of Chlamydomonas reinhardtii. Mol Cell Biol. 1981;1:1057–60.
CAS PubMed PubMed Central Google Scholar24.
Kessler RW, Weiss A, Kuegler S, Hermes C, Wichard T. Macroalgal-bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Mol Ecol. 2018;27:1808–19.
CAS PubMed Google Scholar25.
Paul C, Mausz MA, Pohnert G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics. 2013;9:349–59.
CAS Google Scholar26.
Xu L, Xu X, Yuan G, Wang Y, Qu Y, Liu E. Mechanism of azalomycin F5a against methicillin-resistant Staphylococcus aureus. BioMed Res Int. 2018;2018:6942452.
PubMed PubMed Central Google Scholar27.
Pouneva I. Evaluation of algal viability and physiology state by fluorescent microscopic methods. Bulgarian J Plant Physiol. 1997;23:67–76.
Google Scholar28.
Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45:W36–41.
CAS PubMed PubMed Central Google Scholar29.
Arai M. Azalomycin F, an antibiotic against fungi and Trichomonas. Arzneimittelforschung. 1968;18:1396–9.
CAS PubMed Google Scholar30.
Hong H, Sun Y, Zhou Y, Stephens E, Samborskyy M, Leadlay PF. Evidence for an iterative module in chain elongation on the azalomycin polyketide synthase. Beilstein J Org Chem. 2016;12:2164–72.
CAS PubMed PubMed Central Google Scholar31.
Yuan GJ, Li PB, Yang J, Pang HZ, Pei Y. Anti-methicillin-resistant Staphylococcus aureus assay of azalomycin F5a and its derivatives. Chin J Nat Med. 2014;12:309–13.
CAS PubMed Google Scholar32.
Hong H, Fill T, Leadlay PF. A common origin for guanidinobutanoate starter units in antifungal natural products. Angew Chem Int Ed. 2013;52:13096–9.
CAS Google Scholar33.
Bennoun P, Spierer-Herz M, Erickson J, Girard-Bascou J, Pierre Y, Delosme M, et al. Characterization of photosystem II mutants of Chlamydomonas reinhardii lacking the psbA gene. Plant Mol Biol. 1986;6:151–60.
CAS PubMed Google Scholar34.
Erickson JM, Rahire M, Malnoë P, Girard-Bascou J, Pierre Y, Bennoun P, et al. Lack of the D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem II stability and D1 expression. EMBO J. 1986;5:1745–54.
CAS PubMed PubMed Central Google Scholar35.
Masloff S, Pöggeler S, Kück U. The pro1 + gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development. Genetics. 1999;152:191–9.
CAS PubMed PubMed Central Google Scholar36.
Yuan G, Xu L, Xu X, Li P, Zhong Q, Xia H, et al. Azalomycin F5a, a polyhydroxy macrolide binding to the polar head of phospholipid and targeting to lipoteichoic acid to kill methicillin-resistant Staphylococcus aureus. Biomed Pharmacother. 2019;109:1940–50.
CAS PubMed Google Scholar37.
Cheng J, Yang SH, Palaniyandi SA, Han JS, Yoon T-M, Kim T-J, et al. Azalomycin F complex is an antifungal substance produced by Streptomyces malaysiensis MJM1968 isolated from agricultural soil. J Korean Soc Appl Biol Chem. 2010;53:545–52.
CAS Google Scholar38.
Du ZY, Alvaro J, Hyden B, Zienkiewicz K, Benning N, Zienkiewicz A, et al. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol Biofuels. 2018;11:174.
PubMed PubMed Central Google Scholar39.
Du ZY, Zienkiewicz K, Vande Pol N, Ostrom NE, Benning C, Bonito GM. Algal-fungal symbiosis leads to photosynthetic mycelium. eLife. 2019;8:e47815.
CAS PubMed PubMed Central Google Scholar40.
Muggia L, Fernández-Brime S, Grube M, Wedin M. Schizoxylon as an experimental model for studying interkingdom symbiosis. FEMS Microbiol Ecol. 2016;92:fiw165.
PubMed Google Scholar41.
Grube M, Wedin M. Lichenized fungi and the evolution of symbiotic organization. Microbiol Spectr. 2016;4.42.
Aschenbrenner IA, Cernava T, Berg G, Grube M. Understanding microbial multi-species symbioses. Front Microbiol. 2016;7:180.
PubMed PubMed Central Google Scholar43.
Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007;3:408–14.
CAS PubMed Google Scholar44.
Shabuer G, Ishida K, Pidot SJ, Roth M, Dahse H-M, Hertweck C. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory. Science. 2015;350:670–4.
