1.
Stearns, S. C. The evolution of life histories. (Oxford, 1992).
2.
Ellison, P. T. Endocrinology, energetics, and human life history: a synthetic model. Horm. Behav. 91, 97–106 (2017).
PubMed Google Scholar
3.
Stoehr, A. M. & Kokko, H. Sexual dimorphism in immunocompetence: what does life-history theory predict?. Behav. Ecol. 17, 751–756 (2006).
Google Scholar
4.
Subramanian, S. V., Özaltin, E. & Finlay, J. E. Height of nations: a sioeconomic analysis of cohort differences and patterns among women in 54 low- to middle-income countries. PLoS ONE 6, e18962 (2011).
ADS CAS PubMed PubMed Central Google Scholar
5.
Stulp, G. & Barrett, L. Evolutionary perspectives on human height variation. Biol. Rev. 91, 206–234 (2016).
PubMed Google Scholar
6.
Georgiev, A. V., Kuzawa, C. W. & McDade, T. W. Early developmental exposures shape trade-offs between acquired and innate immunity in humans. Evol. Med. Public Health 2016, 256–269 (2016).
PubMed PubMed Central Google Scholar
7.
Krams, I. et al. Reproduction compromises adaptive immunity in a cyprinid fish. Ecol. Res. 32, 559–566 (2017).
CAS Google Scholar
8.
Baumard, N. Psychological origins of the industrial revolution. Behav. Brain Sci. 1, 1–47 (2018).
Google Scholar
9.
Krams, I. et al. A head start for life history development? Family income mediates associations between height and immune response in men. Am. J. Phys. Anthropol. 168, 421–427 (2019).
PubMed Google Scholar
10.
Luoto, S. An updated theoretical framework for human sexual selection: from ecology, genetics, and life history to extended phenotypes. Adapt. Hum. Behav. Physiol. 5, 48–102 (2019).
Google Scholar
11.
Noble, K. G. et al. Family income, parental education and brain structure in children and adolescents. Nature Neurosci. 18, 773–778 (2015).
CAS PubMed Google Scholar
12.
Zeki, A. et al. Sustained economic hardship and cognitive function: The coronary artery risk development in young adults study. Am. J. Prev. Med. 52, 1–9 (2017).
Google Scholar
13.
Stotz, K. Why developmental niche construction is not selective niche construction: and why it matters. Interface Focus 7, 20160157 (2017).
PubMed PubMed Central Google Scholar
14.
Said-Mohamed, R., Pettifor, J. M. & Norris, S. A. Life history theory hypotheses on child growth: potential implications for short and long-term child growth, development and health. Am. J. Phys. Anthropol. 165, 4–19 (2018).
PubMed Google Scholar
15.
Worthman, C. M. & Trang, K. Dynamics of body time, social time and life history at adolescence. Nature 554(7693), 451–457 (2018).
ADS CAS PubMed Google Scholar
16.
Cabeza de Baca, T., Wahl, R. A., Barnett, M. A., Figueredo, A. J. & Ellis, B. J. Adversity, adaptive calibration, and health: the case of disadvantaged families. Adapt. Hum. Behav. Physiol. 2(2), 93–115 (2016).
Google Scholar
17.
Bateson, P. & Gluckman, P. Plasticity, robustness, development and evolution (Cambridge University Press, Cambridge, 2011).
Google Scholar
18.
Morisaki, N. et al. Ecological analysis of secular trends in low birth weight births and adult height in Japan. J. Epidemiol. Comm. Health 71, 1014–1018 (2017).
Google Scholar
19.
Puts, D. A. Beauty and the beast: mechanisms of sexual selection in humans. Evol. Hum. Behav. 31, 157–175 (2010).
Google Scholar
20.
Tarka, M., Guenther, A., Niemelä, P. T., Nakagawa, S. & Noble, D. W. Sex differences in life history, behavior, and physiology along a slow-fast continuum: a meta-analysis. Behav. Ecol. Sociobiol. 72(8), 132 (2018).
PubMed PubMed Central Google Scholar
21.
Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. Nature Rev. Genet. 20, 173–190 (2019).
CAS PubMed Google Scholar
22.
