More stories

  • in

    Unravelling the different causes of nitrate and ammonium effects on coral bleaching

    1.
    Dubinsky, Z. & Jokiel, P. L. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).
    Google Scholar 
    2.
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).
    CAS  PubMed  Google Scholar 

    3.
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).
    CAS  Google Scholar 

    4.
    Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).
    ADS  Google Scholar 

    5.
    Grover, R., Maguer, J.-F., Allemand, D. & Ferrier-Pagès, C. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 48, 2266–2274 (2003).
    ADS  CAS  Google Scholar 

    6.
    Godinot, C., Ferrier-Pagès, C. & Grover, R. Kinetics of phosphate uptake by the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 54, 1627–1633 (2009).
    ADS  Google Scholar 

    7.
    Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).
    ADS  CAS  Google Scholar 

    8.
    Trembley, P., Grover, R., Maguer, J.-F., Legendre, L. & Ferrier-Pagè, C. Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J. Exp. Biol. 215, 1384–1393 (2012).
    Google Scholar 

    9.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLoS ONE 13, e0190957 (2018).
    PubMed  PubMed Central  Google Scholar 

    11.
    Lough, J. M., Anderson, K. D. & Ughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).
    Google Scholar 

    14.
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).
    ADS  CAS  Google Scholar 

    15.
    Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems https://doi.org/10.1007/s10021-019-00433-2 (2019).
    Article  Google Scholar 

    16.
    Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral-algal mutualism. Ecology 95, 1995–2005 (2014).
    PubMed  Google Scholar 

    17.
    Nordemar, I., Nyströn, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).
    CAS  Google Scholar 

    18.
    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).
    PubMed  Google Scholar 

    19.
    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 31768 (2015).
    ADS  Google Scholar 

    20.
    Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).
    ADS  CAS  Google Scholar 

    21.
    Lesser, M. P. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16, 187–192 (1997).
    ADS  Google Scholar 

    22.
    Lesser, M. P. Oxidative stress in marine environments: biochemistry and physiological Ecology. Annu. Rev. Physiol. 68, 253–278 (2006).
    CAS  PubMed  Google Scholar 

    23.
    Downs, C. A. et al. Oxidative stress and seasonal coral bleaching. Free Rad. Biol. Med. 33, 533–543 (2002).
    CAS  PubMed  Google Scholar 

    24.
    Perez, S. & Weis, V. Nitric oxide and cnidarians bleaching: an eviction notice mediates breakdown of a symbiosis. J. Exp. Biol. 209, 2804–2810 (2006).
    CAS  PubMed  Google Scholar 

    25.
    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 59–66 (2008).
    Google Scholar 

    26.
    Halliwell, B. & Gutteridge, J.M.C. (eds.) Free Radicals in Biology and Medicine. (Oxford, 2007).

    27.
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
    PubMed  Google Scholar 

    28.
    Sokolova, I. M. Energy-Limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integ. Comp. Biol. 53, 597–608 (2013).
    Google Scholar 

    29.
    Dominguez-Valdivia, M. D. et al. Nitrogen nutrtion and antioxidant metabolism in ammonium-tolerant and –sensitive plants. Phys. Plant. 132, 359–369 (2008).
    CAS  Google Scholar 

    30.
    Bouchard, J. N. & Yamasaki, H. Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant. Cell Physiol. 49, 641–652 (2008).
    CAS  PubMed  Google Scholar 

    31.
    Yamasaki, H. & Sakihama, Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reducatase: in vitro evidence for the NR*dependent formation of active nitrogen species. FEBS. 468, 89–92 (2000).
    CAS  Google Scholar 

    32.
    Bethke, P. C., Badger, M. R. & Jones, R. L. Apoplastic synthesis of nitric oxide by plant tissues. Plant. Cell. 16, 332–341 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Tischner, R., Planchet, E. & Kaiser, W. M. Mitochondrial electron transport as a source of nitric oxide in the unicellular green algae Chlorella sorokiniana. FEBS Lett. 576, 151–155 (2004).
    CAS  PubMed  Google Scholar 

    34.
    Planchet, E., Gupta, K. J., Sonoda, M. & Kaiser, W. M. Nitric oxide emission from tabacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant. J. 41, 732–743 (2005).
    CAS  PubMed  Google Scholar 

    35.
    Bartesaghi, S. & Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox. Biol. 14, 618–625 (2018).
    CAS  PubMed  Google Scholar 

    36.
    Brodie, J., Devlin, M., Heynes, D. & Waterhouse, J. Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106, 281–302 (2011).
    CAS  Google Scholar 

    37.
    Govers, L. L., Lamers, L. P., Bouma, T. J., de Brouwer, J. H. & van Katwijk, M. M. Eutrophication threatens Caribbean seagrass: an example from Curaçao and Bonaire. Mar. Poll. Bull. 89, 481–486 (2014).
    CAS  Google Scholar 

    38.
    Naumann, M. S., Bednarz, V. N., Ferse, S. C., Niggl, W. & Wild, C. Monitoring of coastal coral reefs near Dahab (Gulf of Aqaba, red sea) indicates local eutrophication as potential cause for change in benthic communities. Environ. Monit. Assess. 187, 1–14 (2015).
    CAS  Google Scholar 

    39.
    Rouzé, H., Lecellier, G., Langlade, M., Planes, S. & Berteaux-Lecellier, V. Fringing reefs exposed to different levels of eutrophication and sedimentation can support similar benthic communities. Mar. Pollut. Bull. 92, 212–221 (2015).
    PubMed  Google Scholar 

    40.
    Hoogenboom, M., Beraud, E. & Ferrier-Pagè, C. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29, 21–29 (2010).
    ADS  Google Scholar 

    41.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7, 248–254 (1976).
    Google Scholar 

    42.
    Jeffrey, S. & Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167, 191–194 (1975).
    CAS  Google Scholar 

    43.
    Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).
    ADS  Google Scholar 

    44.
    Jones, R. J., Kildea, T. & Hoegh-Guldberg, O. PAM chlorophyll fluorometry: a new in situ technique for stress assessment in scleractinian corals, used to examine the effects of cyanide from cyanide fishing. Mar. Pollut. Bull. 38, 864–874 (1999).
    CAS  Google Scholar 

    45.
    Jones, R. The ecotoxicological effects of photosystem II herbicides on corals. Mar. Pollut. Bull. 51, 495–506 (2005).
    CAS  PubMed  Google Scholar 

    46.
    Davies, P. S. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395 (1989).
    Google Scholar 

    47.
    Aguiar, R. B. et al. Estradiol valerate and tibolone: effects upon brain oxidative stress and blood biochemistry during aging in female rats. Biogerontology 9, 285–298 (2008).
    CAS  PubMed  Google Scholar 

    48.
    Oakes, K. D. & van der Kraak, G. J. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat. Toxicol. 63, 447–463 (2003).
    CAS  PubMed  Google Scholar 

    49.
    Huang, D., Ou, B. & Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem. 53, 1841–1856 (2005).
    CAS  PubMed  Google Scholar 

    50.
    Sokolova, I. M., Frederich, M., Bagwe, R., Lanning, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of envirnmental stress tolerance in aquatic organisms. Mar. Environ. Res. 79, 1–15 (2012).
    CAS  PubMed  Google Scholar 

    51.
    Underwood, A. J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge University Press, Cambridge, U.K., 1997).
    Google Scholar 

    52.
    Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147–1150 (2007).
    CAS  PubMed  Google Scholar 

    53.
    Havaux, M. & Niyogi, K. K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA 96, 8762–8767 (1999).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Tardy, F. & Havaux, M. Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim. Biophys. Acta. 1330, 179–193 (1997).
    CAS  PubMed  Google Scholar 

    55.
    Downs, C. A., Mueller, E., Phillips, S., Fauth, J. E. & Woodley, C. M. A molecular biomarker system for assessing the health of coral (Montastrea faveolata) during heat stress. Mar. Biotechnol. 2, 533–544 (2000).
    CAS  PubMed  Google Scholar 

    56.
    Krueger, T. et al. Differential coral bleaching—contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp. Biochem. Physiol. Part A: Mol. Integ. Physiol. 190, 15–25 (2015).
    CAS  Google Scholar 

    57.
    Marangoni, L. F. B. et al. Oxidative stress biomarkers as potential tools in reef degradation monitoring: a study case in a South Atlantic reef under influence of the 2015–2016 El Niño/Southern Oscillation (ENSO). Ecol. Ind. 106, 105533 (2019).
    CAS  Google Scholar 

    58.
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral-Symbiodiniaceae Symbioses. Trends Microbiol. 8, 678–689 (2019).
    Google Scholar 

    59.
    Axenov-Gribanov, D. V. et al. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal. Comp. Biochem. Physiol. Part B. 167, 16–22 (2013).
    Google Scholar 

    60.
    Larade, S. & Storey, K. B. A profile of metabolic responses to anoxia in marine invertebrates. In Sensing, Signaling and Cell Adaptation (eds Storey, K. B. & Storey, J. M.) 27–46 (Elsevier, Amsterdam, 2002).
    Google Scholar 

    61.
    Philip, A., Macdonald, A. L. & Watt, P. W. Lactate—a signal coordinating cell and systemic function. J. Exp. Biol. 208, 4561–4575 (2005).
    Google Scholar 

    62.
    Riobò, N. A. et al. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 359, 139–145 (2001).
    PubMed  PubMed Central  Google Scholar 

    63.
    Wang, Y. & Ruby, E. G. The roles of NO in microbial symbioses. Cell. Microbiol. 13, 518–526 (2013).
    Google Scholar 

    64.
    Higuchi, T., Yuyama, I. & Nakamura, T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities. Reg. S. Mar. Sci. 2, 27–31 (2015).
    Google Scholar 

    65.
    Muscatine, L. & Porter, J. W. Reef corals-mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
    Google Scholar 

    66.
    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. New insights into carbon acquisition and exchanges within the coral-dinoflagellate symbiosis under NH4+ and NO3− supply. Proc. R. Soc. B. 282, 20150610 (2015).
    PubMed  Google Scholar 

    67.
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).
    ADS  Google Scholar 

    68.
    Meyer, J. L. & Schultz, E. T. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol. Oceanogr. 30, 146–156 (1985).
    ADS  Google Scholar  More

  • in

    Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion

    1.
    Oppo, D. et al. Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol. 33, 1013–1034 (2018).
    Google Scholar 
    2.
    Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316, 66–69 (2007).
    Google Scholar 

    3.
    Howe, J. N. W. et al. North Atlantic Deep Water production during the Last Glacial Maximum. Nat. Commun. 7, 11765 (2016).
    Google Scholar 

