More stories

  • in

    Flowers as parasite transmission hubs

    1.
    Cameron, S. A. et al. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).
    CAS  Article  Google Scholar 
    2.
    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Science 347, 1255957 (2015).
    Article  Google Scholar 

    3.
    Durrer, S. & Schmid-Hempel, P. Proc. R. Soc. Lond. B 258, 299–302 (1994).
    Article  Google Scholar 

    4.
    Graystock, P. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1247-x (2020).

    5.
    Koch, H., Brown, M. J. & Stevenson, P. C. Curr. Opin. Insect Sci. 21, 60–67 (2017).
    Article  Google Scholar 

    6.
    Alger, S. A., Burnham, P. A. & Brody, A. K. PLoS ONE 14, e0221800 (2019).
    CAS  Article  Google Scholar  More

  • in

    Fragmented kelp forest canopies retain their ability to alter local seawater chemistry

    1.
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
    PubMed  Google Scholar 
    2.
    Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160(8), 2207–2245 (2013).
    CAS  Google Scholar 

    3.
    Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Topic. Life Sci. 3(2), 197–206 (2019).
    CAS  Google Scholar 

    4.
    Raven, J. A., Cockell, C. S. & De La Rocha, C. L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil. Trans. Royal Soc. B. 363(1504), 2641–2650 (2008).
    CAS  Google Scholar 

    5.
    Cornwall, C. E. et al. Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J. Phycol. 48(1), 137–144 (2012).
    CAS  PubMed  Google Scholar 

    6.
    Duarte, C. M. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosci. 14(2), 301–310 (2017).
    ADS  CAS  Google Scholar 

    7.
    Cyronak, T. et al. Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: implications for pH buffering capacities. Estuar. Coast. 41(5), 1282–1296 (2018).
    CAS  Google Scholar 

    8.
    Pacella, S. R., Brown, C. A., Waldbusser, G. G., Labiosa, R. G. & Hales, B. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification. Proc. Nat. Acad. Sci. USA 115(15), 3870–3875 (2018).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Wahl, M. et al. Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations. Limnol. Oceanogr. 63(1), 3–21 (2018).
    ADS  CAS  Google Scholar 

    10.
    Dayton, P. K. Experimental studies of algal canopy interactions in a sea otter-dominated kelp community at Amchitka Island Alaska. Fish. Bull. 73(2), 230–237 (1975).
    Google Scholar 

    11.
    Castorani, M. C., Reed, D. C. & Miller, R. J. Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 99(11), 2442–2454 (2018).
    PubMed  Google Scholar 

    12.
    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29(4), 436–459 (2002).
    Google Scholar 

    13.
    Graham, M. H., Dayton, P. K. & Erlandson, J. M. Ice ages and ecological transitions on temperate coasts. Trends Ecol. Evol. 18(1), 33–40 (2003).
    Google Scholar 

    14.
    Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosci. 9(10), 3917–3930 (2012).
    ADS  CAS  Google Scholar 

    15.
    Koweek, D. A. et al. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability. Biogeosci. 14(1), 31–44 (2017).
    ADS  CAS  Google Scholar 

    16.
    Pfister, C. A., Altabet, M. A. & Weigel, B. L. Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities. Ecology 100(10), e02798 (2019).
    PubMed  Google Scholar 

    17.
    Delille, B., Borges, A. V. & Delille, D. Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuar. Coast. Shelf Sci. 81(1), 114–122 (2009).
    ADS  Google Scholar 

    18.
    Krause-Jensen, D. et al. Long photoperiods sustain high pH in Arctic kelp forests. Sci. Adv. 2(12), e1501938 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    19.
    Britton, D., Cornwall, C. E., Revill, A. T., Hurd, C. L. & Johnson, C. R. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp Ecklonia radiata. Sci. Rep. 6, 26036 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Wernberg, T., Krumhansl, K., Filbee-Dexter, K., & Pedersen, M. F. Status and trends for the world’s kelp forests. in World seas: An environmental evaluation (pp. 57–78). Academic Press, (2019).

    21.
    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. BioSci. 68(2), 64–76 (2018).
    Google Scholar 

    22.
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Nat. Acad. Sci. USA 113(48), 13785–13790 (2016).
    CAS  PubMed  Google Scholar 

    23.
    Harvell, C. D. et al. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5(1), 1 (2019).
    ADS  Google Scholar 

    24.
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change. 6(11), 1042–1047 (2016).
    ADS  Google Scholar 

    25.
    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9(1), 1–9 (2019).
    CAS  Google Scholar 

    26.
    Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N. & Hawkins, S. J. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol. Evol. 3(11), 4016–4038 (2013).
    PubMed  PubMed Central  Google Scholar 

    27.
    Reid, J. et al. The economic value of the recreational red abalone fishery in northern California. California Fish Game. 102(3), 119–130 (2016).
    Google Scholar 

    28.
    Stewart, H. L. et al. Differences in growth, morphology and tissue carbon and nitrogen of Macrocystis pyrifera within and at the outer edge of a giant kelp forest in California USA. Mar. Ecol. Progr. Ser. 375, 101–112 (2009).
    ADS  Google Scholar 

    29.
    Reinmann, A. B. & Hutyra, L. R. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests. Proc. Nat. Acad. Sci. USA 114(1), 107–112 (2017).
    CAS  PubMed  Google Scholar 

    30.
    De Paula, M. D., Costa, C. P. A. & Tabarelli, M. Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop. Conserv. Sci. 4(3), 349–358 (2011).
    Google Scholar 

    31.
    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nature Comm. 6(1), 1–6 (2015).
    Google Scholar 

    32.
    Reed, D. C. & Foster, M. S. The effects of canopy shadings on algal recruitment and growth in a giant kelp forest. Ecology 65(3), 937–948 (1984).
    Google Scholar 

    33.
    Jackson, G. A. Nutrients and production of giant kelp, Macrocystis pyrifera, off southern California. Limnol. Oceanogr. 22, 979–995 (1977).
    ADS  CAS  Google Scholar 

    34.
    Gerard, V. A. In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrifera. Mar. Biol. 69(1), 51–54 (1982).
    Google Scholar 

    35.
    Jackson, G. A. & Winant, C. D. Effect of a kelp forest on coastal currents. Continent. Shelf Res. 2(1), 75–80 (1983).
    ADS  Google Scholar 