Luoto, S., Krams, I. & Rantala, M. J. A life history approach to the female sexual orientation spectrum: evolution, development, causal mechanisms, and health. Arch. Sex. Behav. 48(5), 1273–1308. https://doi.org/10.1007/s10508-018-1261-0 (2019).
Article PubMed Google Scholar
23.
Wells, J. C. K. Sexual dimorphism in body composition across human populations: associations with climate and proxies for short- and long-term energy supply. Am. J. Hum. Biol. 24, 411–419 (2012).
PubMed Google Scholar
24.
García-Martínez, D., Torres-Tamayo, N., Torres-Sanchez, I., García-Río, F. & Bastir, M. Morphological and functional implications of sexual dimorphism in the human skeletal thorax. Am. J. Phys. Anthropol. 161(3), 467–477. https://doi.org/10.1002/ajpa.23051 (2016).
Article PubMed Google Scholar
25.
Fischer, B. & Mitteroecker, P. Allometry and sexual dimorphism in the human pelvis. Anatomic. Record 300(4), 698–705 (2017).
Google Scholar
26.
Lassek, W. D. & Gaulin, S. J. Costs and benefits of fat-free muscle mass in men: relationship to mating success, dietary requirements, and native immunity. Evol. Hum. Behav. 30(5), 322–328 (2009).
Google Scholar
27.
Massy-Westropp, N. M., Gill, T. K., Taylor, A. W., Bohannon, R. W. & Hill, C. L. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res. Notes 4(1), 127 (2011).
PubMed PubMed Central Google Scholar
28.
Samal, A., Subramani, V. & Marx, D. B. An analysis of sexual dimorphism in the human face. J Vis. Comm Image Represent 18, 453–463 (2007).
Google Scholar
29.
McDade, T. W. Life history theory and the immune system: Steps toward a human ecological immunology. Am. J. Phys. Anthropol. 122, 100–125 (2003).
Google Scholar
30.
Rigby, N. & Kulathinal, R. J. Genetic architecture of sexual dimorphism in humans. J. Cell. Physiol. 230(10), 2304–2310 (2015).
CAS PubMed Google Scholar
31.
Stringer, S., Polderman, T. & Posthuma, D. Majority of human traits do not show evidence for sex-specific genetic and environmental effects. Sci. Rep. 7(1), 8688 (2017).
ADS PubMed PubMed Central Google Scholar
32.
Grasgruber, P., Sebera, M., Hrazdíra, E., Cacek, J. & Kalina, T. Major correlates of male height: a study of 105 countries. Econom. Hum. Biol. 21, 172–195 (2016).
CAS Google Scholar
33.
Perkins, J. M., Subramanian, S. V., Davey Smith, G. & Özaltin, E. Adult height, nutrition, and population health. Nutr. Rev. 74, 149–165 (2016).
PubMed PubMed Central Google Scholar
34.
Hämäläinen, A., Immonen, E., Tarka, M. & Schuett, W. Evolution of sex-specific pace-of-life syndromes: causes and consequences. Behav. Ecol. Sociobiol. 72(3), 50 (2018).
Google Scholar
35.
Immonen, E., Hämäläinen, A., Schuett, W. & Tarka, M. Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav. Ecol. Sociobiol. 72(3), 60. https://doi.org/10.1007/s00265-018-2462-1 (2018).
Article PubMed PubMed Central Google Scholar
36.
Phalane, K. G., Tribe, C., Steel, H. C., Cholo, M. C. & Coetzee, V. Facial appearance reveals immunity in African men. Sci. Rep. 7(1), 7443 (2017).
ADS PubMed PubMed Central Google Scholar
37.
Luoto, S., Rantala, M. J. & Krams, I. England first, America second: the ecological predictors of life history and innovation [Commentary]. Behav. Brain Sci. 42, 1. https://doi.org/10.1017/S0140525X19000165 (2019).
Article Google Scholar
38.
Lourenço, A. M., Levy, A. M., Caetano, L. C., Carraro Abrahão, A. A. & Prado, J. C. Influence sexual dimorphism on the persistence of blood parasites in infected Calomys callosus. Res. Vet. Sci. 85, 515–521. https://doi.org/10.1016/j.rvsc.2008.01.008 (2008).