    4.
    Gebbie, G. How much did Glacial North Atlantic Water shoal? Paleoceanogr. Paleoclimatol. 29, 190–209 (2014).
    Google Scholar 

    5.
    Skinner, L., Fallon, S. J., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).
    Google Scholar 

    6.
    Piotrowski, A. et al. Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357–358, 289–297 (2012).
    Google Scholar 

    7.
    Burke, A. et al. The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanogr. Paleoclimatol. 30, 1021–1039 (2015).
    Google Scholar 

    8.
    Robinson, L. F. & van de Flierdt, T. Southern Ocean evidence for reduced export of North Atlantic Deep Water during Heinrich event 1. Geology 37, 195–198 (2009).
    Google Scholar 

    9.
    Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).
    Google Scholar 

    10.
    Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).
    Google Scholar 

    11.
    Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).
    Google Scholar 

    12.
    Yu, J. et al. Sequestration of carbon in the deep Atlantic during the last glaciation. Nat. Geosci. 9, 319–324 (2016).
    Google Scholar 

    13.
    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).
    Google Scholar 

    14.
    Skinner, L. C. et al. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 41, 667–670 (2013).
    Google Scholar 

    15.
    Barker, S., Knorr, G., Vautravers, M., Diz, P. & Skinner, L. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat. Geosci. 3, 567–571 (2010).
    Google Scholar 

    16.
    Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).
    Google Scholar 

    17.
    Yu, J. M. & Elderfield, H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258, 73–86 (2007).
    Google Scholar 

    18.
    Yu, J. et al. Loss of carbon from the deep sea since the Last Glacial Maximum. Science 330, 1084–1087 (2010).
    Google Scholar 

    19.
    Marchitto, T. & Broeker, W. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, (2006).

    20.
    Yu, J. More efficient North Atlantic carbon pump during the Last Glacial Maximum. Nat. Commun. 10, 2170 (2019).
    Google Scholar 

    21.
    Chalk, T. B., Foster, G. L. & Wilson, P. A. Dynamic storage of glacial CO2 in the Atlantic Ocean revealed by boron [CO32−] and pH records. Earth Planet. Sci. Lett. 510, 1–11 (2019).
    Google Scholar 

    22.
    Broecker, W., Yu, J. & Putnam, A. E. Two contributors to the glacial CO2 decline. Earth Planet. Sci. Lett. 429, 191–196 (2015).
    Google Scholar 

    23.
    Yu, J. M., Elderfield, H. & Piotrowski, A. Seawater carbonate ion–δ13C systematics and application to glacial–interglacial North Atlantic Ocean circulation. Earth Planet. Sci. Lett. 271, 209–220 (2008).
    Google Scholar 

    24.
    Menviel, L. et al. Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data-model comparison study. Paleoceanogr. Paleoclimatol. 31, 2–17 (2017).
    Google Scholar 

    25.
    Muglia, J., Skinner, L. & Schmittner, A. Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496, 47–56 (2018).
    Google Scholar 

    26.
    Hodell, D. A., Charles, C. D. & Sierro, F. J. Late Pleistocene evolution of the ocean’s carbonate system. Earth Planet. Sci. Lett. 192, 109–124 (2001).
    Google Scholar 

    27.
    Gottschalk, J. et al. Past carbonate preservation events in the deep southeast Atlantic Ocean (Cape Basin) and their implications for Atlantic overturning dynamics and marine carbon cycling. Paleoceanogr. Paleoclimatol. 33, 643–663 (2018).
    Google Scholar 

    28.
    Gottschalk, J. et al. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nat. Geosci. 8, 950–954 (2015).
    Google Scholar 

    29.
    Zhao, N. et al. Glacial–interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nat. Commun. 10, 5773 (2019).
    Google Scholar 

    30.
    Roberts, J. et al. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl Acad. Sci. USA 113, 514–519 (2016).
    Google Scholar 

    31.
    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).
    Google Scholar 

    32.
    Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanogr. Paleoclimatol. 28, 539–561 (2013).
    Google Scholar 

    33.
    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern oceans: schematics and transports. Oceanography 26, 80–97 (2013).
    Google Scholar 

    34.
    Matsumoto, K., Oba, T., Lynch-Stieglitz, J. & Yamamoto, H. Interior hydrography and circulation of the glacial Pacific Ocean. Q. Sci. Rev. 21, 1693–1704 (2002).
    Google Scholar 

    35.
    Hu, R., Piotrowski, A. M., Bostock, H. C., Crowhurst, S. & Rennie, V. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum. Earth Planet. Sci. Lett. 447, 130–138 (2016).
    Google Scholar 

    36.
    Keigwin, L. D. North Pacific deep water formation during the latest glaciation. Nature 330, 362–364 (1987).
    Google Scholar 

    37.
    Anderson, D. M. & Archer, D. Glacial–interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature 416, 70–73 (2002).
    Google Scholar 

    38.
    Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanogr. Paleoclimatol. 29, 645–667 (2014).
    Google Scholar 

    39.
    Umling, N. E. & Thunell, R. C. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years. Q. Sci. Rev. 189, 43–56 (2018).
    Google Scholar 

    40.
    Doss, W. & Marchitto, T. M. Glacial deep ocean sequestration of CO2 driven by the eastern equatorial Pacific biologic pump. Earth Planet. Sci. Lett. 377, 43–54 (2013).
    Google Scholar 

    41.
    Kerr, J., Rickaby, R., Yu, J. M., Elderfield, H. & Sadekov, A. Y. The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles. Earth Planet. Sci. Lett. 471, 42–53 (2017).
    Google Scholar 

    42.
    Yu, J. et al. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation. Q. Sci. Rev. 15, 80–89 (2014).
    Google Scholar 

    43.
    Galbraith, E. D. et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449, 890–893 (2007).
    Google Scholar 

    44.
    Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 11487 (2016).
    Google Scholar 

    45.
    Gottschalk, J. et al. Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic. Paleoceanogr. Paleoclimatol. 31, 1583–1602 (2016).
    Google Scholar 

    46.
    Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539 (2016).
    Google Scholar 

    47.
    Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).
    Google Scholar 

    48.
    Jacobel, A. W., McManus, J. F., Anderson, R. F. & Winckler, G. Repeated storage of respired carbon in the equatorial Pacific Ocean over the last three glacial cycles. Nat. Commun. 8, 1727 (2017).
    Google Scholar 

    49.
    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).
    Google Scholar 

    50.
    Schlitzer, R. Ocean Data View v.5.3.0 (Alfred Wegener Institute, 2006); https://odv.awi.de/

    51.
    Barker, S., Greaves, M. & Elderfield, H. A. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).
    Google Scholar 

    52.
    Yu, J. M., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007).
    Google Scholar 

    53.
    Yu, J. M., Day, J., Greaves, M. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst. 6, Q08P01 (2005).
    Google Scholar 

    54.
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
    Google Scholar 

    55.
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).
    Google Scholar 

    56.
    Mackensen, A., Hubberten, H.-W., Bickert, T., Fischer, G. & Fütterer, D. K. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Souther Ocean deep water: implications for glacial ocean circulation models. Paleoceanogr. Paleoclimatol. 8, 587–610 (1993).
    Google Scholar 

    57.
    Hodell, D. A., Venz, K. A., Charles, C. D. & Ninnemann, U. S. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 4, 1004 (2003).
    Google Scholar 

    58.
    Curry, W. B. & Oppo, D. Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the western Altantic Ocean. Paleoceanogr. Paleoclimatol. 20, PA1017 (2005).
    Google Scholar 

    59.
    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. 20, PA1003 (2005).
    Google Scholar 

    60.
    Ninnemann, U. S. & Charles, C. D. Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth Planet. Sci. Lett. 201, 383–396 (2002).
    Google Scholar  More

  • in

    Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming

    1.
    McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–2887 (2018).
    Google Scholar 
    2.
    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 

    3.
    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Phil. Trans. R. Soc. A 373, 20140423 (2015).
    Google Scholar 

    4.
    Xu, L. et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 3, 581–586 (2013).
    Google Scholar 

    5.
    Huo, C., Luo, Y. & Cheng, W. Rhizosphere priming effect: a meta-analysis. Soil Biol. Biochem. 111, 78–84 (2017).
    Google Scholar 

    6.
    Bingeman, C., Varner, J. & Martin, W. The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci. Soc. Am. J. 17, 34–38 (1953).
    Google Scholar 

    7.
    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).
    Google Scholar 

    8.
    Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).
    Google Scholar 

    9.
    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).
    Google Scholar 

    10.
    Zhang, W., Wang, X. & Wang, S. Addition of external organic carbon and native soil organic carbon decomposition: a meta-analysis. PLoS ONE 8, e54779 (2013).
    Google Scholar 

    11.
    Dijkstra, F. A. & Cheng, W. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol. Lett. 10, 1046–1053 (2007).
    Google Scholar 

    12.
    Hartley, I. P. et al. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Change 2, 875–879 (2012).
    Google Scholar 

    13.
    Parker, T. C., Subke, J.-A. & Wookey, P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015).
    Google Scholar 

    14.
    Sulman, B. N. et al. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association. Ecol. Lett. 20, 1043–1053 (2017).
    Google Scholar 

    15.
    Wild, B. et al. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol. Biochem. 75, 143–151 (2014).
    Google Scholar 

    16.
    Wild, B. et al. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Sci. Rep. 6, 25607 (2016).
    Google Scholar 

    17.
    Pegoraro, E. et al. Glucose addition increases the magnitude and decreases the age of soil respired carbon in a long-term permafrost incubation study. Soil Biol. Biochem. 129, 201–211 (2019).
    Google Scholar 

    18.
    Rousk, K., Michelsen, A. & Rousk, J. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments. Glob. Change Biol. 22, 4150–4161 (2016).
    Google Scholar 

    19.
    Walz, J., Knoblauch, C., Boehme, L. & Pfeiffer, E.-M. Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils—impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol. Biochem. 110, 34–43 (2017).
    Google Scholar 

    20.
    Hartley, I. P., Hopkins, D. W., Sommerkorn, M. & Wookey, P. A. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol. Biochem. 42, 92–100 (2010).
    Google Scholar 

    21.
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
    Google Scholar 

    22.
    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).
    Google Scholar 

    23.
    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–839 (2010).
    Google Scholar 

    24.
    Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon–climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).
    Google Scholar 

    25.
    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
    Google Scholar 

    26.
    Bengtson, P., Barker, J. & Grayston, S. J. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol. Evol. 2, 1843–1852 (2012).
    Google Scholar 

    27.
    Walker, T. N. et al. Vascular plants promote ancient peatland carbon loss with climate warming. Glob. Change Biol. 22, 1880–1889 (2016).
    Google Scholar 