    36.
    Gaylord, B. et al. Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol. Oceanogr. 52(5), 1838–1852 (2007).
    ADS  Google Scholar 

    37.
    Rosman, J. H., Koseff, J. R., Monismith, S. G. & Grover, J. A field investigation into the effects of a kelp forest (Macrocystis pyrifera) on coastal hydrodynamics and transport. J. Geophys. Res. Oceans. 112(C2), 1 (2007).
    Google Scholar 

    38.
    Layton, C. et al. Resilience and stability of kelp forests: the importance of patch dynamics and environment-engineer feedbacks. PLoS ONE 14(1), 1 (2019).
    Google Scholar 

    39.
    Kapsenberg, L. & Hofmann, G. E. Ocean pH time-series and drivers of variability along the northern Channel Islands, California USA. Limnol. Oceanogr. 61(3), 953–968 (2016).
    ADS  CAS  Google Scholar 

    40.
    Takeshita, Y. et al. Including high-frequency variability in coastal ocean acidification projections. Biogeosci. 12(19), 5853–5870 (2015).
    ADS  Google Scholar 

    41.
    Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6(12), 1 (2011).
    Google Scholar 

    42.
    Dickson, A.G., Sabine, C.L., & Christian, J.R. Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization, (2007).

    43.
    Yang, B., Byrne, R. H. & Lindemuth, M. Contributions of organic alkalinity to total alkalinity in coastal waters: a spectrophotometric approach. Mar. Chem. 176, 199–207 (2015).
    CAS  Google Scholar 

    44.
    North, W. J. Review of Macrocystis biology. Biol. Econ. Algae. 1, 447–527 (1994).
    Google Scholar 

    45.
    Hugler, M. & Sievert, S. M. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann. Rev. Mar. Sci. 3, 261–289 (2011).
    PubMed  Google Scholar 

    46.
    Weigel, B. L. & Pfister, C. A. Successional dynamics and seascape-level patterns of microbial communities on the canopy-forming kelps Nereocystis luetkeana and Macrocystis pyrifera. Front. Microbiol. 10, 346 (2019).
    PubMed  PubMed Central  Google Scholar 

    47.
    Hauri, C. et al. Ocean acidification in the California current system. Oceanogr. 22(4), 60–71 (2009).
    Google Scholar 

    48.
    García-Reyes, M. & Largier, J. Observations of increased wind-driven coastal upwelling off central California. J. Geophys. Res. Oceans. 115(C4), 1 (2010).
    Google Scholar 

    49.
    Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7(1), 1–7 (2017).
    Google Scholar 

    50.
    Feely, R. A. et al. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Continent. Shelf Res. 152, 50–60 (2018).
    ADS  Google Scholar 

    51.
    Feely, R. A. et al. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 88(4), 442–449 (2010).
    ADS  CAS  Google Scholar 

    52.
    Thompson, T. L. & Glenn, E. P. Plaster standards to measure water motion. Limnol. Oceanogr. 39(7), 1768–1779 (1994).
    ADS  Google Scholar 

    53.
    Cornwall, C. E., Pilditch, C. A., Hepburn, C. D. & Hurd, C. L. Canopy macroalgae influence understory corallines’ metabolic control of near-surface pH and oxygen concentration. Mar. Ecol. Progr. Ser. 525, 81–95 (2015).
    ADS  CAS  Google Scholar 

    54.
    Dominik, C. M. & Zimmerman, R. C. Dynamics of carbon allocation in a deep-water population of the deciduous kelp Pleurophycus gardneri (Laminariales). Mar. Ecol. Progr. Ser. 309, 143–157 (2006).
    ADS  CAS  Google Scholar 

    55.
    Molis, M., Wessels, H., Hagen, W., Karsten, U. & Wiencke, C. Do sulphuric acid and the brown alga Desmarestia viridis support community structure in Arctic kelp patches by altering grazing impact, distribution patterns, and behaviour of sea urchins?. Polar Biol. 32(1), 71–82 (2009).
    Google Scholar 

    56.
    Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B. 277(1686), 1409–1415 (2010).
    PubMed  Google Scholar 

    57.
    Provost, E. J. et al. Climate-driven disparities among ecological interactions threaten kelp forest persistence. Glob. Chang. Biol. 23(1), 353–361 (2017).
    ADS  PubMed  Google Scholar 

    58.
    Bindoff, N.L., Cheung, W.W., Kairo, J.G., Arstegui, J., Guinder, V.A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M.S., Levin, L. & O’Donoghue, S., Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. (2019).

    59.
    Hodgson, E. E. et al. Consequences of spatially variable ocean acidification in the California Current: Lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in northern regions. Ecol. Model. 383, 106–117 (2018).
    CAS  Google Scholar 

    60.
    Pauline, C. Y., Matson, P. G., Martz, T. R. & Hofmann, G. E. The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: Laboratory experiments on the development of urchin larvae framed by environmentally relevant pCO2/pH. J Exp. Mar. Biol. Ecol. 400(1–2), 288–295 (2011).
    Google Scholar 

    61.
    Hamilton, S. L. et al. Species-specific responses of juvenile rockfish to elevated pCO2: from behavior to genomics. PLoS ONE 12(1), 1 (2017).
    Google Scholar 

    62.
    Low, N. H. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Progr. Ser. 594, 165–173 (2018).
    ADS  CAS  Google Scholar 

    63.
    Hurd, C. L. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. J. Phycol. 51(4), 599–605 (2015).
    CAS  PubMed  Google Scholar 

    64.
    Kapsenberg, L. & Cyronak, T. Ocean acidification refugia in variable environments. Glob. Chang. Biol. 25(10), 3201–3214 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    65.
    Springer, Y., Hays, C., Carr, M., & Mackey, M. M. Ecology and management of the bull kelp, Nereocystis luetkeana (2007).