Article PubMed Google Scholar
39.
Klein, S. L. & Roberts, C. W. (Eds.) Sex Hormones and Immunity to Infection. (Springer Verlag, 2010).
40.
Klein, S. L. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. BioEssays 34, 1050–1059 (2012).
CAS PubMed PubMed Central Google Scholar
41.
Giefing-Kröll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14(3), 309–321 (2015).
PubMed PubMed Central Google Scholar
42.
Xirocostas, Z. A., Everingham, S. E. & Moles, A. T. The sex with the reduced sex chromosome dies earlier: a comparison across the tree of life. Bio. Lett. 16, 20190867. https://doi.org/10.1098/rsbl.2019.0867 (2020).
Article Google Scholar
43.
Krams, I. A. et al. Body height affects the strength of immune response in young men, but not young women. Sci. Rep. 4, 6223 (2014).
ADS CAS PubMed PubMed Central Google Scholar
44.
Skrinda, I. et al. Body height, immunity, facial and vocal attractiveness in young men. Naturwissenschaften 101, 1017 (2014).
ADS CAS PubMed Google Scholar
45.
Rantala, M. J. et al. Adiposity, compared with masculinity, serves as a more valid cue to immunocompetence in human mate choice. Proc. R. Soc. B. 280, 20122495 (2013).
PubMed Google Scholar
46.
Pļaviņa, L. & Kārkliņa, H. Sieviešu galveno antropometrisko parametru izvērtējums dažādos postnatālās ontoģenēzes periodos. Rīgas Stradiņa universitāte 2014. gada zinātniskā konference: Tēzes, Rīgā, 2014. gada 10. un 11. aprīlī. Rīga: RSU. 31. lpp. (2014).
47.
Rantala, M., J., Coetzee, V., Moore, F. R., Skrinda, I., Kecko, S., Krama, T., Kivleniece, I. & Krams, I. Facial attractiveness is related to women’s cortisol and body fat, but not with immune responsiveness. Biol. Lett. 9, 20130255 (2013).
48.
Pawłowski, B., Nowak, J., Borkowska, B., Augustyniak, D. & Drulis-Kawa, Z. Body height and immune efficacy: testing body stature as a signal of biological quality. Proc. R. Soc. B. 284, 20171372 (2017).
PubMed Google Scholar
49.
Petry, L. J., Weems, L. B. & Livingstone, J. N. Relationship of stress, distress, and the immunological response to a recombinant hepatitis-B vaccine. J Family Pract. 32, 481–486 (1991).
CAS Google Scholar
50.
Jabaaij, L. et al. Influence of perceived psychological stress and distress on antibody response to low dose rDNA hepatitis B vaccine. J. Psychosomat. Res. 37(4), 361–369 (1993).
CAS Google Scholar
51.
Jabaaij, L. et al. Modulation of immune response to rDNA hepatitis B vaccination by psychological stress. J. Psychosomat. Res. 41, 129–137 (1996).
CAS Google Scholar
52.
Ellis, B. J. & Del Giudice, M. Developmental adaptation to stress: an evolutionary perspective. Ann. Rev. Psychol. 70(1), 111–139 (2019).
Google Scholar
53.
LaBeaud, A. D., Malhotra, I., King, M. J., King, C. L. & King, C. H. Do antenatal parasite infections devalue childhood vaccination?. PLoS Negl. Trop. Diseases 3(5), e442 (2009).
Google Scholar
54.
Cooper, P. J. et al. Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. Infect. Immun. 69, 1574–1580 (2001).
CAS PubMed PubMed Central Google Scholar
55.
Elias, D., Britton, S., Aseffa, A., Engers, H. & Akuffo, H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 26, 3897–3902 (2008).
CAS PubMed Google Scholar
56.
Djuardi, Y., Wammes, L. J., Supali, T., Sartono, E. & Yazdanbakhsh, M. Immunological footprint: the development of a child’s immune system in environments rich in microorganisms and parasites. Parasitology 138(12), 1508–1518 (2011).
PubMed Google Scholar
57.