    28.
    Basiliko, N., Stewart, H., Roulet, N. T. & Moore, T. R. Do root exudates enhance peat decomposition? Geomicrobiol. J. 29, 374–378 (2012).
    Google Scholar 

    29.
    Gavazov, K. et al. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change. Glob. Change Biol. 24, 3911–3921 (2018).
    Google Scholar 

    30.
    Knoblauch, C., Beer, C., Liebner, S. & Grigoriev, M. N. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).
    Google Scholar 

    31.
    Gentsch, N. et al. Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob. Change Biol. 24, 3401–3415 (2018).
    Google Scholar 

    32.
    Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).
    Google Scholar 

    33.
    Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).
    Google Scholar 

    34.
    Keuper, F. et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 23, 4257–4266 (2017).
    Google Scholar 

    35.
    Blume-Werry, G., Milbau, A., Teuber, L. M., Johansson, M. & Dorrepaal, E. Dwelling in the deep—strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol. 223, 1328–1339 (2019).
    Google Scholar 

    36.
    Finger, R. A. et al. Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland. J. Ecol. 104, 1542–1554 (2016).
    Google Scholar 

    37.
    Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 

    38.
    Wild, B. et al. Amino acid production exceeds plant nitrogen demand in Siberian tundra. Environ. Res. Lett. 13, 034002 (2018).
    Google Scholar 

    39.
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).
    Google Scholar 

    40.
    Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 205, 1443–1447 (2015).
    Google Scholar 

    41.
    Zak, D. R. et al. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol. 223, 33–39 (2019).
    Google Scholar 

    42.
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    43.
    Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).
    Google Scholar 

    44.
    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).
    Google Scholar 

    45.
    Monteux, S. et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J. 12, 2129–2141 (2018).
    Google Scholar 

    46.
    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
    Google Scholar 

    47.
    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).
    Google Scholar 

    48.
    Monteux, S. A Song of Ice and Mud: Interactions of Microbes with Roots, Fauna and Carbon in Warming Permafrost-Affected Soils. PhD thesis, Umeå Univ. (2018).

    49.
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
    Google Scholar 

    50.
    Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
    Google Scholar 

    51.
    Shakhova, N. et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 7, 64–70 (2014).
    Google Scholar 

    52.
    Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).
    Google Scholar 

    53.
    Brown, J., Ferrians, O. J. Jr, Heginbottom, J. A. & Melnikov, E. S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions Version 2 (National Snow and Ice Data Center, 2002).

    54.
    Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).
    Google Scholar 

    55.
    Hugelius, G. et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 5, 393–402 (2013).
    Google Scholar 

    56.
    Lawrence, D. M., Slater, A. G. & Swenson, S. C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Clim. 25, 2207–2225 (2012).
    Google Scholar 

    57.
    Fontaine, S., Bardoux, G., Abbadie, L. & Mariotti, A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 7, 314–320 (2004).
    Google Scholar 

    58.
    Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, 3694 (2014).
    Google Scholar 

    59.
    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).
    Google Scholar 

    60.
    Sinsabaugh, R. L. et al. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).
    Google Scholar 

    61.
    Gentsch, N. et al. Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic. Biogeosciences 12, 4525–4542 (2015).
    Google Scholar 

    62.
    Kuzyakov, Y. Review: factors affecting rhizosphere priming effects. J. Plant Nutr. Soil Sci. 165, 382–396 (2002).
    Google Scholar 

    63.
    Hinsinger, P., Bengough, A. G., Vetterlein, D. & Young, I. M. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321, 117–152 (2009).
    Google Scholar 

    64.
    Jones, D. L. & Murphy, D. V. Microbial response time to sugar and amino acid additions to soil. Soil Biol. Biochem. 39, 2178–2182 (2007).
    Google Scholar 

    65.
    Boddy, E., Roberts, P., Hill, P. W., Farrar, J. & Jones, D. L. Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils. Soil Biol. Biochem. 40, 1557–1566 (2008).
    Google Scholar 

    66.
    Global Agro-Ecological Zones (GAEZ v3.0) (FAO/IIASA, 2010).

    67.
    Zhang, Y., Xu, M., Chen, H. & Adams, J. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob. Ecol. Biogeogr. 18, 280–290 (2009).
    Google Scholar 

    68.
    Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).
    Google Scholar 

    69.
    Kuzyakov, Y. & Larionova, A. A. Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J. Plant Nutr. Soil Sci. 168, 503–520 (2005).
    Google Scholar 

    70.
    Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M. & Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nature 560, 80–83 (2018).
    Google Scholar 

    71.
    Bond-Lamberty, B., Wang, C. & Gower, S. T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob. Change Biol. 10, 1756–1766 (2004).
    Google Scholar 

    72.
    Hibbard, K. A., Law, B. E., Reichstein, M. & Sulzman, J. An analysis of soil respiration across Northern Hemisphere temperate ecosystems. Biogeochemistry 73, 29–70 (2005).
    Google Scholar 

    73.
    Buckland, S. T. Monte Carlo confidence intervals. Biometrics 40, 811–817 (1984).
    Google Scholar 

    74.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    75.
    Kummu, M., de Moel, H., Ward, P. J. & Varis, O. Dryad Data from: How close do we live to water? A global analysis of population distance to freshwater bodies. (Dryad Digital Repository, 2011); https://doi.org/10.5061/dryad.71c6r

    76.
    Kummu, M., Moel, H., de Ward, P. J. & Varis, O. How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS ONE 6, e20578 (2011).
    Google Scholar 

    77.
    Iwahashi, J. & Pike, R. J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86, 409–440 (2007).
    Google Scholar  More

  • in

    Global targets that reveal the social–ecological interdependencies of sustainable development

    1.
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
    PubMed  Google Scholar 
    2.
    Anderson, C. B. et al. Determining nature’s contributions to achieve the sustainable development goals. Sustain. Sci. 14, 543–547 (2019).
    Google Scholar 

    3.
    Wood, S. L. R. et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 29, 70–82 (2018).
    Google Scholar 

    4.
    Report of the Secretary-General on SDG Progress 2019 (United Nations, 2019).

    5.
    Le Blanc, D. Towards integration at last? The Sustainable Development Goals as a network of targets. Sustain. Dev. 23, 176–187 (2015).
    Google Scholar 

    6.
    Transforming our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).

    7.
    McGowan, P. J. K., Stewart, G. B., Long, G. & Grainger, M. J. An imperfect vision of indivisibility in the Sustainable Development Goals. Nat. Sustain. 2, 43–45 (2019).
    Google Scholar 

    8.
    Nilsson, M., Griggs, D. & Visbeck, M. Policy: Map the interactions between sustainable development goals. Nature 534, 320–322 (2016).
    PubMed  Google Scholar 

    9.
    Barbier, E. B. & Burgess, J. C. The Sustainable Development Goals and the systems approach to sustainability. Economics 11, 2017–28 (2017).
    Google Scholar 

    10.
    Nilsson, M. et al. Mapping interactions between the sustainable development goals: lessons learned and ways forward. Sustain. Sci. 13, 1489–1503 (2018).
    PubMed  PubMed Central  Google Scholar 

    11.
    Nerini, F. F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).
    Google Scholar 

    12.
    Schlüter, M. et al. Capturing emergent phenomena in social-ecological systems: an analytical framework. Ecol. Soc. 24, 11 (2019).
    Google Scholar 

    13.
    Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems: organizing principles for advancing research methods and approaches. Ecol. Soc. 23, 46 (2018).
    Google Scholar 

    14.
    Fischer, J. et al. Advancing sustainability through mainstreaming a social-ecological systems perspective. Curr. Opin. Environ. Sustain. 14, 144–149 (2015).
    Google Scholar 

    15.
    Leslie, H. M. et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc. Natl Acad. Sci. USA 112, 5979–5984 (2015).
    CAS  PubMed  Google Scholar 

    16.
    Reyers, B., Folke, C., Moore, M.-L., Biggs, R. & Galaz, V. Social-ecological systems insights for navigating the dynamics of the Anthropocene. Annu. Rev. Environ. Resour. 43, 267–289 (2018).
    Google Scholar 

    17.
    Reyers, B., Stafford-Smith, M., Erb, K. H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 26–27, 97–105 (2017).
    Google Scholar 

    18.
    Selomane, O., Reyers, B., Biggs, R. & Hamann, M. Harnessing insights from social-ecological systems research for monitoring sustainable development. Sustainability 11, 1190 (2019).
    Google Scholar 

    19.
    Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).
    CAS  PubMed  Google Scholar 

    20.
    Berkes, F. Environmental governance for the Anthropocene? Social-ecological systems, resilience, and collaborative learning. Sustainability 9, 1232 (2017).
    Google Scholar 

    21.
    Leach, M. et al. Equity and sustainability in the Anthropocene: a social–ecological systems perspective on their intertwined futures. Glob. Sustain. 1, e13 (2018).
    Google Scholar 

    22.
    Blythe, J., Nash, K., Yates, J. & Cumming, G. Feedbacks as a bridging concept for advancing transdisciplinary sustainability research. Curr. Opin. Environ. Sustain. 26–27, 114–119 (2017).
    Google Scholar 

    23.
    Takeuchi, K., Ichikawa, K. & Elmqvist, T. Satoyama landscape as social-ecological system: historical changes and future perspective. Curr. Opin. Environ. Sustain. 19, 30–39 (2016).
    Google Scholar 

    24.
    Lafuite, A.-S. & Loreau, M. Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems. Ecol. Model. 351, 96–108 (2017).
    Google Scholar 

    25.
    Daw, T. M. et al. Evaluating taboo trade-offs in ecosystems services and human well-being. Proc. Natl Acad. Sci. USA 112, 6949–6954 (2015).
    CAS  PubMed  Google Scholar 

    26.
    Liu, J. G. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).
    CAS  Google Scholar 

    27.
    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).
    Google Scholar 

    28.
    Haider, L. J., Boonstra, W. J., Peterson, G. D. & Schlüter, M. Traps and sustainable development in rural areas: a review. World Dev. 101, 311–321 (2019).
    Google Scholar 

    29.
    Lade, S. J., Haider, L. J., Engstrom, G. & Schluter, M. Resilience offers escape from trapped thinking on poverty alleviation. Sci. Adv. 3, e1603043 (2017).
    PubMed  PubMed Central  Google Scholar 

    30.
    Rocha, J. C., Peterson, G., Bodin, O. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).
    CAS  PubMed  Google Scholar 

    31.
    Synes, N. W. et al. Coupled land use and ecological models reveal emergence and feedbacks in socio-ecological systems. Ecography 42, 814–825 (2019).
    Google Scholar 

    32.
    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
    Google Scholar 

    33.
    Díaz, S. et al. The IPBES Conceptual Framework – connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).
    Google Scholar 

    34.
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
    PubMed  Google Scholar 

