The density of anthropogenic features explains seasonal and behaviour-based functional responses in selection of linear features by a social predator
1.
Saunders, S. C., Mislivets, M. R., Chen, J. & Cleland, D. T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 103, 209â225 (2002).
Google ScholarÂ
2.
Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: A reassessment 10 years after cut. Can. J. For. Res. 35, 151â160 (2005).
Google ScholarÂ
3.
SahlĂ©n, E., StĂžen, O. & Swenson, J. E. Brown bear den site concealment in relation to human activity in Sweden. Ursus 22, 152â158 (2011).
Google ScholarÂ
4.
James, A. & Stuart-Smith, A. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manage. 64, 154â159 (2000).
Google ScholarÂ
5.
Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of earthâs ecosystems. Science 277, 494â499 (1997).
CASÂ Google ScholarÂ
6.
Wittmer, H. U., McLellan, B. N., Serrouya, R. & Apps, C. D. Changes in landscape composition influence the decline of a threatened woodland caribou population. J. Anim. Ecol. 76, 568â579 (2007).
PubMed Google ScholarÂ
7.
Irwin, L. L., Rock, D. F. & Miller, G. P. Stand structures used by Northern spotted owls in managed forests. J. Raptor Res. 34, 175â186 (2000).
Google ScholarÂ
8.
Leblond, M., Dussault, C. & Ouellet, J. P. Avoidance of roads by large herbivores and its relation to disturbance intensity. J. Zool. 289, 32â40 (2013).
Google ScholarÂ
9.
Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: Wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253â263 (2017).
Google ScholarÂ
10.
Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE https://doi.org/10.1371/journal.pone.0195480 (2018).
Article PubMed PubMed Central Google ScholarÂ
11.
Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535â1542 (2011).
Google ScholarÂ
12.
Sorensen, T. et al. Determining sustainable levels of cumulative effects for boreal caribou. J. Wildl. Manage. 72, 900â905 (2008).
Google ScholarÂ
13.
Dabros, A., Pyper, M. & Castilla, G. Seismic lines in the boreal and arctic ecoystems of North America: Environmental impacts, challenges and opportunities. Environ. Rev. 26, 214â229 (2018).
Google ScholarÂ
14.
Lee, P. & Boutin, S. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. J. Environ. Manage. 78, 240â250 (2006).
PubMed Google ScholarÂ
15.
Pigeon, K. E. et al. Toward the restoration of caribou habitat: Understanding factors associated with human motorized use of legacy seismic lines. Environ. Manage. 58, 821â832 (2016).
ADS PubMed Google ScholarÂ
16.
Schneider, R. R., Hauer, G., Adamowicz, W. L. V. & Boutin, S. Triage for conserving populations of threatened species: The case of woodland caribou in Alberta. Biol. Conserv. 143, 1603â1611 (2010).
Google ScholarÂ
17.
Environment Canada. Recovery strategy for the woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada. in Species at Risk Act Recovery Strategy Series 138 (Environment Canada, 2012).
18.
Environment Canada. Recovery strategy for the woodland Caribou, southern mountain population (Rangifer tarandus caribou) in Canada. in Species at Risk Act Recovery Strategy Series. Environment 103 (Environment Canada, Ottawa, 2014).
19.
Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).
Article Google ScholarÂ
20.
DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274â284 (2018).
PubMed Google ScholarÂ
21.
Johnson, C. J., Ehlers, L. P. W. & Seip, D. R. Witnessing extinctionâCumulative impacts across landscapes and the future loss of an evolutionarily significant unit of woodland caribou in Canada. Biol. Conserv. 186, 176â186 (2015).
Google ScholarÂ
22.
Fisher, J. T. & Burton, A. C. Widlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323â328 (2018).
Google ScholarÂ
23.
Ehlers, L. P. W., Johnson, C. J. & Seip, D. R. Evaluating the influence of anthropogenic landscape change on Wolf distribution: Implications for woodland caribou. Ecosphere 7, e01600. https://doi.org/10.1002/ecs2.1600 (2016).
Article Google ScholarÂ
24.
Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landscape. Ecol. 25, 419â433 (2010).
Google ScholarÂ
25.