CAS PubMed Google Scholar45.
Kinsinger RF, Shirk MC, Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol. 2003;185:5627–31.
CAS PubMed PubMed Central Google Scholar46.
Aiyar P, Schaeme D, García-Altares M, Carrasco Flores D, Dathe H, Hertweck C, et al. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nat Commun. 2017;8:1756.
PubMed PubMed Central Google Scholar47.
Stroe MC, Netzker T, Scherlach K, Krüger T, Hertweck C, Valiante V, et al. Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin. eLife. 2020;9:e52541.
PubMed PubMed Central Google Scholar48.
Harvey BM, Mironenko T, Sun Y, Hong H, Deng Z, Leadlay PF, et al. Insights into polyether biosynthesis from analysis of the nigericin biosynthetic gene cluster in Streptomyces sp. DSM4137. Cell Chem Biol. 2007;14:703–14.
CAS Google Scholar49.
Zheng X, Zhang B, Zhang J, Huang L, Lin J, Li X, et al. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl Microbiol Biotechnol. 2013;97:9207–15.
CAS PubMed Google Scholar50.
Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P. Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell. 2017;29:2498–518.
CAS PubMed PubMed Central Google Scholar51.
Le TB, Fiedler HP, den Hengst CD, Ahn SK, Maxwell A, Buttner MJ. Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus. Mol Microbiol. 2009;72:1462–74.
CAS PubMed Google Scholar52.
Xu Y, Willems A, Au-Yeung C, Tahlan K, Nodwell JR. A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor. MBio. 2012;3:e00191–12.
CAS PubMed PubMed Central Google Scholar53.
Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta. 1998;1436:127–50.
CAS PubMed Google Scholar54.
Vanzela AP, Said S, Prade RA. Phosphatidylinositol phospholipase C mediates carbon sensing and vegetative nuclear duplication rates in Aspergillus nidulans. Can J Microbiol. 2011;57:611–6.
PubMed Google Scholar55.
Schink KO, Tan KW, Stenmark H. Phosphoinositides in control of membrane dynamics. Annu Rev Cell Dev Biol. 2016;32:143–71.
CAS PubMed Google Scholar56.
Miller MB, Haubrich BA, Wang Q, Snell WJ, Nes WD. Evolutionarily conserved Δ25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii. J Lipid Res. 2012;53:1636–45.
CAS PubMed PubMed Central Google Scholar57.
Shapiro BE, Gealt MA. Ergosterol and lanosterol from Aspergillus nidulans. Microbiology. 1982;128:1053–6.
CAS Google Scholar58.
Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014;10:400–6.
CAS PubMed PubMed Central Google Scholar59.
Laterre P-F, Colin G, Dequin P-F, Dugernier T, Boulain T, Azeredo da Silveira S, et al. CAL02, a novel antitoxin liposomal agent, in severe pneumococcal pneumonia: a first-in-human, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis. 2019;19:620–30.
CAS PubMed Google Scholar60.
Pletz MW, Bauer M, Brakhage AA. One step closer to precision medicine for infectious diseases. Lancet Infect Dis. 2019;19:564–5.
PubMed Google Scholar61.
Miransari M. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol. 2011;193:77–81.
CAS PubMed Google Scholar62.
Otto S, Bruni EP, Harms H, Wick LY. Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia. ISME J. 2017;11:386–93.
PubMed Google Scholar63.
Pion M, Spangenberg JE, Simon A, Bindschedler S, Flury C, Chatelain A, et al. Bacterial farming by the fungus Morchella crassipes. Proc R Soc B Biol Sci. 2013;280:20132242.
Google Scholar64.
Splivallo R, Deveau A, Valdez N, Kirchhoff N, Frey-Klett P, Karlovsky P. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol. 2015;17:2647–60.
PubMed Google Scholar65.
Lutzoni F, Pagel M, Reeb V. Major fungal lineages are derived from lichen symbiotic ancestors. Nature. 2001;411:937–40.
CAS PubMed Google Scholar66.
Mukhin VA, Patova EN, Kiseleva IS, Neustroeva NV, Novakovskaya IV. Mycetobiont symbiotic algae of wood-decomposing fungi. Russ J Ecol. 2016;47:133–7.
CAS Google Scholar67.
Delaux P-M, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, et al. Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci USA. 2015;112:13390–5.
CAS PubMed Google Scholar68.
Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun. 2018;9:5451.
CAS PubMed PubMed Central Google Scholar69.
Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA. 2005;102:3141–6.
CAS PubMed Google Scholar70.
Larson DW. Lichen water relations under drying conditions. N Phytol. 1979;82:713–31.
Google Scholar More