    35.
    Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change-Hum. Policy Dimens. 28, 289–297 (2014).
    Google Scholar 

    36.
    Smith, D. C. et al. Implementing marine ecosystem-based management: lessons from Australia. ICES J. Mar. Sci. 74, 1990–2003 (2017).
    Google Scholar 

    37.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    CAS  PubMed  Google Scholar 

    38.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    CAS  PubMed  Google Scholar 

    39.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
    CAS  PubMed  Google Scholar 

    40.
    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).
    CAS  PubMed  Google Scholar 

    41.
    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).
    PubMed  Google Scholar 

    42.
    Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).
    CAS  PubMed  Google Scholar 

    43.
    Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3, 41 (2012).
    Google Scholar 

    44.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    CAS  PubMed  Google Scholar 

    45.
    McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).
    Google Scholar 

    46.
    Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14, e0213368 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918 (2013).
    Google Scholar 

    48.
    Nel, J. L. et al. Natural hazards in a changing world: a case for ecosystem-based management. PLoS ONE 9, e95942 (2014).
    PubMed  PubMed Central  Google Scholar 

    49.
    Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).
    Google Scholar 

    50.
    Guerry, A. D. et al. Natural capital and ecosystem services informing decisions: from promise to practice. Proc. Natl Acad. Sci. USA 112, 7348–7355 (2015).
    CAS  PubMed  Google Scholar 

    51.
    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).
    CAS  PubMed  Google Scholar 

    52.
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
    CAS  PubMed  Google Scholar 

    53.
    Garbach, K. et al. Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. Int. J. Agric. Sustain. 15, 11–28 (2017).
    Google Scholar 

    54.
    Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).
    PubMed  Google Scholar 

    55.
    Schreckenberg, K., Mace, G. & Poudyal, M. Ecosystem Services and Poverty Alleviation: Trade-offs and Governance (Routledge, 2018).

    56.
    Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).
    PubMed  Google Scholar 

    57.
    Buckley, R. C. & Brough, P. Economic value of parks via human mental health: an analytical framework. Front. Ecol. Evol. 5, 16 (2017).
    Google Scholar 

    58.
    Elmqvist, T. et al. Urban Planet: Knowledge towards Sustainable Cities (Cambridge Univ. Press, 2018).

    59.
    Reyers, B. et al. Getting the measure of ecosystem services: a social–ecological approach. Front. Ecol. Environ. 11, 268–273 (2013).
    Google Scholar 

    60.
    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).
    CAS  PubMed  Google Scholar 

    61.
    von Uexkull, N., Croicu, M., Fjelde, H. & Buhaug, H. Civil conflict sensitivity to growing-season drought. Proc. Natl Acad. Sci. USA 113, 12391–12396 (2016).
    Google Scholar 

    62.
    Moss, A., Jensen, E. & Gusset, M. Impact of a global biodiversity education campaign on zoo and aquarium visitors. Front. Ecol. Environ. 15, 243–247 (2017).
    Google Scholar 

    63.
    Rustad, S. A. & Binningsbo, H. M. A price worth fighting for? Natural resources and conflict recurrence. J. Peace Res. 49, 531–546 (2012).
    Google Scholar 

    64.
    Linke, A. M., Witmer, F. D. W., O’Loughlin, J., McCabe, J. T. & Tir, J. The consequences of relocating in response to drought: human mobility and conflict in contemporary Kenya. Environ. Res. Lett. 13, 094014 (2018).
    Google Scholar 

    65.
    Burrows, K. & Kinney, P. Exploring the climate change, migration and conflict nexus. Int. J. Environ. Res. Public Health 13, 443 (2016).
    PubMed  PubMed Central  Google Scholar 

    66.
    Global Gender and Development Outlook (United Nations Environment Programme, 2016).

    67.
    Harper, S., Grubb, C., Stiles, M. & Sumaila, U. R. Contributions by women to fisheries economies: insights from five maritime countries. Coast. Manag. 45, 91–106 (2017).
    Google Scholar 

    68.
    Cole, S. M. et al. Postharvest fish losses and unequal gender relations: drivers of the social-ecological trap in the Barotse Floodplain fishery, Zambia. Ecol. Soc. 23, 18 (2018).
    Google Scholar 

    69.
    Martin-Lopez, B., Gomez-Baggethun, E., Garcia-Llorente, M. & Montes, C. Trade-offs across value-domains in ecosystem services assessment. Ecol. Indic. 37, 220–228 (2014).
    Google Scholar 

    70.
    Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011).
    Google Scholar 

    71.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
    CAS  PubMed  Google Scholar 

    72.
    Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Megacity precipitationsheds reveal tele-connected water security challenges. PLoS ONE 13, e0194311 (2018).
    PubMed  PubMed Central  Google Scholar 

    73.
    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).
    PubMed  Google Scholar 

    74.
    Pardini, R., Bueno, Ad. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).
    PubMed  PubMed Central  Google Scholar 

    75.
    Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).
    CAS  PubMed  Google Scholar 

    76.
    Oosterbroek, B., de Kraker, J., Huynen, M. & Martens, P. Assessing ecosystem impacts on health: a tool review. Ecosyst. Serv. 17, 237–254 (2016).
    Google Scholar 

    77.
    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).
    PubMed  Google Scholar 

    78.
    Pereira, L. & Drimie, S. Governance arrangements for the future food system: addressing complexity in South Africa. Environ.: Sci. Policy Sustain. Dev. 58, 18–31 (2016).
    Google Scholar 

    79.
    Ericksen, P. J. Conceptualizing food systems for global environmental change research. Glob. Environ. Change 18, 234–245 (2008).
    Google Scholar 

    80.
    Lade, S. J., Haider, L. J., Engström, G. & Schlüter, M. Resilience offers escape from trapped thinking on poverty alleviation. Sci. Adv. 3, e1603043 (2017).
    PubMed  PubMed Central  Google Scholar 

    81.
    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).
    CAS  PubMed  Google Scholar 

    82.
    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
    CAS  PubMed  Google Scholar 

    83.
    Beck, M. W., Claassen, A. H. & Hundt, P. J. Environmental and livelihood impacts of dams: common lessons across development gradients that challenge sustainability. Int. J. River Basin Manag. 10, 73–92 (2012).
    Google Scholar 

    84.
    Botelho, A., Ferreira, P., Lima, F., Pinto, L. M. C. & Sousa, S. Assessment of the environmental impacts associated with hydropower. Renew. Sustain. Energy Rev. 70, 896–904 (2017).
    Google Scholar 

    85.
    Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).
    Google Scholar 

    86.
    Benitez-Lopez, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).
    Google Scholar 

    87.
    Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. 2, 775–781 (2018).
    PubMed  Google Scholar 

    88.
    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
    CAS  PubMed  Google Scholar 

    89.
    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
    CAS  PubMed  Google Scholar 

    90.
    D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 14, 053001 (2019).
    Google Scholar 

    91.
    Crona, B. I. et al. Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish Fish. 17, 1175–1182 (2016).
    Google Scholar 

    92.
    Galaz, V. et al. Tax havens and global environmental degradation. Nat. Ecol. Evol. 2, 1352–1357 (2018).
    PubMed  Google Scholar 

    93.
    Folke, C. et al. Transnational corporations and the challenge of biosphere stewardship. Nat. Ecol. Evol. 3, 1396–1403 (2019).
    PubMed  Google Scholar 

    94.
    United Nations Secretary-General Progress towards the Sustainable Development Goals: Report of the Secretary-General (UN, 2018).

    95.
    Stafford-Smith, M. et al. Integration: the key to implementing the Sustainable Development Goals. Sustain. Sci. 12, 911–919 (2017).
    PubMed  Google Scholar 

    96.
    Abson, D. J. et al. Leverage points for sustainability transformation. Ambio 46, 30–39 (2017).
    PubMed  PubMed Central  Google Scholar 

    97.
    Sachs, J. D. et al. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2, 805–814 (2019).
    Google Scholar 

    98.
    Arkema, K. K. et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl Acad. Sci. USA 112, 7390–7395 (2015).
    CAS  PubMed  Google Scholar 

    99.
    Eakin, H. et al. Identifying attributes of food system sustainability: emerging themes and consensus. Agric. Hum. Values 34, 757–773 (2017).
    Google Scholar 

    100.
    Biggs, R., Schlüter, M. & Schoon, M. L. Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems (Cambridge Univ. Press, 2015). More

  • in

    Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities

    1.
    Pongsiri, M. J. et al. Biodiversity loss affects global disease ecology. BioScience 59, 945–954 (2009).
    Google Scholar 
    2.
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
    CAS  PubMed  Google Scholar 

    3.
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
    CAS  PubMed  Google Scholar 

    4.
    Sala, O. E. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2000).
    Google Scholar 

    5.
    Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).
    PubMed  Google Scholar 

    6.
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449 (2000).
    CAS  PubMed  Google Scholar 

    7.
    Johnson, P. T. J. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).
    PubMed  PubMed Central  Google Scholar 

    8.
    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).
    CAS  PubMed  Google Scholar 

    9.
    Williams, P. H. & Osborne, J. L. Bumblebee vulnerability and conservation world-wide. Apidologie 40, 367–387 (2009).
    Google Scholar 

    10.
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    11.
    Gallai, N., Salles, J. M., Settele, J. & Vaissiere, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
    Google Scholar 

    12.
    Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).
    PubMed  Google Scholar 

    13.
    Wood, C. L. et al. Does biodiversity protect humans against infectious disease? Ecology 95, 817–832 (2014).
    PubMed  Google Scholar 

    14.
    Salkeld, D. J., Padgett, K. A. & Jones, J. H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16, 679–686 (2013).
    PubMed  PubMed Central  Google Scholar 

    15.
    Wood, C. L. & Lafferty, K. D. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends Ecol. Evol. 28, 239–247 (2013).
    PubMed  Google Scholar 

    16.
    Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl Acad. Sci. USA 115, 7979–7984 (2018).
    CAS  PubMed  Google Scholar 

    17.
    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
    CAS  PubMed  Google Scholar 

    18.
    Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: the case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).
    Google Scholar 

    19.
    Schmidt, K. A. & Ostfeld, R. S. Biodiversity and the dilution effect in disease ecology. Ecology 82, 609–619 (2001).
    Google Scholar 

    20.
    Woolhouse, M. E. J., Dye, C. & Etard, J. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc. Natl Acad. Sci. USA 94, 338–342 (1997).
    CAS  PubMed  Google Scholar 

    21.
    Graystock, P., Goulson, D. & Hughes, W. O. H. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B 282, 20151371 (2015).
    PubMed  Google Scholar 

    22.
    Rigaud, T., Perrot-Minnot, M.-J. & Brown, M. J. F. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proc. R. Soc. B 277, 3693–3702 (2010).
    PubMed  Google Scholar 