    66.
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9(10), 737–742 (2016).
    ADS  CAS  Google Scholar 

    67.
    Shaw, E. C., McNeil, B. I. & Tilbrook, B. Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J. Geophys. Res. Oceans 117(C3), 1 (2012).
    Google Scholar 

    68.
    Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9(5), 1 (2014).
    Google Scholar 

    69.
    Bandstra, L., Hales, B. & Takahashi, T. High-frequency measurements of total CO2: method development and first oceanographic observations. Mar. Chem. 100(1–2), 24–38 (2006).
    CAS  Google Scholar 

    70.
    Hales, B., Chipman, D. & Takahashi, T. High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors Limnol. Oceanogr. Meth. 2, 356–364 (2004).
    Google Scholar 

    71.
    Lavigne H., Epitalon, J.-M. & Gattuso J.-P. Seacarb: seawater carbonate chemistry with R. R package version 3.0. https://CRAN.R-project.org/package=seacarb, (2011).

    72.
    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, (2013).

    73.
    Palacios, D. M., Hazen, E. L., Schroeder, I. D. & Bograd, S. J. Modeling the temperature-nitrate relationship in the coastal upwelling domain of the California Current. J. Geophys. Res. Oceans. 118(7), 3223–3239 (2013).
    ADS  CAS  Google Scholar 

    74.
    Porter, E. T., Sanford, L. P. & Suttles, S. E. Gypsum dissolution is not a universal integrator of “water motion”. Limnol. Oceanogr. 45, 145–158 (2000).
    ADS  Google Scholar 

    75.
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82(4), 591–605 (2007).
    PubMed  PubMed Central  Google Scholar 

    76.
    Halsey, L. G. The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum?. Biol Lett. 15(5), 20190174 (2019).
    PubMed  PubMed Central  Google Scholar  More

  • in

    A meta-analysis of multiple stressors on seagrasses in the context of marine spatial cumulative impacts assessment

    1.
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7. https://doi.org/10.1038/ncomms8615 (2015).
    CAS  Article  Google Scholar 
    2.
    Hodgson, E. E. & Halpern, B. S. Investigating cumulative effects across ecological scales. Conserv. Biol. 33, 22–32. https://doi.org/10.1111/cobi.13125 (2018).
    Article  PubMed  Google Scholar 

    3.
    Lu, Y. et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 239, 670–680. https://doi.org/10.1016/j.envpol.2018.04.016 (2018).
    CAS  Article  PubMed  Google Scholar 

    4.
    Ostle, C. et al. The rise in ocean plastics evidenced from a 60-year time series. Nat. Commun. 10, 1622. https://doi.org/10.1038/s41467-019-09506-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Doan, N. X. et al. Extreme temperature impairs growth and productivity in a common tropical marine copepod. Sci. Rep. 9, 4550. https://doi.org/10.1038/s41598-019-40996-7 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Barcelos e Ramos, J., Biswas, H., Schulz, K. G., LaRoche, J. & Riebesell, U. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Glob. Biogeochem. Cycles 21, 2028. https://doi.org/10.1029/2006GB002898 (2007).
    ADS  CAS  Article  Google Scholar 

    7.
    Srinivasan, U. T., Cheung, W. W. L., Watson, R. & Sumaila, U. R. Food security implications of global marine catch losses due to overfishing. J. Bioecon. 12, 183–200. https://doi.org/10.1007/s10818-010-9090-9 (2010).
    Article  Google Scholar 

    8.
    Frommel, A. Y., Stiebens, V., Clemmesen, C. & Havenhand, J. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences 7, 3915–3919. https://doi.org/10.5194/bg-7-3915-2010 (2010).
    ADS  CAS  Article  Google Scholar 

    9.
    Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030. https://doi.org/10.1002/ece3.516 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Jackson, M. C. Interactions among multiple invasive animals. Ecology 96, 2035–2041. https://doi.org/10.1890/15-0171.1 (2015).
    CAS  Article  PubMed  Google Scholar 

    11.
    Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140. https://doi.org/10.1111/gcb.12833 (2015).
    ADS  Article  Google Scholar 

    12.
    Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312. https://doi.org/10.1111/gcb.12619 (2014).
    ADS  Article  Google Scholar 

    13.
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x (2008).
    Article  PubMed  Google Scholar 

    14.
    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496. https://doi.org/10.1016/j.tree.2007.07.001 (2007).
    Article  PubMed  Google Scholar 

    15.
    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871.x (2006).
    ADS  Article  PubMed  Google Scholar 

    16.
    King, A. Avoiding ecological surprise: Lessons from long-standing communities. Acad. Manag. Rev. 20, 961–985 (1995).
    Article  Google Scholar 

    17.
    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286. https://doi.org/10.1111/j.1461-0248.2008.01243.x (2008).
    Article  PubMed  Google Scholar 

    18.
    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 1–9. https://doi.org/10.1098/rspb.2015.2592 (2016).
    Article  Google Scholar 

    19.
    Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).
    ADS  Article  Google Scholar 

    20.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).
    ADS  CAS  Article  Google Scholar 

    21.
    Villazan, B., Pedersen, M. F., Brun, F. G. & Vergara, J. J. Elevated ammonium concentrations and low light form a dangerous synergy for eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 493, 141–154. https://doi.org/10.3354/meps10517 (2013).
    ADS  CAS  Article  Google Scholar 

    22.
    Peachey, R. B. J. The synergism between hydrocarbon pollutants and UV radiation: A potential link between coastal pollution and larval mortality. J. Exp. Mar. Biol. Ecol. 315, 103–114. https://doi.org/10.1016/j.jembe.2004.09.009 (2005).
    CAS  Article  Google Scholar 

    23.
    Przeslawski, R., Davis, A. R. & Benkendorff, K. Synergistic effects associated with climate change and the development of rocky shore molluscs. Glob. Change Biol. 11, 515–522. https://doi.org/10.1111/j.1365-2486.2005.00918.x (2005).
    ADS  Article  Google Scholar 

    24.
    Gieswein, A., Hering, D. & Feld, C. K. Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed. Sci. Total Environ. 593–594, 27–35. https://doi.org/10.1016/j.scitotenv.2017.03.116 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    25.
    McRoy, C. P. & McMillan, C. Seagrass Ecosystems. 53–87 (Marcel Dekker, New York, 1977).