Blackwell, A. D., Snodgrass, J. J., Madimenos, F. C. & Sugiyama, L. S. Life history, immune function, and intestinal helminths: trade-offs among immunoglobulin E, C-reactive protein, and growth in an Amazonian population. Am. J. Hum. Biol. 22(6), 836–848 (2010).
PubMed PubMed Central Google Scholar
58.
Cao, J. et al. Early-life exposure to widespread environmental toxicants and health risk: a focus on the immune and respiratory systems. Ann. Glob. Health 82(1), 119–131 (2016).
PubMed Google Scholar
59.
Lander, R. L. et al. Factors influencing growth and intestinal parasitic infections in preschoolers attending philanthropic daycare centers in Salvador, Northeast Region of Brazil. Cadernos Saúde Pública, Rio de Janeiro 28(11), 2177–2188 (2012).
Google Scholar
60.
Anuar, T. S., Salleh, F. M. & Moktar, N. Soil-transmitted helminth infections and associated risk factors in three Orang Asli tribes in Peninsular Malaysia. Sci. Rep. 4, 4101 (2014).
ADS CAS PubMed PubMed Central Google Scholar
61.
Hotez, P. J. & Gurwith, M. Europe’s neglected infections of poverty. Int. J. Infect. Diseas. 15, e611–e619 (2011).
Google Scholar
62.
McDade, T. W. et al. Genome-wide analysis of DNA methylation in relation to socioeconomic status during development and early adulthood. Am. J. Phys. Anthropol. 1, 1–9 (2019).
Google Scholar
63.
Needham, B. L. et al. Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: the multi-ethnic study of atherosclerosis. Epigenetics 10(10), 958–969 (2015).
PubMed PubMed Central Google Scholar
64.
Kubzansky, L., Seeman, T. E. & Glymour, M. M. Biological pathways linking social conditions and health: plausible mechanisms and emerging puzzles. In Social epidemiology (eds Berkman, L. F. et al.) 512–561 (Oxford University Press, Oxford, 2014).
Google Scholar
65.
Gaulin, S. J. & Boster, J. S. Human marriage systems and sexual dimorphism in stature. Am. J. Phys. Anthropol. 89(4), 467–475 (1992).
CAS PubMed Google Scholar
66.
Polo, P., Fernandez, A., Muñoz-Reyes, J. A., Dufey, M. & Buunk, A. P. Intrasexual competition and height in adolescents and adults. Evol. Psychol. 16(1), 1474704917749172 (2018).
CAS PubMed Google Scholar
67.
Cornwallis, C. K. & Uller, T. Towards an evolutionary ecology of sexual traits. Trends Ecol. Evol. 25(3), 145–152 (2010).
PubMed Google Scholar
68.
Jewell, S. L., Luecken, L. J., Gress-Smith, J., Crnic, K. A. & Gonzales, N. A. Economic stress and cortisol among postpartum low-income Mexican American women: buffering influence of family support. Behav. Med. 41(3), 138–144 (2015).
PubMed PubMed Central Google Scholar
69.
Serwinski, B., Salavecz, G., Kirschbaum, C. & Steptoe, A. Associations between hair cortisol concentration, income, income dynamics and status incongruity in healthy middle-aged women. Psychoneuroendocrinol. 67, 182–188 (2016).
CAS Google Scholar
70.
Ursache, A., Merz, E. C., Melvin, S., Meyer, J. & Noble, K. G. Socioeconomic status, hair cortisol and internalizing symptoms in parents and children. Psychoneuroendocrinol. 78, 142–150 (2017).
CAS Google Scholar
71.
Pepper, G. V. & Nettle, D. The behavioural constellation of deprivation: causes and consequences. Behav. Brain Sci. 40, e314 (2017).
PubMed Google Scholar
72.
Burns, V. E., Carroll, D., Ring, C., Harrison, L. K. & Drayson, M. Stress, coping, and hepatitis B antibody status. Psychosom. Med. 64(2), 287–293 (2002).
PubMed Google Scholar
73.
Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 5(3), 243–251 (2005).
CAS PubMed Google Scholar
74.
O’Connor, T. G. et al. Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain Behav. Immun. 32, 21–28 (2013).