    23.
    Adler, L. S. et al. Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).
    PubMed  PubMed Central  Google Scholar 

    24.
    McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).
    PubMed  Google Scholar 

    25.
    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant-pollinator networks. Ecol. Lett. 20, 385–394 (2017).
    PubMed  Google Scholar 

    26.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Piot, N. et al. Establishment of wildflower fields in poor quality landscapes enhances micro-parasite prevalence in wild bumble bees. Oecologia 189, 149–158 (2019).
    PubMed  Google Scholar 

    28.
    Theodorou, P. et al. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. R. Soc. B 283, 21060561 (2016).

    29.
    Graystock, P., Goulson, D. & Hughes, W. O. H. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522 (2014).
    PubMed  PubMed Central  Google Scholar 

    30.
    Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. H. Do managed bees drive parasite spread and emergence in wild bees? Int. J. Parasitol. Parasites Wildl. 5, 64–75 (2016).
    PubMed  Google Scholar 

    31.
    Alger, S. A., Burnham, P. A., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 14, e0217822 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Randolph, S. E. & Dobson, A. D. M. Pangloss revisited: a critique of the dilution effect and the biodiversity–buffers–disease paradigm. Parasitology 139, 847–863 (2012).
    CAS  PubMed  Google Scholar 

    33.
    LoGiudice, K. et al. Impact of host community on Lyme disease risk. Ecology 89, 2841–2849 (2008).
    PubMed  Google Scholar 

    34.
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Johnson, P. T. J., Lund, P. J., Hartson, R. B. & Yoshino, T. P. Community diversity reduces Schistosoma mansoni transmission, host pathology and human infection risk. Proc. R. Soc. B 276, 1657–1663 (2009).
    PubMed  Google Scholar 

    36.
    Mitchell, C. E., Tilman, D. & Groth, J. V. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83, 1713–1726 (2013).
    Google Scholar 

    37.
    Johnson, P. T. J. & Thieltges, D. W. Diversity, decoys and the dilution effect: how ecological communities affect disease risk. J. Exp. Biol. 213, 961–970 (2010).
    CAS  PubMed  Google Scholar 

    38.
    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).
    PubMed  PubMed Central  Google Scholar 

    39.
    Nunn, C. L., Thrall, P. H. & Kappeler, P. M. Shared resources and disease dynamics in spatially structured populations. Ecol. Modell. 272, 198–207 (2014).
    Google Scholar 

    40.
    Durrer, S. & Schmid-Hempel, P. Shared use of flowers leads to horizontal pathogen transmission. Proc. R. Soc. B 258, 299–302 (1994).
    Google Scholar 

    41.
    Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecol. Lett. https://doi.org/10.1111/ele.13521 (2020).

    42.
    Truitt, L. L., McArt, S. H., Vaughn, A. H. & Ellner, S. P. Trait-based modeling of multihost pathogen transmission: plant-pollinator networks. Am. Nat. 193, E149–E167 (2019).
    PubMed  PubMed Central  Google Scholar 

    43.
    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Daszak, P. et al. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc. Natl Acad. Sci. USA 110, 3681–3688 (2013).
    CAS  PubMed  Google Scholar 

    45.
    Lafferty, K. D. & Gerber, L. R. Good medicine for conservation biology: the intersection of epidemiology and conservation theory. Conserv. Biol. 16, 593–604 (2002).
    Google Scholar 

    46.
    Cottam, E. M. et al. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc. R. Soc. B 275, 887–895 (2008).
    PubMed  Google Scholar 

    47.
    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Pyšek, P. & Richardson, D. M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 35, 25–55 (2010).
    Google Scholar 

    49.
    Malone, J. D. et al. U.S. airport entry screening in response to pandemic influenza: modeling and analysis. Travel Med. Infect. Dis. 7, 181–191 (2009).
    PubMed  PubMed Central  Google Scholar 

    50.
    Tatem, A. J., Rogers, D. J. & Hay, S. I. Global transport networks and infectious disease spread. Adv. Parasitol. 62, 293–343 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Nicolaides, C., Cueto-Felgueroso, L., González, M. C. & Juanes, R. A metric of influential spreading during contagion dynamics through the air transportation network. PLoS ONE 7, e40961 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Gardner, L. & Sarkar, S. A global airport-based risk model for the spread of dengue infection via the air transport network. PLoS ONE 8, e72129 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Urbanowicz, C. M., Muñiz, P. A. & McArt, S. H. Honey bees and wild bees differ in their preference for and use of introduced floral resources. Ecol. Evol. https://doi.org/10.1002/ece3.6417 (2020).

    54.
    Wiegand, K. M. & Eames, A. J. The Flora of the Cayuga Lake Basin, New York https://doi.org/10.5962/bhl.title.59518 (The University, 1926).

    55.
    Medina, B. F. & Medina, V. Central Appalachian Wildflowers (Falcon Guides, 2002).

    56.
    House, H. D. The Wild Flowers of New York (Univ. of New York Albany, 1918).

    57.
    Niering, W. A., Olmstead, N. C., Rayfield, S. & Nehring, C. National Audubon Society Field Guide to North American Wildflowers (Eastern Region) (AbeBooks, 1979).

    58.
    Ascher, J. S. & Pickering, J. DiscoverLife Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila) (Discover Life, 2020); http://www.discoverlife.org/mp/20q?guide=Apoidea_species

    59.
    Gibbs, J. Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 216, 1–216 (2011).
    Google Scholar 

    60.
    Grixti, J. C., Wong, L. T., Cameron, S. A. & Favret, C. Decline of bumble bees (Bombus) in the North American Midwest. Biol. Conserv. 142, 75–84 (2009).
    Google Scholar 

    61.
    Sheffield, C. S., Ratti, C., Packer, L. & Griswold, T. Leafcutter and mason bees of the genus Megachile Latreille (Hymenoptera: Megachilidae) in Canada and Alaska. Can. J. Arthropod Identif. 18, 1–107 (2011).
    Google Scholar 

    62.
    Schwarz, R. S. & Evans, J. D. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Dev. Comp. Immunol. 40, 300–310 (2013).
    CAS  PubMed  Google Scholar 

    63.
    Meeus, I., Brown, M. J. F., de Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–671 (2011).
    PubMed  Google Scholar 

    64.
    Solter, L. F. in Microsporidia: Pathogens of Opportunity 1st edn (eds Weiss, L. M. & Becnel, J. J.) 165–194 (Wiley–Blackwell, 2014).

    65.
    Otti, O. & Schmid-Hempel, P. Nosema bombi: a pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124 (2007).
    PubMed  Google Scholar 

    66.
    Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).
    PubMed  Google Scholar 

    67.
    Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).
    PubMed  PubMed Central  Google Scholar 

    68.
    Otti, O. & Schmid-Hempel, P. A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecol. Entomol. 33, 577–582 (2008).
    Google Scholar 

    69.
    Higes, M., Martín-Hernández, R. & Meana, A. Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41, 375–392 (2010).
    Google Scholar 

    70.
    Li, J. et al. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int. J. Parasitol. Parasites Wildl. 42, 49–61 (2012).
    CAS  Google Scholar 

    71.
    Sinpoo, C., Disayathanoowat, T., Williams, P. H. & Chantawannakul, P. Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand. PLoS ONE 14, e0213171 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. Entomol. 21, 363–371 (2019).
    Google Scholar 

    73.
    Bramke, K., Müller, U., McMahon, D. P. & Rolff, J. Exposure of larvae of the solitary bee Osmia bicornis to the honey bee pathogen Nosema ceranae affects life history. Insects 10, 380 (2019).
    PubMed Central  Google Scholar 

    74.
    Brown, M. J. F., Schmid-Hempel, R. & Schmid-Hempel, P. Strong context-dependent virulence in a host–parasite system: reconciling genetic evidence with theory. J. Anim. Ecol. 72, 994–1002 (2003).
    Google Scholar 

    75.
    Yourth, C. P., Brown, M. J. F. & Schmid-Hempel, P. Effects of natal and novel Crithidia bombi (Trypanosomatidae) infections on Bombus terrestris hosts. Insectes Soc. 55, 86–90 (2008).
    Google Scholar 

    76.
    Brown, M. J. F., Loosli, R. & Schmid-Hempel, P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91, 421–427 (2000).
    Google Scholar 

    77.
    Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B 273, 1073–1078 (2006).
    PubMed  Google Scholar 

    78.
    Imhoof, B. & Schmid-Hempel, P. Patterns of local adaptation of a protozoan parasite to its bumblebee host. Oikos 82, 59–65 (1998).
    Google Scholar 

    79.
    Dill, L. M. Costs of energy shortfall for bumble bee colonies: predation, social parasitism, and brood development. Can. Entomol. 123, 283–293 (1991).
    Google Scholar 

    80.
    Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613 (2019).
    PubMed  Google Scholar 

    81.
    Ravoet, J. et al. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J. Invertebr. Pathol. 130, 21–27 (2015).
    PubMed  Google Scholar 

    82.
    Ngor, L. et al. Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology https://doi.org/10.1017/S0031182020001018 (2020).

    83.
    Lipa, J. J. & Triggiani, O. Apicystis gen. nov. and Apicystis bombi (Liu, Macfarlane & Pengelly) comb. nov. (Protozoa: Neogregarinida), a cosmopolitan parasite of Bombus and Apis (Hymenoptera: Apidae). Apidologie 27, 29–34 (1996).
    Google Scholar 

    84.
    Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. H. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365 (2016).
    PubMed  Google Scholar 

    85.
    Maharramov, J. et al. Genetic variability of the neogregarine Apicystis bombi, an etiological agent of an emergent bumblebee disease. PLoS ONE 8, e81475 (2013).
    PubMed  PubMed Central  Google Scholar 

    86.
    Rutrecht, S. T. & Brown, M. J. F. The life-history impact and implications of multiple parasites for bumble bee queens. Int. J. Parasitol. 38, 799–808 (2008).
    PubMed  Google Scholar 

    87.
    Plischuk, S., Meeus, I., Smagghe, G. & Lange, C. E. Apicystis bombi (Apicomplexa: Neogregarinorida) parasitizing Apis mellifera and Bombus terrestris (Hymenoptera: Apidae) in Argentina. Environ. Microbiol. Rep. 3, 565–568 (2011).
    PubMed  Google Scholar 

    88.
    Tian, T., Piot, N., Meeus, I. & Smagghe, G. Infection with the multi-host micro-parasite Apicystis bombi (Apicomplexa: Neogregarinorida) decreases survival of the solitary bee Osmia bicornis. J. Invertebr. Pathol. 158, 43–45 (2018).
    PubMed  Google Scholar 

    89.
    Lacey, L. A. Manual of Techniques in Insect Pathology (Academic Press, 1997).

    90.
    Fries, I. et al. Standard methods for Nosema research. J. Apic. Res. 52, 1–28 (2013).
    Google Scholar 

    91.
    Mullins, J. L., Strange, J. P. & Tripodi, A. D. Why are queens broodless? Failed nest initiation not linked to parasites, mating status, or ovary development in two bumble bee species of Pyrobombus (Hymenoptera: Apidae: Bombus). J. Econ. Entomol. 113, 575–581 (2019).