Mysterud, A. & Ims, R. A. Functional responses in habitat use: Availability influences relative use in trade-off situations. Ecology 79, 1435â1441 (1998).
Google ScholarÂ
26.
Lima, S. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619â639 (1990).
Google ScholarÂ
27.
Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk using resource selection functions: An example in a wolf-elk predator-prey system. Oikos 111, 101â111 (2005).
Google ScholarÂ
28.
Latham, A. D. M., Latham, M. C., Boyce, M. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854â2865 (2011).
Google ScholarÂ
29.
Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scale: Implications of forest management. For. Ecol. Manage. 257, 96â106 (2009).
Google ScholarÂ
30.
McLoughlin, P., Dunford, J. & Boutin, S. Relating predation mortality to broad-scale habitat selection. J. Anim. Ecol. 74, 701â707 (2005).
Google ScholarÂ
31.
Ausband, D. E. et al. Surveying predicted rendezvous sites to monitor gray wolf populations. J. Wildlife. Manage. 71, 1043â1049 (2010).
Google ScholarÂ
32.
Corns, I. & Annas, R. M. Field Guide to Forest Ecosystems of West-Central Alberta 251 (Canadian Forest Service Northern Forestry Centre, Edmonton, 1986).
Google ScholarÂ
33.
van Rensen, C. K., Nielsen, S. E., White, B., Vinge, T. & Lieffers, V. J. Natural regeneration of forest vegetation on legacy seismic lines in boreal habitats in Albertaâs oil sands region. Biol. Conserv. 184, 127â135 (2015).
Google ScholarÂ
34.
Swanson, M. E. et al. The forgotten stage of forest succession: Early-successional ecoystems on forest sites. Front. Ecol. Environ. 9, 117â125 (2010).
Google ScholarÂ
35.
Melin, M., Matala, J., MehtĂ€talo, L., Pusenius, J. & Packalen, P. Ecological dimensions of airborne laser scanningâAnalyzing the role of forest structure in moose habitat use within a year. Remote Sens. Environ. 173, 238â247 (2015).
ADSÂ Google ScholarÂ
36.
Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manage. 409, 190â201 (2018).
Google ScholarÂ
37.
DeCesare, N. J. et al. Transcending scale dependence in identifying habitat with resource selection functions. Ecology 22, 1068â1083 (2012).
Google ScholarÂ
38.
Neufeld, L. M. Spatial Dynamics of Wolves and Woodland Caribou in an Industrial Forest Landscape in West-Central Alberta 155 (University of Alberta, Alberta, 2006).
Google ScholarÂ
39.
Webb, N., Hebblewhite, M. & Merrill, E. Statistical methods for identifying wolf kill sites using global positioning system locations. J. Wildl. Manage. 72, 1798â1804 (2008).
Google ScholarÂ
40.
Jedrzejewski, W., Schmidt, K., Theuerkauf, J., Jedrzejewska, B. & Okarma, H. Daily movements and territory use by radio-collared wolves (Canis lupus) in Bialowieza primeval forest in Poland. Can. J. Zool. 79, 1993â2004 (2001).
Google ScholarÂ
41.
Mech, L. D. & Boitani, L. Wolves 472 (University of Chicago Press, Chicago, Behaviour, Ecology and Conservation, 2003).
Google ScholarÂ
42.
Jenness, J. Topographic position index (tpi_jen.avx) extension for ArcView 3.x v. 1.3a https://www.jennessent.com/arcview/tpi.htm (2006). Accessed 15 June 2014.
43.
Gessler, P. E., Chadwick, O. A., Chamran, F., Althouse, L. & Holmes, K. Modeling soilâlandscape and ecosystem properties using terrain attributes. Soil Sci. Soc. Am. J. 64, 2046 (2000).
ADSÂ CASÂ Google ScholarÂ
44.
Franklin, S. E., Peddle, D. R. & Dechka, J. A. Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bear habitat mapping. Int. J. Remote Sens. 23, 4633â4652 (2002).
ADSÂ Google ScholarÂ
45.
McDermid, G. J. et al. Remote sensing and forest inventory for wildlife habitat assessment. For. Ecol. Manage. 257, 2262â2269 (2009).
Google ScholarÂ
46.
Environmental Systems Research Institute [ESRI] ArcGIS Desktop: Release 10. Redlands, California, (2015).