    26.
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106, 12377–12381. https://doi.org/10.1073/pnas.0905620106 (2009).
    ADS  Article  PubMed  Google Scholar 

    27.
    Campagne, C. S., Salles, J. M., Boissery, P. & Deter, J. The seagrass Posidonia oceanica: Ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 97, 391–400. https://doi.org/10.1016/j.marpolbul.2015.05.061 (2014).
    CAS  Article  Google Scholar 

    28.
    Lau, W. W. Y. Beyond carbon: Conceptualizing payments for ecosystem services in blue forests on carbon and other marine and coastal ecosystem services. Ocean Coast. Manag. 83, 5–14. https://doi.org/10.1016/j.ocecoaman.2012.03.011 (2013).
    Article  Google Scholar 

    29.
    Watson, R. A., Watson, R. A. & Long, W. J. L. Simulation estimates of annual yield and landed value for commercial penaeid prawns from a tropical seagrass habitat, Northern Queensland, Australia. Mar. Freshw. Res. 44, 211–219. https://doi.org/10.1071/MF9930211 (1993).
    Article  Google Scholar 

    30.
    Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 144, 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010 (2011).
    Article  Google Scholar 

    31.
    Dewsbury, B. M., Bhat, M. & Fourqurean, J. W. A review of seagrass economic valuations: Gaps and progress in valuation approaches. Ecosyst. Serv. 18, 68–77. https://doi.org/10.1016/j.ecoser.2016.02.010 (2016).
    Article  Google Scholar 

    32.
    Short, F. T. & Wyllie-Echeverria, S. Natural and human-induced disturbance of seagrasses. Environ. Conserv. 23, 17–27. https://doi.org/10.1017/S0376892900038212 (1996).
    Article  Google Scholar 

    33.
    García-Redondo, V., Bárbara, I. & Díaz-Tapia, P. Zostera marina meadows in the northwestern Spain: Distribution, characteristics and anthropogenic pressures. Biodivers. Conserv. 28, 1743–1757. https://doi.org/10.1007/s10531-019-01753-4 (2019).
    Article  Google Scholar 

    34.
    Duarte, C. M. The future of seagrass meadows. Environ. Conserv. 29, 192–206. https://doi.org/10.1017/S0376892902000127 (2002).
    Article  Google Scholar 

    35.
    Duffy, J. E. Biodiversity and the functioning of seagrass ecosystems. Mar. Ecol. Prog. Ser. 311, 233–250. https://doi.org/10.3354/meps311233 (2006).
    ADS  Article  Google Scholar 

    36.
    Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2 (2006).
    Article  Google Scholar 

    37.
    Deter, J., Lozupone, X., Inacio, A., Boissery, P. & Holon, F. Boat anchoring pressure on coastal seabed: Quantification and bias estimation using AIS data. Mar. Pollut. Bull. 123, 175–181. https://doi.org/10.1016/j.marpolbul.2017.08.065 (2017).
    CAS  Article  PubMed  Google Scholar 

    38.
    Pereda-Briones, L., Terrados, J. & Tomas, F. Negative effects of warming on seagrass seedlings are not exacerbated by invasive algae. Mar. Pollut. Bull. 141, 36–45. https://doi.org/10.1016/j.marpolbul.2019.01.049 (2019).
    CAS  Article  PubMed  Google Scholar 

    39.
    Koweek, D. A. et al. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecol. Appl. 28, 1694–1714. https://doi.org/10.1002/eap.1771 (2018).
    Article  PubMed  Google Scholar 

    40.
    Burnell, O. W., Russell, B. D., Irving, A. D. & Connell, S. D. Eutrophication offsets increased sea urchin grazing on seagrass aused by ocean warming and acidification. Mar. Ecol. Prog. Ser. 485, 37–46. https://doi.org/10.3354/meps10323 (2013).
    ADS  CAS  Article  Google Scholar 

    41.
    Egea, L. G., Jiménez-Ramos, R., Vergara, J. J., Hernández, I. & Brun, F. G. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Mar. Pollut. Bull. 134, 14–26. https://doi.org/10.1016/j.marpolbul.2018.02.029 (2018).
    CAS  Article  PubMed  Google Scholar 

    42.
    Han, Q. & Liu, D. Macroalgae blooms and their effects on seagrass ecosystems. J. Ocean Univ. China 13, 791–798. https://doi.org/10.1007/s11802-014-2471-2 (2014).
    ADS  CAS  Article  Google Scholar 

    43.
    Willette, D. A. & Ambrose, R. F. Effects of the invasive seagrass Halophila stipulacea on the native seagrass, Syringodium filiforme, and associated fish and epibiota communities in the Eastern Caribbean. Aquat. Bot. 103, 74–82. https://doi.org/10.1016/j.aquabot.2012.06.007 (2012).
    Article  Google Scholar 

    44.
    Vonk, J. A., Christianen, M. J. A., Stapel, J. & O’Brien, K. R. What lies beneath: Why knowledge of belowground biomass dynamics is crucial to effective seagrass management. Ecol. Ind. 57, 259–267. https://doi.org/10.1016/j.ecolind.2015.05.008 (2015).
    Article  Google Scholar 

    45.
    Griffiths, L. L., Connolly, R. M. & Brown, C. J. Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean Coast. Manag. https://doi.org/10.1016/j.ocecoaman.2019.104946 (2019).
    Article  Google Scholar 

    46.
    Clark, D., Goodwin, E., Sinner, J., Ellis, J. & Singh, G. Validation and limitations of a cumulative impact model for an estuary. Ocean Coast. Manag. 120, 88–98. https://doi.org/10.1016/j.ocecoaman.2015.11.013 (2016).
    Article  Google Scholar 

    47.
    Andersson, S., Persson, M., Moksnes, P. O. & Baden, S. The role of the amphipod Gammarus locusta as a grazer on macroalgae in Swedish seagrass meadows. Mar. Biol. 156, 969–981. https://doi.org/10.1007/s00227-009-1141-1 (2009).
    Article  Google Scholar 

    48.
    Hemmi, A. & Jormalainen, V. Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology 83, 1052–1064 (2002).
    Article  Google Scholar 

    49.
    Kraufvelin, P. et al. Eutrophication-induced changes in benthic algae affect the behaviour and fitness of the marine amphipod Gammarus locusta. Aquat. Bot. 84, 199–209. https://doi.org/10.1016/j.aquabot.2005.08.008 (2006).
    Article  Google Scholar 

    50.
    Burkepile, D. E. & Hay, M. E. Herbivore vs. nutrient control of marine primary producers: Context-dependent effects. Ecology 87, 3128–3139. https://doi.org/10.1890/0012-9658(2006)87[3128:Hvncom]2.0.Co;2 (2006).
    Article  PubMed  Google Scholar 