    92.
    Schmid-Hempel, R. & Tognazzo, M. Molecular divergence defines two distinct lineages of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J. Eukaryot. Microbiol. 57, 337–345 (2010).
    CAS  PubMed  Google Scholar 

    93.
    Tripodi, A. D., Szalanski, A. L. & Strange, J. P. Novel multiplex PCR reveals multiple trypanosomatid species infecting North American bumble bees (Hymenoptera: Apidae: Bombus). J. Invertebr. Pathol. 153, 147–155 (2018).
    PubMed  Google Scholar 

    94.
    King, G. & Zeng, L. Logistic regression in rare events data. Polit. Anal. 9, 137–163 (2001).
    Google Scholar 

    95.
    Nelder, J. A. A reformulation of linear models. J. R. Stat. Soc. Ser. A 140, 48–77 (1977).
    Google Scholar 

    96.
    Venables, W. N. Exegeses on linear models. In SPLUS User’s Conference (2000); https://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf

    97.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

    98.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    99.
    Brooks, Mollie et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).
    Google Scholar 

    100.
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models. R package v.0.2.0 https://CRAN.R-project.org/package=DHARMa (2018).

    101.
    Signorell, A. DescTools: Tools for Descriptive Statistics https://cran.r-project.org/web/packages/DescTools/index.html (2019).

    102.
    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).
    CAS  Google Scholar 

    103.
    Engels, B. XNomial: Exact Goodness-of-Fit Test for Multinomial Data with Fixed Probabilities https://cran.r-project.org/web/packages/XNomial/vignettes/XNomial.html (2015).

    104.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).
    PubMed  Google Scholar 

    105.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-3 https://www.researchgate.net/publication/323265822_vegan_Community_Ecology_Package_R_package_version_24-3_2017_accessed_2016_Jan_1 (2017). More

  • in

    Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa

    The desert locust Schistocerca gregaria, one of about a dozen species of locusts, is a species of swarming short-horned grasshoppers that can migrate great distances during its gregarious phase1,2,3. As they swarm, they voraciously feed on key staple crops such as maize and sorghum, pastures, and any green vegetation that comes their way, thereby significantly affecting the livelihoods of smallholder farmers and pastoralists4,5,6. In Africa, the countries of the Sahel region, especially Algeria, Burkina Faso, Chad, Ethiopia, Eritrea, Mauritania, Mali, Niger, Nigeria, Senegal, Somalia, and Sudan, are particularly susceptible to desert locust outbreaks. Until the 1960s, locust outbreaks frequently occurred, however, post-1960s, outbreaks were less frequent and occurred, on average, only once in a decade7.
    In general, the desert locust breeds extensively in semi-arid zones extending from West Africa through the Middle East to Southwest Asia, threatening livelihoods of the population in over 65 countries. Between 2019–2020, unprecedented locust breeding was observed in Eritrea, Somalia, and Yemen due to unusually heavy rainfall in the horn of Africa between October to mid-November 2019, more than 400% above average8. Following this breeding, countries in the horn of Africa, such as Ethiopia, Kenya, and Somalia, are experiencing extraordinary swarms never witnessed during the past 25 years. The current swarm is estimated to consume ~ 1.8 million MT of vegetation per day across 123,200 km2, which represents 11% of Ethiopia’s total land area9. In Kenya, the locust has spread to approximately 107,000 km2 (20% of Kenya) (Kenyan Multi-Agency Team on Desert locust, 2020), and very recently, the locust has invaded Uganda, South Sudan, and Tanzania. It is anticipated to move northward into Sudan and possibly northern part of Chad. The current management strategy of the locust swarm is aerial spraying with chemical pesticides, which has a high cost on humans, livestock, and the environment in addition to its economic burden at the national level biodiversity.
    Studies have shown that desert locust has the ability to change its behaviour, ecology, and physiology in response to the changes in climatic conditions10. In particular, within a few weeks, swarming adults mature, mate, and begin to oviposit in soils at 10–15 cm below ground in suitable environments in the invaded zones2,11. Suitability for oviposition and subsequent breeding is influenced by factors such as soil type, sand content, soil moisture, surface air temperature, rainfall, and prevalence of vegetation2,12. The emerging hoppers (nymphs), which are the wingless juvenile stage, can concentrate to become more gregarious and form bands that crawl on the surface over long distances. After several moultings, up to six times, hoppers transition to adults which can come in contact to form a gregarious phase2. The time needed for the desert locust to transition from one stage to the other is highly dependent on the weather patterns13,14. Both the hopper bands and adult swarms can cause significant damage to the vegetation and crops in the invaded zones. Therefore, to prevent catastrophic swarms from maturing hoppers, it is critical to strengthen ground and aerial surveillance efforts to identify potential breeding sites for timely and effective management of hopper bands. However, effective ground and aerial surveillance are constrained by various factors including extensive area of invasion (e.g., 107,000 km2 in Kenya), inaccessibility of invasion zones due to poor infrastructure, limited resources, lack of human capacity for monitoring and control, and difficulties in predicting suitable areas for breeding and outbreaks. Such constraints are typical to the currently invaded zones in Kenya, Uganda, and South Sudan, and to other nearby countries at risk.
    Previous desert locust outbreaks in the Horn of Africa were observed in 1996–1998, and it affected countries along the Red Sea, with infestations primarily concentrated in Saudi Arabia and, to a lesser extent, in Egypt, Ethiopia, Eritrea, Northern Somalia, Sudan, and Yemen. Countries such as Kenya and Uganda have not experienced the current level of desert locust invasion for more than 70 years, and little or no information is available on the suitability of specific sites for desert locust oviposition and breeding13. Such information is urgently needed to strengthen surveillance (ground and aerial) efforts, regional coordination, and preparedness, inform efforts and improve the delivery of preventive measures before the newly emerging hoppers cause damage.
    Locust (desert locust and grasshopper) outbreak prediction and monitoring can be modelled using ecological niches (EN) approaches15,16. A category of EN models apply machine learning algorithms that correlate a set of environmental conditions (e.g., bio-climatic variables) to species presence and absence records to predict its suitable habitats17. For instance, maximum entropy (MaxEnt), genetic algorithm for rule-set production (GARP), and ecological niche factor analysis (ENFA) are EN tools that predict species suitability using presence-only data18,19. MaxEnt was revealed to provide a reasonably better result compared to other presence-only models18. In specific, MaxEnt assumes that the suitable areas for occupancy by species would corroborate to the physics principle of maximum entropy without any environmental restrictions. The model predicts habitat suitability by fitting a probability distribution for the incidence of the species across the whole area. However, MaxEnt often experiences overfitting at low threshold levels than, e.g., GARP models19.
    The objective of this paper is to develop a decision support tool that enables governments and their development partners to control the locust invasion from its breeding sites effectively. The specific objectives are to (1) model the relationship between known desert locust breeding sites around the world with critical bio-climatic (temperature and rainfall) and edaphic (sand and moisture contents) variables using MaxEnt EN model, and (2) validate the model with the existing database, and further develop predictions on potential areas for desert locust oviposition and breeding in Kenya, Uganda, South Sudan, and Sudan. More

  • in

    Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome

    1.
    Zhang, Y. Z., Chen, Y. M., Wang, W., Qin, X. C. & Holmes, E. C. Expanding the RNA virosphere by unbiased metagenomics. Annu. Rev. Virol. 6, 119–139 (2019).
    CAS  PubMed  Google Scholar 
    2.
    Dolja, V. V. & Koonin, E. V. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 244, 36–52 (2018).
    CAS  PubMed  Google Scholar 

    3.
    Lefeuvre, P. et al. Evolution and ecology of plant viruses. Nat. Rev. Microbiol. 17, 632–644 (2019).
    CAS  PubMed  Google Scholar 

    4.
    Obbard, D. J. Expansion of the metazoan virosphere: progress, pitfalls, and prospects. Curr. Opin. Virol. 31, 17–23 (2018).
    PubMed  Google Scholar 

    5.
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).
    CAS  PubMed  Google Scholar 

    6.
    Backstrom, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497-18 (2019).
    PubMed  PubMed Central  Google Scholar 

    7.
    Zhao, L., Rosario, K., Breitbart, M. & Duffy, S. Eukaryotic circular rep-encoding single-stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. Adv. Virus Res. 103, 71–133 (2019).
    PubMed  Google Scholar 

    8.
    Chow, C. E. & Suttle, C. A. Biogeography of viruses in the sea. Annu. Rev. Virol. 2, 41–66 (2015).
    CAS  PubMed  Google Scholar 

    9.
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).
    CAS  PubMed  Google Scholar 

    11.
    Vlok, M., Lang, A. S. & Suttle, C. A. Marine RNA virus quasispecies are distributed throughout the oceans. mSphere 4, e00157-19 (2019).
    PubMed  PubMed Central  Google Scholar 

    12.
    Greninger, A. L. A decade of RNA virus metagenomics is (not) enough. Virus Res. 244, 218–229 (2018).
    CAS  PubMed  Google Scholar 

    13.
    Janowski, A. B. et al. Statoviruses, a novel taxon of RNA viruses present in the gastrointestinal tracts of diverse mammals. Virology 504, 36–44 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Miranda, J. A., Culley, A. I., Schvarcz, C. R. & Steward, G. F. RNA viruses as major contributors to Antarctic virioplankton. Environ. Microbiol. 18, 3714–3727 (2016).
    CAS  PubMed  Google Scholar 

    15.
    Ng, T. F. et al. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J. Virol. 86, 12161–12175 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Waldron, F. M., Stone, G. N. & Obbard, D. J. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet. 14, e1007533 (2018).
    PubMed  PubMed Central  Google Scholar 

    17.
    Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).
    CAS  PubMed  Google Scholar 

    18.
    Lopez-Bueno, A., Rastrojo, A., Peiro, R., Arenas, M. & Alcami, A. Ecological connectivity shapes quasispecies structure of RNA viruses in an Antarctic lake. Mol. Ecol. 24, 4812–4825 (2015).
    CAS  PubMed  Google Scholar 