CAS PubMed PubMed Central Google Scholar
75.
Hayward, S. E. et al. A systematic review of the impact of psychosocial factors on immunity: implications for enhancing BCG response against tuberculosis. Soc. Sci. Med. Popul. Health. 10, 100522 (2020).
Google Scholar
76.
Cohen, B. E., Edmondson, D. & Kronish, I. M. State of the art review: depression, stress, anxiety, and cardiovascular disease. Am. J. Hypertens. 28(11), 1295–1302 (2015).
CAS PubMed PubMed Central Google Scholar
77.
Golbidi, S., Frisbee, J. C. & Laher, I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am. J. Physiol. Heart Circ. Physiol. 308(12), 1476–1498 (2015).
Google Scholar
78.
Cozma, S. et al. Salivary cortisol and α-amylase: subclinical indicators of stress as cardiometabolic risk. Braz. J. Med. Biol. Res. 50(2), e5577 (2017).
CAS PubMed PubMed Central Google Scholar
79.
Steptoe, A. & Kiwimäki, M. Stress and cardiovascular disease. Nature Rev. Cardiol. 9, 360–370 (2012).
CAS Google Scholar
80.
Kivimäki, M. & Kawachi, I. Work stress as a risk factor for cardiovascular disease. Curr. Cardiol. Rep. 17(9), 630 (2015).
PubMed Google Scholar
81.
Sephton, S. E. et al. Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav. Immun. 30(Suppl), S163-170 (2012).
PubMed Google Scholar
82.
Spiegel, D. Minding the body: psychotherapy and cancer survival. Br. J. Health Psychol. 19(3), 465–485 (2014).
PubMed Google Scholar
83.
Garland, E. L., Beck, A. C., Lipschitz, D. L. & Nakamura, Y. Dispositional mindfulness predicts attenuated waking salivary cortisol levels in cancer survivors: a latent growth curve analysis. J. Cancer Survivorship 9, 215 (2015).
Google Scholar
84.
McEwen, B. S. & Gianaros, P. J. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. N. Y. Acad. Sci. 1186, 190–222 (2010).
ADS PubMed PubMed Central Google Scholar
85.
Del Giudice, M., Ellis, B. J. & Shirtcliff, E. A. The adaptive calibration model of stress responsivity. Neurosci. Biobehav. Rev. 35(7), 1562–1592 (2011).
PubMed Google Scholar
86.
Rantala, M. J., Luoto, S., Krams, I. & Karlsson, H. Depression subtyping based on evolutionary psychiatry: proximate mechanisms and ultimate functions. Brain Behav. Immun. 69, 603–617 (2018).
PubMed Google Scholar
87.
Rantala, M. J., Luoto, S., Krama, T. & Krams, I. Eating disorders: an evolutionary psychoneuroimmunological approach. Front. Psychol. 10, 2200. https://doi.org/10.3389/fpsyg.2019.02200 (2019).
Article PubMed PubMed Central Google Scholar
88.
Greff, M. J. et al. Hair cortisol analysis: an update on methodological considerations and clinical applications. Clin. Biochem. 63, 1–9 (2018).
PubMed Google Scholar
89.
Khoury, J. E., Enlow, M. B., Plamondon, A. & Lyons-Ruth, K. The Association between adversity and hair cortisol levels in humans: a meta-analysis. Psychoneuroendocrinol. 103, 104–117 (2019).
CAS Google Scholar
90.
Doyle, H. H. & Murphy, A. Z. Sex differences in innate immunity and its impact on opioid pharmacology. J. Neurosci. Res. 95(1–2), 487–489 (2017).
CAS PubMed PubMed Central Google Scholar
91.
Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nature Rev. Immunol. 8, 737–744 (2008).
CAS Google Scholar
92.
Hao, S. et al. Modulation of 17b-estradiol on the number and cytotoxicity of NK cells in vivo related to MCM and activating receptors. Int. Immunopharmacol. 7, 1765–1775 (2007).
CAS PubMed Google Scholar
93.
Ashcroft, G. S., Greenwell-Wild, T., Horan, M. A., Wahl, S. M. & Ferguson, M. W. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 155, 1137–1146 (1999).