    51.
    Korpinen, S. & Jormalainen, V. Grazing and nutrients reduce recruitment success of Fucus vesiculosus L. (Fucales: Phaeophyceae). Estuar. Coast. Shelf Sci. 78, 437–444 (2008).
    ADS  Article  Google Scholar 

    52.
    Hasler-Sheetal, H., Castorani, M. C. N., Glud, R. N., Canfield, D. E. & Holmer, M. Metabolomics reveals cryptic interactive effects of species interactions and environmental stress on nitrogen and sulfur metabolism in seagrass. Environ. Sci. Technol. 50, 11602–11609. https://doi.org/10.1021/acs.est.6b04647 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    53.
    Koch, M. S., Schopmeyer, S. A., Holmer, M., Madden, C. J. & Kyhn-Hansen, C. Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and hypoxia. Aquat. Bot. 87, 104–110. https://doi.org/10.1016/j.aquabot.2007.03.004 (2007).
    CAS  Article  Google Scholar 

    54.
    Touchette, B. W. Seagrass-salinity interactions: Physiological mechanisms used by submersed marine angiosperms for a life at sea. J. Exp. Mar. Biol. Ecol. 350, 194–215. https://doi.org/10.1016/j.jembe.2007.05.037 (2007).
    Article  Google Scholar 

    55.
    Koch, M. S. & Erskine, J. M. Sulfide as a phytotoxin to the tropical seagrass Thalassia testudinum: Interactions with light, salinity and temperature. J. Exp. Mar. Biol. Ecol. 266, 81–95. https://doi.org/10.1016/s0022-0981(01)00339-2 (2001).
    CAS  Article  Google Scholar 

    56.
    Lamers, L. P. M. et al. Sulfide as a soil phytotoxin-a review. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00268 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Pedersen, O., Binzer, T. & Borum, J. Sulphide intrusion in eelgrass (Zostera marina L.). Plant Cell Environ. 27, 595–602. https://doi.org/10.1111/j.1365-3040.2004.01173.x (2004).
    CAS  Article  Google Scholar 

    58.
    Wahl, M. et al. in Advances in Marine Biology Vol. 59 (ed. Michael L.) 37–105 (Academic Press, London, 2011).

    59.
    Koch, M. S., Schopmeyer, S., Kyhn-Hansen, C. & Madden, C. J. Synergistic effects of high temperature and sulfide on tropical seagrass. J. Exp. Mar. Biol. Ecol. 341, 91–101. https://doi.org/10.1016/j.jembe.2006.10.004 (2007).
    CAS  Article  Google Scholar 

    60.
    Steen, H. & Scrosati, R. Intraspecific competition in Fucus serratus and F. evanescens (Phaeophyceae: Fucales) germlings: Effects of settlement density, nutrient concentration, and temperature. Mar. Biol. 144, 61–70. https://doi.org/10.1007/s00227-003-1175-8 (2004).
    Article  Google Scholar 

    61.
    Jenkins, S. R., Norton, T. A. & Hawkins, S. J. Interactions between canopy forming algae in the eulittoral zone of sheltered rocky shores on the Isle of Man. J. Mar. Biol. Assoc. UK 79, 341–349. https://doi.org/10.1017/S0025315498000381 (1999).
    Article  Google Scholar 

    62.
    Kilminster, K. et al. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 534, 97–109 (2015).
    ADS  CAS  Article  Google Scholar 

    63.
    de Vries, J., Kraak, M. H. S., Verdonschot, R. C. M. & Verdonschot, P. F. M. Quantifying cumulative stress acting on macroinvertebrate assemblages in lowland streams. Sci. Total Environ. 694, 133630. https://doi.org/10.1016/j.scitotenv.2019.133630 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    64.
    Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, 1–11. https://doi.org/10.1890/ES13-00181.1 (2013).
    Article  Google Scholar 

    65.
    Suchanek, T. H. Temperate coastal marine communities: Biodiversity and threats. Am. Zool. 34, 100–114. https://doi.org/10.1093/icb/34.1.100 (1994).
    Article  Google Scholar 

    66.
    Stock, A. & Micheli, F. Effects of model assumptions and data quality on spatial cumulative human impact assessments. Glob. Ecol. Biogeogr. 25, 1321–1332. https://doi.org/10.1111/geb.12493 (2016).
    Article  Google Scholar 

    67.
    Korpinen, S. & Andersen, J. H. A global review of cumulative pressure and impact assessments in marine environments. Front. Mar. Sci. 3, 153–164. https://doi.org/10.3389/fmars.2016.00153 (2016).
    Article  Google Scholar 

    68.
    Coll, M., Steenbeek, J., Sole, J., Palomera, I. & Christensen, V. Modelling the cumulative spatial-temporal effects of environmental drivers and fishing in a NW Mediterranean marine ecosystem. Ecol. Model. 331, 100–114. https://doi.org/10.1016/j.ecolmodel.2016.03.020 (2016).
    Article  Google Scholar 

    69.
    Griffith, G. P., Fulton, E. A., Gorton, R. & Richardson, A. J. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models. Conserv. Biol. 26, 1145–1152. https://doi.org/10.1111/j.1523-1739.2012.01937.x (2012).
    Article  PubMed  Google Scholar 

    70.
    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546. https://doi.org/10.1111/ddi.12159 (2014).
    Article  Google Scholar 

    71.
    Andersen, J. H., Halpern, B. S., Korpinen, S., Murray, C. & Reker, J. Baltic Sea biodiversity status vs. cumulative human pressures. Estuar. Coast. Shelf Sci. 161, 88–92. https://doi.org/10.1016/j.ecss.2015.05.002 (2015).
    Article  Google Scholar 

    72.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  Article  Google Scholar 

    73.
    Hoffman, J. R., Hansen, L. J. & Klinger, T. Interactions between UV radiation and temperature limit inferences from single-factor experiments. J. Phycol. 39, 268–272. https://doi.org/10.1046/j.1529-8817.2003.01111.x (2003).
    Article  Google Scholar 

    74.
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Grp, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 8, 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007 (2010).
    Article  PubMed  Google Scholar 

    75.
    Kahn, A. E. & Durako, M. J. Thalassia testudinum seedling responses to changes in salinity and nitrogen levels. J. Exp. Mar. Biol. Ecol. 335, 1–12. https://doi.org/10.1016/j.jembe.2006.02.011 (2006).
    CAS  Article  Google Scholar 