    19.
    Moniruzzaman, M. et al. Virus–host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nat. Commun. 8, 16054 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Rosario, K., Nilsson, C., Lim, Y. W., Ruan, Y. & Breitbart, M. Metagenomic analysis of viruses in reclaimed water. Environ. Microbiol. 11, 2806–2820 (2009).
    CAS  PubMed  Google Scholar 

    21.
    Lang, A. S., Culley, A. I. & Suttle, C. A. Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo. Virology 320, 206–217 (2004).
    CAS  PubMed  Google Scholar 

    22.
    Nagasaki, K. Dinoflagellates, diatoms, and their viruses. J. Microbiol. 46, 235–243 (2008).
    PubMed  Google Scholar 

    23.
    Shirai, Y. et al. Isolation and characterization of a single-stranded RNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Appl. Environ. Microbiol. 74, 4022–4027 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Tomaru, Y., Takao, Y., Suzuki, H., Nagumo, T. & Nagasaki, K. Isolation and characterization of a single-stranded RNA virus infecting the bloom-forming diatom Chaetoceros socialis. Appl. Environ. Microbiol. 75, 2375–2381 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Kimura, K. & Tomaru, Y. Discovery of two novel viruses expands the diversity of single-stranded DNA and single-stranded RNA viruses infecting a cosmopolitan marine diatom. Appl. Environ. Microbiol. 81, 1120–1131 (2015).
    PubMed  PubMed Central  Google Scholar 

    26.
    Takao, Y., Mise, K., Nagasaki, K., Okuno, T. & Honda, D. Complete nucleotide sequence and genome organization of a single-stranded RNA virus infecting the marine fungoid protist Schizochytrium sp. J. Gen. Virol. 87, 723–733 (2006).
    CAS  PubMed  Google Scholar 

    27.
    Gustavsen, J. A., Winget, D. M., Tian, X. & Suttle, C. A. High temporal and spatial diversity in marine RNA viruses implies that they have an important role in mortality and structuring plankton communities. Front. Microbiol. 5, 703 (2014).
    PubMed  PubMed Central  Google Scholar 

    28.
    Vlok, M., Lang, A. S. & Suttle, C. A. Application of a sequence-based taxonomic classification method to uncultured and unclassified marine single-stranded RNA viruses in the order Picornavirales. Virus Evol. 5, vez056 (2019).
    PubMed  PubMed Central  Google Scholar 

    29.
    Li, C. X. et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4, e05378 (2015).
    PubMed Central  Google Scholar 

    30.
    Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).
    CAS  PubMed  Google Scholar 

    31.
    Shi, M. et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses. J. Virol. 90, 659–669 (2016).
    CAS  PubMed  Google Scholar 

    32.
    Fauver, J. R. et al. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology 498, 288–299 (2016).
    CAS  PubMed  Google Scholar 

    33.
    Webster, C. L. et al. The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol. 13, e1002210 (2015).
    PubMed  PubMed Central  Google Scholar 

    34.
    Grybchuk, D. et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl Acad. Sci. USA 115, E506–E515 (2018).
    CAS  PubMed  Google Scholar 

    35.
    Marzano, S. Y. et al. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J. Virol. 90, 6846–6863 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Kotta-Loizou, I. & Coutts, R. H. Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence. PLoS Pathog. 13, e1006183 (2017).
    PubMed  PubMed Central  Google Scholar 

    37.
    Krishnamurthy, S. R., Janowski, A. B., Zhao, G., Barouch, D. & Wang, D. Hyperexpansion of RNA bacteriophage diversity. PLoS Biol. 14, e1002409 (2016).
    PubMed  PubMed Central  Google Scholar 

    38.
    Roossinck, M. J. Evolutionary and ecological links between plant and fungal viruses. N. Phytol. 221, 86–92 (2018).
    Google Scholar 

    39.
    Culley, A. New insight into the RNA aquatic virosphere via viromics. Virus Res. 244, 84–89 (2018).
    CAS  PubMed  Google Scholar 

    40.
    Coy, S. R., Gann, E. R., Pound, H. L., Short, S. M. & Wilhelm, S. W. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses 10, 487 (2018).
    PubMed Central  Google Scholar 

    41.
    Callanan, J. et al. Expansion of known ssRNA phage genomes: from tens to over a thousand. Sci. Adv. 6, eaay5981 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Wolf, Y. I. et al. Origins and evolution of the global RNA virome. mBio 9, e02329-18 (2018).
    PubMed  PubMed Central  Google Scholar 

    43.
    Kuhn, J. H. et al. Classify viruses—the gain is worth the pain. Nature 566, 318–320 (2019).
    PubMed  Google Scholar 

    44.
    Koonin, E. V. et al. Global organization and proposed megataxonomy of the virus world. Micobiol. Mol. Biol. Rev. 84, e0061-19 (2020).
    Google Scholar 

    45.
    Kranzler, C. F. et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat. Microbiol. 4, 1790–1797 (2019).
    CAS  PubMed  Google Scholar 

    46.
    Valles, S. M. et al. ICTV virus taxonomy profile: Dicistroviridae. J. Gen. Virol. 98, 355–356 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Revers, F. & Garcia, J. A. Molecular biology of Potyviruses. Adv. Virus Res. 92, 101–199 (2015).
    CAS  PubMed  Google Scholar 

    48.
    Gibbs, A. J., Hajizadeh, M., Ohshima, K. & Jones, R. A. C. The Potyviruses: an evolutionary synthesis is emerging. Viruses 12, 132 (2020).
    CAS  PubMed Central  Google Scholar 

    49.
    Dolja, V. V., Krupovic, M. & Koonin, E. V. Deep roots and splendid boughs of the global plant virome. Annu. Rev. Phytopathol. 58, https://doi.org/10.1146/annurev-phyto-030320-041346 (2020).

    50.
    Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479-480, 2–25 (2015).
    CAS  PubMed  Google Scholar 

    51.
    Dolja, V. V., Boyko, V. P., Agranovsky, A. A. & Koonin, E. V. Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology 184, 79–86 (1991).
    CAS  PubMed  Google Scholar 

    52.
    Agirrezabala, X. et al. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses. eLife 4, e11795 (2015).
    PubMed  PubMed Central  Google Scholar 

    53.
    Zamora, M. et al. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses. Sci. Adv. 3, eaao2182 (2017).
    PubMed  PubMed Central  Google Scholar 

    54.
    Dolja, V. V. & Koonin, E. V. Common origins and host-dependent diversity of plant and animal viromes. Curr. Opin. Virol. 1, 322–331 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Felix, M. A. et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 9, e1000586 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Yokoi, T., Yamashita, S. & Hibi, T. The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. Virology 311, 394–399 (2003).
    CAS  PubMed  Google Scholar 

    57.
    Heller-Dohmen, M., Gopfert, J. C., Pfannstiel, J. & Spring, O. The nucleotide sequence and genome organization of Plasmopara halstedii virus. Virol. J. 8, 123 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Scholz, B. et al. Zoosporic parasites infecting marine diatoms—a black box that needs to be opened. Fungal Ecol. 19, 59–76 (2016).
    PubMed  PubMed Central  Google Scholar 

    59.
    Meldal, B. H. et al. An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol. Phylogenet. Evol. 42, 622–636 (2007).
    CAS  PubMed  Google Scholar 

    60.
    Bolduc, B. et al. Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. J. Virol. 86, 5562–5573 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Ferrero, D. S., Buxaderas, M., Rodriguez, J. F. & Verdaguer, N. The structure of the RNA-dependent RNA polymerase of a permutotetravirus suggests a link between primer-dependent and primer-independent polymerases. PLoS Pathog. 11, e1005265 (2015).
    PubMed  PubMed Central  Google Scholar 

    62.
    Gorbalenya, A. E. et al. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J. Mol. Biol. 324, 47–62 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Sabanadzovic, S., Ghanem-Sabanadzovic, N. A. & Gorbalenya, A. E. Permutation of the active site of putative RNA-dependent RNA polymerase in a newly identified species of plant alpha-like virus. Virology 394, 1–7 (2009).
    CAS  PubMed  Google Scholar 

    64.
    Greninger, A. L. & DeRisi, J. L. Draft genome sequences of ciliovirus and brinovirus from San Francisco wastewater. Genome Announc. 3, e00651-15 (2015).
    PubMed  PubMed Central  Google Scholar 

    65.
    Hillman, B. I. & Cai, G. The family Narnaviridae: simplest of RNA viruses. Adv. Virus Res. 86, 149–176 (2013).
    PubMed  Google Scholar 

    66.
    Schmidt, F., Cherepkova, M. Y. & Platt, R. J. Transcriptional recording by CRISPR spacer acquisition from RNA. Nature 562, 380–385 (2018).
    CAS  PubMed  Google Scholar 

    67.
    Lauber, C., Seifert, M., Bartenschlager, R. & Seitz, S. Discovery of highly divergent lineages of plant-associated astro-like viruses sheds light on the emergence of potyviruses. Virus Res. 260, 38–48 (2019).
    CAS  PubMed  Google Scholar 

    68.
    Sun, G. et al. Efficient purification and concentration of viruses from a large body of high turbidity seawater. MethodsX 1, 197–206 (2014).
    PubMed  PubMed Central  Google Scholar 

    69.
    Henn, M. R. et al. Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS ONE 5, e9083 (2010).
    PubMed  PubMed Central  Google Scholar 

    70.
    Steinegger, M. & Soding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
    CAS  PubMed  Google Scholar 

    71.
    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).
    Google Scholar 

    72.
    Soding, J. Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960 (2005).
    PubMed  Google Scholar 

    73.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    PubMed  PubMed Central  Google Scholar 

    74.
    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).
    CAS  PubMed  Google Scholar 

    75.
    Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 6, 223 (2009).
    PubMed  PubMed Central  Google Scholar 

    76.
    Yutin, N., Shevchenko, S., Kapitonov, V., Krupovic, M. & Koonin, E. V. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 13, 95 (2015).
    PubMed  PubMed Central  Google Scholar 

    77.
    Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).
    CAS  PubMed  Google Scholar 

    78.
    Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).
    CAS  PubMed  Google Scholar 

    79.
    Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by HMM–HMM alignment. Nat. Methods 9, 173–175 (2011).
    PubMed  Google Scholar 

    80.
    Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004).
    CAS  PubMed  Google Scholar 

    81.
    Mitchell, A. L. et al. EBI metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res. 46, D726–D735 (2018).
    CAS  PubMed  Google Scholar 

    82.
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    83.
    Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio 8, e01397-17 (2017).
    PubMed  PubMed Central  Google Scholar 

    84.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Impact of 2019–2020 mega-fires on Australian fauna habitat

    1.
    Bowman, D. et al. Fire in the Earth system. Science 324, 481–484 (2009).
    CAS  PubMed  Google Scholar 
    2.
    Mangel, M. & Tier, C. Four facts every conservation biologist should know about persistence. Ecology 75, 607–614 (1994).
    Google Scholar 