CAS PubMed PubMed Central Google Scholar
94.
Krams, I. et al. Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comp. Biochem. Physiol. A: Mol. Integrat. Physiol. 161, 422–428 (2012).
CAS Google Scholar
95.
Stoll, M. L. Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis. Clin. Exp. Rheumatol. 29, 322–330 (2011).
CAS PubMed PubMed Central Google Scholar
96.
Klasing, K. C. & Leshchinsky, T. V. Functions, costs, and bene- fits of the immune system during development and growth. Ostrich 69, 2817–2832 (1999).
Google Scholar
97.
McDade, T. W., Georgiev, A. V. & Kuzawa, C. V. Trade-offs between acquired and innate immune defenses in humans. Evol. Med. Publ. Health 2016(1), 1–16 (2016).
Google Scholar
98.
Elia, M. Organ and tissue contribution to metabolic rate. in Energy Metabolism: Tissue Determinants and Cellular Corollaries (eds. McKinney, J. M. & Tucker, H. N.) 61–80. (Raven, 1992).
99.
Muehlenbein, M. P., Hirschtick, J. L. & Bonner, J. Z. Toward quantifying the usage costs of human immunity: altered metabolic rates and hormone levels during acute immune activation in men. Am. J. Human Biol. 22, 546–556 (2010).
Google Scholar
100.
Taylor, S. E., Lehman, B. J., Kiefe, C. I. & Seeman, T. E. Relationship of early life stress and psychological functioning to adult C-reactive protein in the coronary artery risk development in young adults study. Biol. Psych. 60, 819–824 (2006).
CAS Google Scholar
101.
Danese, A. et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch. Pediatr. Adolesc. Med. 163, 1135–1143 (2009).
PubMed PubMed Central Google Scholar
102.
Miller, G. E. et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl. Acad. Sci. USA 106, 14716–14721 (2009).
ADS CAS PubMed Google Scholar
103.
Miller, G. E. & Chen, E. Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychol. Sci. 21, 848–856 (2010).
PubMed PubMed Central Google Scholar
104.
Archer, J. The reality and evolutionary significance of human psychological sex differences. Biol. Rev. 94(4), 1381–1415 (2019).
PubMed Google Scholar
105.
Hartling, C. et al. Interaction of HPA axis genetics and early life stress shapes emotion recognition in healthy adults. Psychoneuroendocrinol. 99, 28–37 (2019).
Google Scholar
106.
Frankenhuis, W. E., Nettle, D. & Dall, S. R. A case for environmental statistics of early-life effects. Phil. Trans. R. Soc. B 374(1770), 20180110 (2019).
PubMed Google Scholar
107.
Foo, Y. Z. et al. Immune function during early adolescence positively predicts adult facial sexual dimorphism in both men and women. Evol. Hum. Behav. 1, 1. https://doi.org/10.1016/j.evolhumbehav.2020.02.002 (2020).
Article Google Scholar
108.
Cohen, S., Miller, G. E. & Rabin, B. S. Psychological stress and antibody response to immunization: a critical review of the human literature. Psychosom. Med. 63, 7–18 (2001).
CAS PubMed Google Scholar
109.
Rantala, M. J. et al. Evidence for the stress-linked immunocompetence handicap hypothesis in humans. Nature Comm. 3, 694 (2012).
ADS Google Scholar
110.
Tyrrell, J. et al. Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank. Br. Med. J. 352, 582 (2016).
Google Scholar
111.
Lavrinoviča, I., Lavriņenko, O., & Teivāns-Treinovskis, J. Population income differentiation and its influence on the crime. in Proceedings of the XIII International Scientific Conference Sustainable Business under Changing Economic Conditions (Dotkus, W., Holger, B., Žilys, J., Rozīte, M., Rumpīte, D., & Vīksne, I., Eds.) Rīga, Latvia: School of Business Administration Turība, pp. 242–251. Retrieved from: https://aurora.turiba.lv/bti/Editor/Manuscript/Proceeding/ (2012).
112.
R Core Team. R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2018).
113.
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
MathSciNet MATH Google Scholar More