    76.
    Lange, K., Bruder, A., Matthaei, C. D., Brodersen, J. & Paterson, R. A. Multiple-stressor effects on freshwater fish: Importance of taxonomy and life stage. Fish Fish. 19, 974–983. https://doi.org/10.1111/faf.12305 (2018).
    Article  Google Scholar 

    77.
    Hedges, L. V. & Olkin, I. Statistical methods for meta-analysis (Academic Press, London, 1985).
    Google Scholar 

    78.
    Gurevitch, J., Morrison, J. A. & Hedges, L. V. The interaction between competition and predation: A meta-analysis of field experiments. Am. Nat. 155, 435–453. https://doi.org/10.1086/303337 (2000).
    Article  PubMed  Google Scholar 

    79.
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. 82, 591–605. https://doi.org/10.1111/j.1469-185X.2007.00027.x (2007).
    Article  PubMed  Google Scholar 

    80.
    UNEP-WCMC & Short, F. T. Global Distribution of Seagrasses (version 6). Sixth update to the data layer used in Green and Short (2003), superseding version 5. Cambridge (UK): UN Environment World Conservation Monitoring Centre. https://data.unep-wcmc.org/datasets/7 (2018). More

  • in

    Tapanuli orangutan endangered by Sumatran hydropower scheme

    1.
    Wich, S. A., Fredriksson, G., Usher, G., Kühl, H. S. & Nowak, M. G. Conserv. Sci. Pract. 1, e33 (2019).
    Article  Google Scholar 
    2.
    Rochmyaningsih, D. Science 365, 1064–1065 (2019).
    CAS  Article  Google Scholar 

    3.
    Jong, H. N. Scientists call for independent review of dam project in orangutan habitat. Mongabay (24 March 2020); https://go.nature.com/3e8zcaU

    4.
    Indonesian Firm using “Deplorable” Tactics to Push Orangutan-Killer Project (Alliance of Leading Environmental Researchers & Thinkers, 2018); https://go.nature.com/2W2JzXt

    5.
    Batang Toru Hydropower Project. Factcheck and References on Key Issues (IUCN SGA/ARRC, 2020); https://go.nature.com/2BT4up9

    6.
    Santosa, Y. et al. Impact of Batang Toru Hydropower Construction on Primary Forest, Orangutan Population and Habitat, Drought and Flood, Greenhouse Gases Emission and Socio-Economic Surroundings (The Center of Study, Advocacy and Nature Conservation, 2018).

    7.
    New photos show Tapanuli orangutans on the move. Foresthints (26 September 2018); https://go.nature.com/3iJ2BMl

    8.
    Rochmyaningsih, D. A dam threatens the world’s rarest ape. Why are some conservationists suddenly on board? Science (10 September 2019); https://go.nature.com/3gIcRm6

    9.
    Purba, J. Ian Singleton: Dampak PLTA Batangtoru Terhadap Kelangsungan Hidup Orangutan Tapanuli Dapat Direstorasi. RMOL Sumut (19 February 2020); https://go.nature.com/2O6s1W8

    10.
    Aktivis Asing “Menggoyang” Indonesia. Kompasiana (24 September 2019); https://go.nature.com/2O8siYF

    11.
    Finer, M. & Jenkins, C. N. PLoS ONE 7, e35126 (2012).
    CAS  Article  Google Scholar 

    12.
    Watts, J. Chinese dam project in Guinea could kill up to 1,500 chimpanzees. The Guardian (28 February 2019); https://go.nature.com/3205jHp

    13.
    Kormos, R. et al. PLoS ONE 9, e111671 (2014).
    Article  Google Scholar 

    14.
    IUCN calls for a moratorium on projects impacting the Critically Endangered Tapanuli orangutan. IUCN (16 April 2019); https://go.nature.com/3224VIy More

  • in

    Fasting season length sets temporal limits for global polar bear persistence

    1.
    Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955–958 (2010).
    CAS  Google Scholar 
    2.
    Regehr, E. V. et al. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biol. Lett. 12, 20160556 (2016).
    Google Scholar 

    3.
    Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010); corrigendum 177, 230–231 (2014).

    4.
    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).
    Google Scholar 

    5.
    Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front. Ecol. Environ. 13, 138–145 (2015).
    Google Scholar 

    6.
    Stern, H. S. & Laidre, K. L. Sea-ice indicators of polar bear habitat. Cryosphere 10, 2027–2041 (2016).
    Google Scholar 

    7.
    Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706 (2012).
    Google Scholar 

    8.
    Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. Effects of earlier sea ice breakup on survival and population size of polar bears in Western Hudson Bay. J. Wildl. Manag. 71, 2673–2683 (2007).
    Google Scholar 

    9.
    Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).
    Google Scholar 

    10.
    Rode, K. D. et al. A tale of two polar bear populations: ice habitat, harvest, and body condition. Popul. Ecol. 54, 3–18 (2012).
    Google Scholar 

    11.
    Bromaghin, J. F. et al. Polar bear population dynamics in the Southern Beaufort Sea during a period of sea ice decline. Ecol. Appl. 25, 634–651 (2016).
    Google Scholar 

    12.
    Lunn, N. J. et al. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecol. Appl. 26, 1302–1320 (2016).
    Google Scholar 

    13.
    Obbard, M. E. et al. Trends in body condition in polar bears (Ursus maritimus) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Sci. 2, 15–32 (2016).
    Google Scholar 

    14.
    Hunter, C. M. et al. Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology 91, 2883–2897 (2010).
    Google Scholar 

    15.
    Molnár, P. K., Derocher, A. E., Klanjscek, T. & Lewis, M. A. Predicting climate change impacts on polar bear litter size. Nat. Commun. 2, 186 (2011).
    Google Scholar 

    16.
    De la Guardia, L. C., Derocher, A. E., Myers, P. G., van Scheltinga, A. D. T. & Lunn, N. J. Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century. Glob. Change Biol. 19, 2675–2687 (2013).
    Google Scholar 

    17.
    Hamilton, S. G. et al. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago. PLoS ONE 9, e113746 (2014).
    Google Scholar 

    18.
    Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data Version 1 (1979–2016) (NASA DAAC at the National Snow and Ice Data Center, accessed 7 June 2017).