    3.
    Gill, A. M. Fire and the Australian flora: a review. Aust. For. 38, 4–25 (1975).
    Google Scholar 

    4.
    Brotons, L., Herrando, S. & Pons, P. Wildfires and the expansion of threatened farmland birds: the ortolan bunting Emberiza hortulana in Mediterranean landscapes. J. Appl. Ecol. 45, 1059–1066 (2008).
    Google Scholar 

    5.
    Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: Aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. Biol. Sci. 280, 20132297 (2013).
    PubMed  PubMed Central  Google Scholar 

    6.
    Bowman, D. M. J. S., Wood, S. W., Neyland, D., Sanders, G. J. & Prior, L. D. Contracting Tasmanian montane grasslands within a forest matrix is consistent with cessation of Aboriginal fire management. Austral Ecol. 38, 627–638 (2013).
    Google Scholar 

    7.
    Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. M. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).
    PubMed  Google Scholar 

    8.
    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    9.
    Murphy, B. P. & Russell-Smith, J. Fire severity in a northern Australian savanna landscape: the importance of time since previous fire. Int. J. Wildl. Fire 19, 46–51 (2010).
    Google Scholar 

    10.
    Mantgem, P. J. et al. Climatic stress increases forest fire severity across the western United States. Ecol. Lett. 16, 1151–1156 (2013).
    PubMed  Google Scholar 

    11.
    Fonseca, M. G. et al. Climatic and anthropogenic drivers of northern Amazon fires during the 2015-2016 El Nino event. Ecol. Appl. 27, 2514–2527 (2017).
    PubMed  Google Scholar 

    12.
    Huge Wildfires in Russia’s Siberian Province Continue (NASA, 2019).

    13.
    Escobar, H. Amazon fires clearly linked to deforestation, scientists say. Science 365, 853 (2019).
    CAS  PubMed  Google Scholar 

    14.
    2018 Incident Archive Report (California Government, 2019).

    15.
    Dennis, R., Hoffmann, A., Applegate, G., von Gemmingen, G. & Kartawinata, K. Large-scale fire: creator and destroyer of secondary forests in western Indonesia. J. Trop. Sci. 13, 786–799 (2001).
    Google Scholar 

    16.
    Verhegghen, A. et al. The potential of sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sens. 8, 986 (2016).
    Google Scholar 

    17.
    Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).
    Google Scholar 

    18.
    Borunda, A. See how much of the Amazon is burning, how it compares to other years. National Geographic (29 August 2019).

    19.
    Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019–20 season of mega-fires. Glob. Change Biol. 26, 1039–1041 (2020).
    Google Scholar 

    20.
    Kooyman, R. M., Watson, J. & Wilf, P. Gondwana World Heritage Site burns. Science 367, 1083 (2020).
    PubMed  Google Scholar 

    21.
    Kelly, L. T., Bennett, A. F., Clarke, M. F. & Mccarthy, M. A. Optimal fire histories for biodiversity conservation. Conserv. Biol. 29, 473–481 (2015).
    PubMed  Google Scholar 

    22.
    Davis, R. et al. Conserving long unburnt vegetation is important for bird species, guilds and diversity. Biodivers. Conserv. 25, 2709–2722 (2016).
    Google Scholar 

    23.
    Doherty, T. S., Davis, R. A., van Etten, E. J. B., Collier, N. & Krawiec, J. Response of a shrubland mammal and reptile community to a history of landscape-scale wildfire. Int. J. Wildl. Fire 24, 534–543 (2015).
    Google Scholar 

    24.
    Dixon, K. M., Cary, G. J., Worboys, G. L. & Gibbons, P. The disproportionate importance of long-unburned forests and woodlands for reptiles. Ecol. Evol. 8, 10952–10963 (2018).
    PubMed  PubMed Central  Google Scholar 

    25.
    Taylor, R. S. et al. Landscape‐scale effects of fire on bird assemblages: does pyrodiversity beget biodiversity? Divers. Distrib. 18, 519–529 (2012).
    Google Scholar 

    26.
    Lindenmayer, D. B. et al. Fire severity and landscape context effects on arboreal marsupials. Biol. Conserv. 167, 137–148 (2013).
    Google Scholar 

    27.
    Chia, E. K. et al. Effects of the fire regime on mammal occurrence after wildfire: site effects vs landscape context in fire-prone forests. Ecol. Manag. 363, 130–139 (2016).
    Google Scholar 

    28.
    Leahy, L. et al. Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildl. Res. 42, 705–716 (2015).
    Google Scholar 

    29.
    Murphy, S. A. & Legge, S. M. The gradual loss and episodic creation of palm cockatoo (Probosciger aterrimus) nest-trees in a fire- and cyclone-prone habitat. Emu 107, 1–6 (2007).
    Google Scholar 

    30.
    Lyon, J. P. & O’Connor, J. P. Smoke on the water: can riverine fish populations recover following a catastrophic fire-related sediment slug? Austral Ecol. 33, 794–806 (2008).
    Google Scholar 

    31.
    Haslem, A. et al. Time-since-fire and inter-fire interval influence hollow availability for fauna in a fire-prone system. Biol. Conserv. 152, 212–221 (2012).
    Google Scholar 

    32.
    Kearney, S. et al. The threats to Australia’s imperilled species and implications for a national conservation response. Pac. Conserv. Biol. 25, 231–244 (2018).

    33.
    Ward, M. S. et al. Lots of loss with little scrutiny: the attrition of habitat critical for threatened species in Australia. Conserv. Sci. Pract. 1, e117 (2019).
    Google Scholar 

    34.
    Species of National Environmental Significance (Commonwealth of Australia, 2019).

    35.
    National Indicative Aggregated Fire Extent Dataset Version 20200225 (Commonwealth of Australia, 2020); https://go.nature.com/38wZSRr

    36.
    Graham, E. M. et al. Climate change and biodiversity in Australia: a systematic modelling approach to nationwide species distributions. Australas. J. Environ. Manag. 26, 112–123 (2019).
    Google Scholar 

    37.
    Hoskin, C., Grigg, G., Stewart, D. & Macdonald, S. Frogs of Australia (James Cook University, 2015).

    38.
    Tingley, R. et al. Geographic and taxonomic patterns of extinction risk in Australian squamates. Biol. Conserv. 238, 108203 (2019).
    Google Scholar 

    39.
    Guidelines for Assessing the Conservation Status of Native Species According to the Environment Protection and Biodiversity Conservation Act 1999 and Environment Protection and Biodiversity Conservation Regulations 2000 (Commonwealth of Australia, 2000).

    40.
    Rapid Analysis of Impacts of the 2019–20 Fires on Animal Species, and Prioritisation of Species for Management Response – Preliminary Report (Commonwealth of Australia, 2020).

    41.
    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).
    CAS  PubMed  Google Scholar 

    42.
    Scheele, B. C. et al. Continental-scale assessment reveals inadequate monitoring for threatened vertebrates in a megadiverse country. Biol. Conserv. 235, 273–278 (2019).
    Google Scholar 

    43.
    Victoria’s Bushfire Emergency: Biodiversity Response and Recovery (Victoria State Government, 2020).

    44.
    Smales, I., Brown, P., Menkhorst, P., Holdsworth, M. & Holz, P. Contribution of captive management of orange-bellied parrots to the recovery programme for the species in Australia. Int. Zoo. Yearb. 37, 171–178 (2000).
    Google Scholar 

    45.
    Broughton, S. K. & Dickman, C. R. The effect of supplementary food on home range of the southern brown bandicoot, Isoodon obesulus. Aust. J. Ecol. 16, 71–78 (1991).
    Google Scholar 

    46.
    Legge, S., Kennedy, M. S., Lloyd, R., Murphy, S. A. & Fisher, A. Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following the removal of introduced herbivores. Austral Ecol. 36, 791–799 (2011).
    Google Scholar 

    47.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    48.
    Clarke, H. & Evans, J. P. Exploring the future change space for fire weather in southeast Australia. Theor. Appl. Climatol. 136, 513–527 (2019).
    Google Scholar 

    49.
    Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 9, 10073 (2019).
    PubMed  PubMed Central  Google Scholar 

    50.
    Taylor, C., Mccarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).
    Google Scholar 

    51.
    Zylstra, P. J. Flammability dynamics in the Australian Alps. Austral Ecol. 43, 578–591 (2018).
    Google Scholar 

    52.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proc. Natl Acad. Sci. USA 112, 4531–4540 (2015).
    CAS  PubMed  Google Scholar 

    53.
    Woinarski, J. C. Z. et al. Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia. Biol. Conserv. 239, 108261 (2019).
    Google Scholar 

    54.
    Lindenmayer, D. B., Hunter, M. L., Burton, P. J. & Gibbons, P. Effects of logging on fire regimes in moist forests. Conserv. Lett. 2, 271–277 (2009).
    Google Scholar 

    55.
    Berry, Z. C., Wevill, K. & Curran, T. J. The invasive weed Lantana camara increases fire risk in dry rainforest by altering fuel beds. Weed Res. 51, 525–533 (2011).
    Google Scholar 

    56.
    McAlpine, C. A. et al. A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia’s climate. Glob. Change Biol. 15, 2206–2223 (2009).
    Google Scholar 

    57.
    Dale, V. H. et al. Climate Change and forest disturbances. BioScience 51, 723–734 (2001).
    Google Scholar 

    58.
    Interim Biogeographic Regionalisation for Australia (IBRA) Version 7 (Subregions) (Commonwealth of Australia, 2018); https://go.nature.com/3e6j21L

    59.
    Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
    Google Scholar 

    60.
    Reside, A. E., Watson, I., Vanderwal, J. & Kutt, A. S. Incorporating low-resolution historic species location data decreases performance of distribution models. Ecol. Model. 222, 3444–3448 (2011).
    Google Scholar 

    61.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    62.
    Fenner, A. L. & Bull, C. M. Short-term impact of grassland fire on the endangered pygmy bluetongue lizard. J. Zool. 272, 444–450 (2007).
    Google Scholar 

    63.
    Kuchling, G. Impact of fuel reduction burns and wildfires on the critically endangered western swamp tortoise Peudemydura umbrina. In Ecological Society of Australia Conference Proceedings (2007).

    64.
    Driscoll, D. A. & Dale Roberts, J. Impact of fuel-reduction burning on the frog Geocrinia lutea in southwest Western Australia. Austral Ecol. 22, 334–339 (1997).
    Google Scholar 

    65.
    Smith, A., Meulders, B., Bull, C. M. & Driscoll, D. Wildfire-induced mortality of Australian reptiles. Herpetol. Notes 5, 233–235 (2012).
    Google Scholar  More