47.
MacNearney, D. et al. Heading for the hills? Evaluating spatial distribution of woodland caribou in response to a growing anthropogenic disturbance footprint. Ecol. Evol. 6, 6484â6509 (2016).
PubMed PubMed Central Google ScholarÂ
48.
Nielsen, S. E., Cranston, J., Stenhouse, G. B. & Street, M. Identification of priority areas for grizzly bear conservation and recovery in Alberta, Canada. J. Conserv. Plan. 5, 38â60 (2009).
Google ScholarÂ
49.
White, B. et al. Using the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Can. Water Resour. J. 37, 333â347 (2012).
Google ScholarÂ
50.
Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583â595 (1996).
ADS CAS PubMed Google ScholarÂ
51.
Beyer, H. Geospatial Modelling Environment (version 0.7.2.1) https://www.spatialecology.com/gme (2012). Accessed 16 April 2016.
52.
Murtaugh, P. Simplicity and complexity in ecological data analysis. Ecology 88, 56â62 (2007).
PubMed Google ScholarÂ
53.
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inferences: A Practical Information-Theoretic Approach 2nd edn. (Springer, New Yirk, 2002).
Google ScholarÂ
54.
Takahata, C., Nielsen, S. E., Takii, A. & Izumiyama, S. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape. PLoS ONE 9, e86181. https://doi.org/10.1371/journal.pone.0086181 (2014).
ADS CAS Article PubMed PubMed Central Google ScholarÂ
55.
Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. & Frair, J. Correlation and studies of habitat selection: Problem, red herring, or opportunity?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2233â2244 (2010).
PubMed PubMed Central Google ScholarÂ
56.
Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80â92 (2020).
PubMed Google ScholarÂ
57.
Fieberg, J., Rieger, R. H., Zicus, M. C. & Schildcrout, J. S. Regression modelling of correlated data in ecology: Subject-specific and population averaged response patterns. J. Appl. Ecol. 46, 1018â1025 (2009).
Google ScholarÂ
58.
Glenn, E. M., Hansen, M. C. & Anthony, R. G. Spotted owl home-range and habitat use in young forests of western Oregon. J. Wildl. Manage. 68, 33â50 (2004).
Google ScholarÂ
59.
Sawyer, H., Nielson, R. M., Lindzey, F. & McDonald, L. L. Winter habitat selection of mule deer before and during development of a natural gas field. J. Wildl. Manage. 70, 396â403 (2006).
Google ScholarÂ
60.
Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection by AnimalsâStatistical Design and Analysis for Field Studies 2nd edn. (Kluwer Acadamic Publishers, Berlin, 2002).
Google ScholarÂ
61.
Hebblewhite, M., Percy, M. & Merrill, E. H. Are all global positioning system collars created equal? Correcting habitat-induced bias using three brands in the central Canadian Rockies. J. Wildl. Manage. 71, 2026â2033 (2007).
Google ScholarÂ
62.
Frair, J. L. et al. Removing GPS collar bias in habitat selection studies. J. Appl. Ecol. 41, 201â212 (2004).
Google ScholarÂ
63.
Lumley, T. Survey: Analysis of complex survey samples. R packages version 3.30 (2014).
64.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2015). Accessed 12 Dec 2016.
65.
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3â14 (2010).
Google ScholarÂ
66.
Matthiopoulos, J., Hebblewhite, M., Aarts, G. & Fieberg, J. Generalized functional responses for species distributions. Ecology 92, 583â589 (2011).
PubMed Google ScholarÂ
67.
McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus. 2, 205â216 (2012).
PubMed PubMed Central Google ScholarÂ
68.
Droghini, A. & Boutin, S. Snow conditions influence grey wolf (Canis lupus) travel paths: The effect of human-created linear features. Can. J. Zool. 96, 39â47 (2017).
Google ScholarÂ
69.
GarcĂa-Marmolejo, G., Chapa-Vargas, L., Weber, M. & Huber-Sannwald, E. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico. Glob. Ecol. Conserv. 3, 744â755 (2015).
Google ScholarÂ
70.
DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. R. Soc. B 279, 4626â4633 (2012).
PubMed Google Scholar More