    19.
    Arnould, J. P. Y. & Ramsay, M. A. Milk production and milk consumption in polar bears during the ice-free period in western Hudson Bay. Can. J. Zool. 72, 1365–1370 (1994).
    Google Scholar 

    20.
    Dyck, M., Campbell, M., Lee, D. S., Boulanger, J. & Hedman, D. Aerial Survey of the Western Hudson Bay Polar Bear Sub-Population 2016. 2017 Final Report (Wildlife Research Section, Department of Environment, Government of Nunavut, 2017).

    21.
    Manning, T. H. Geographical Variation in the Polar Bear Ursus Maritimus Phipps. Rep. Ser. No. 13 (Canadian Wildlife Service, 1971).

    22.
    Derocher, A. E. & Stirling, I. Geographic variation in growth of polar bears (Ursus maritimus). J. Zool. Lond. 245, 65–72 (1998).
    Google Scholar 

    23.
    Derocher, A. E. & Wiig, Ø. Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. J. Zool. Lond. 256, 343–349 (2002).
    Google Scholar 

    24.
    Obbard, M. E. et al. Re-assessing abundance of Southern Hudson Bay polar bears by aerial survey: effects of climate change at the southern edge of the range. Arctic Sci. 4, 634–655 (2018).
    Google Scholar 

    25.
    Peacock, E., Taylor, M. K., Laake, J. & Stirling, I. Population ecology of polar bears in Davis Strait, Canada and Greenland. J. Wildl. Manag. 77, 463–476 (2013).
    Google Scholar 

    26.
    Galicia, M. P., Thiemann, G. W., Dyck, M. G. & Ferguson, S. H. Characterization of polar bear (Ursus maritimus) diets in the Canadian high arctic. Polar Biol. 38, 1983–1992 (2015).
    Google Scholar 

    27.
    Laidre, K. L. et al. Interrelated ecological impacts of climate change on an apex predator. Ecol. Appl. 30, e02071 (2020).
    Google Scholar 

    28.
    Stapleton, S., Peacock, E. & Garshelis, D. Aerial surveys suggest long-term stability in the seasonally ice-free Foxe Basin (Nunavut) polar bear population. Mar. Mammal Sci. 32, 181–201 (2016).
    Google Scholar 

    29.
    Regehr, E. V. et al. Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Sci. Rep. 8, 16780 (2018).
    Google Scholar 

    30.
    Stirling, I., McDonald, T. L., Richardson, E. S., Regehr, E. V. & Amstrup, S. C. Polar bear population status in the Northern Beaufort Sea, Canada, 1971–2006. Ecol. Appl. 21, 859–876 (2011).
    Google Scholar 

    31.
    Pagano, A. M. et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science 359, 568–572 (2018).
    CAS  Google Scholar 

    32.
    Aars, J. et al. The number and distribution of polar bears in the western Barents Sea. Polar Res. 36, 1374125 (2017).
    Google Scholar 

    33.
    Moss, R. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies (IPCC, 2008).

    34.
    Molnár, P. K., Derocher, A. E., Lewis, M. A. & Taylor, M. K. Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proc. R. Soc. B 275, 217–226 (2008).
    Google Scholar 

    35.
    Ingolfsson, O. & Wiig, Ø. Late Pleistocene fossil find in Svalbard: the oldest remains of a polar bear (Ursus maritimus Phipps, 1744) ever discovered. Polar Res. 28, 455–462 (2008).
    Google Scholar 

    36.
    Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).
    CAS  Google Scholar 

    37.
    Durner, G. M. et al. Predicting 21st century polar bear habitat distribution from global climate models. Ecol. Monogr. 79, 25–58 (2009).
    Google Scholar 

    38.
    Cherry, S. G., Derocher, A. E., Thiemann, G. W. & Lunn, N. J. Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. J. Anim. Ecol. 82, 912–921 (2013).
    Google Scholar 

    39.
    Smith, R. D., Kortas, S. & Meltz, B. J. A. Curvilinear Coordinates for Global Ocean Models. Tech. Note LA-UR-95-1146 (Los Alamos National Laboratory, 1997).

    40.
    Amstrup, S. C., Marcot, B. G. & Douglas, D. C. in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications (eds DeWeaver, E. T. et al.) 213–268 (American Geophysical Union, 2008).

    41.
    Regehr, E. V., Hunter, C. M., Caswell, H., Amstrup, S. C. & Stirling, I. Survival and breeding of polar bears in the Southern Beaufort Sea in relation to sea ice. J. Anim. Ecol. 79, 117–127 (2009).
    Google Scholar 

    42.
    Whiteman, J. P. et al. Summer declines in activity and body temperature offer polar bears limited energy savings. Science 349, 295–298 (2015).
    CAS  Google Scholar 

    43.
    Whiteman, J. P. et al. Phenotypic plasticity and climate change: can polar bears respond to longer Arctic summers with an adaptive fast? Oecologia 186, 369–381 (2018).
    Google Scholar 

    44.
    Fetterer, F., Knowles, K., Meier, W. & Savoie, M. Sea Ice Index (National Snow and Ice Data Center, 2002).

    45.
    Furnell, D. J. & Oolooyuk, D. Polar bear predation on ringed seals in ice-free water. Can. Field-Nat. 94, 88–89 (1980).
    Google Scholar 

    46.
    Stirling, I., Lunn, N. J. & Iacozza, J. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climate change. Arctic 52, 294–306 (1999).
    Google Scholar 

    47.
    Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C. & Zwally, H. J. Deriving long-term time series of ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res. 104, 15803–15814 (1999).
    Google Scholar 

    48.
    Meier, W. N. & Stewart, J. S. Assessing uncertainties in sea ice extent climate indicators. Environ. Res. Lett. 14, 035005 (2019).
    Google Scholar 

    49.
    Durner, G. M. et al. Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Glob. Change Biol. 23, 3460–3473 (2017).
    Google Scholar 

    50.
    Durner, G. M. et al. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat. Polar Biol. 34, 975–984 (2011).
    Google Scholar 

    51.
    Pagano, A. M., Durner, G. M., Amstrup, S. C., Simac, K. S. & York, G. S. Long-distance swimming by polar bears (Ursus maritimus) of the Southern Beaufort Sea during years of extensive open water. Can. J. Zool. 90, 663–676 (2012).
    Google Scholar 

    52.
    Derocher, A. E. & Stirling, I. Aspects of survival in juvenile polar bears. Can. J. Zool. 74, 1246–1252 (1996).
    Google Scholar 

    53.
    Molnár, P. K., Klanjscek, T., Derocher, A. E., Obbard, M. E. & Lewis, M. A. A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears. J. Exp. Biol. 212, 2313–2323 (2009).
    Google Scholar 

    54.
    Best, R. C. Thermoregulation in resting and active polar bears. J. Comp. Physiol. 146, 63–73 (1982).
    Google Scholar 

    55.
    Mathewson, P. D. & Porter, W. P. Simulating polar bear energetics during a seasonal fast using a mechanistic model. PLoS ONE 8, e72863 (2013).
    CAS  Google Scholar 

    56.
    Pagano, A. M. et al. Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical? J. Exp. Biol. 221, jeb175372 (2018).
    Google Scholar 

    57.
    Derocher, A. E. & Stirling, I. Distribution of polar bears (Ursus maritimus) during the ice-free period in Western Hudson Bay. Can. J. Zool. 68, 1395–1403 (1990).
    Google Scholar 

    58.
    Lunn, N. J., Stirling, I., Andriashek, D. & Richardson, E. Selection of maternity dens by female polar bears in western Hudson Bay, Canada and the effects of human disturbance. Polar Biol. 27, 350–356 (2004).
    Google Scholar 

    59.
    Parks, E. K., Derocher, A. E. & Lunn, N. J. Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Can. J. Zool. 84, 1281–1294 (2006).
    Google Scholar 

    60.
    Derocher, A. E., Stirling, I. & Andriashek, D. Pregnancy rates and serum progesterone levels of polar bears in Western Hudson Bay. Can. J. Zool. 70, 561–566 (1992).
    CAS  Google Scholar 

    61.
    Lee, P. C., Majluf, P. & Gordon, I. J. Growth, weaning and maternal investment from a comparative perspective. J. Zool. Lond. 225, 99–114 (1991).
    Google Scholar 

    62.
    Oftedal, O. T. The adaptation of milk secretion to the constraints of fasting in bears, seals, and baleen whales. J. Dairy Sci. 76, 3234–3246 (1993).
    CAS  Google Scholar 

    63.
    Derocher, A. E., Andriashek, D. & Arnould, J. P. Y. Aspects of milk composition and lactation in polar bears. Can. J. Zool. 71, 561–567 (1993).
    Google Scholar 

    64.
    Stapleton, S., Atkinson, S., Hedman, D. & Garshelis, D. Revisiting Western Hudson Bay: using aerial surveys to update polar bear abundance in a sentinel population. Biol. Conserv. 170, 38–47 (2014).
    Google Scholar 

    65.
    Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 

    66.
    Regehr, E. V., Wilson, R. R., Rode, K. D. & Runge, M. C. Resilience and Risk—a Demographic Model to Inform Conservation Planning for Polar Bears Open-File Report 2015–1029 (US Geological Survey, 2015).

    67.
    Molnár, P. K., Lewis, M. A. & Derocher, A. E. Estimating Allee dynamics before they can be observed: polar bears as a case study. PLoS ONE 9, e85410 (2014).
    Google Scholar 

    68.
    Rode, K. D. et al. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Glob. Change Biol. 20, 76–88 (2014).
    Google Scholar 

    69.
    Laliberté, F., Howell, S. E. L. & Kushner, P. J. Regional variability of a projected sea ice‐free Arctic during the summer months. Geophys. Res. Lett. 43, 256–263 (2016).
    Google Scholar 

    70.
    Massonnet, F. et al. Constraining projections of summer Arctic sea ice. Cryosphere 6, 1383–1394 (2012).
    Google Scholar 

    71.
    McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).
    Google Scholar 

    72.
    McNutt, J. W. & Gusset, M. Declining body size in an endangered large mammal. Biol. J. Linn. Soc. 105, 8–12 (2012).
    Google Scholar 

    73.
    Amstrup, S. C. & Durner, G. M. Survival rates of radio-collared female polar bears and their dependent young. Can. J. Zool. 73, 1312–1322 (1995).
    Google Scholar  More

  • in

    Scale in the study of Indigenous burning

    1.
    Armstrong, C. G. et al. Anthropological contributions to historical ecology: 50 questions, infinite prospects. PLoS ONE 12, e0171883 (2017).
    Article  Google Scholar 
    2.
    Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).
    Article  Google Scholar 

    3.
    Bragdon, K. J. Native People of Southern New England, 1500–1650 Vol. 221 (Univ. Oklahoma Press, 1996).

    4.
    Stone, G. D. Settlement Ecology: The Social and Spatial Organization of Kofyar Agriculture (Univ. Arizona Press, 1996).

    5.
    Whitlock, C. & Anderson, R. S. in Fire and Climatic Change in Temperate Ecosystems of the Western Americas Ecological Studies Vol. 160 (eds Veblen, T. T. et al.) 3–31 (Springer, 2003).

    6.
    Roos, C. I., Williamson, G. J. & Bowman, D. M. J. S. Is anthropogenic pyrodiversity invisible in paleofire records? Fire 2, 42 (2019).
    Article  Google Scholar 

    7.
    Day, G. M. The Indian as an ecological factor in the northeastern forest. Ecology 34, 329–346 (1953).
    Article  Google Scholar 

    8.
    Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England (Hill and Wang, 2011).

    9.
    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
    Article  Google Scholar 

    10.
    Roos, C. I. et al. Pyrogeography, historical ecology, and the human dimensions of fire regimes. J. Biogeogr. 41, 833–836 (2014).
    Article  Google Scholar 

    11.
    Bowman, D. M. J. S. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
    Article  Google Scholar 

    12.
    Swetnam, T. W. et al. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA. Phil. Trans. R. Soc. B 371, 20150168 (2016).
    Article  Google Scholar 

    13.
    Bliege Bird, R., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
    Article  Google Scholar 

    14.
    Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl Acad. Sci. USA 115, 8143–8148 (2018).
    CAS  Article  Google Scholar 

    15.
    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).

    16.
    Flannery, T. The Future Eaters: An Ecological History of the Australasian Lands and People (Grove, 2002). More

  • in

    Reduced ecosystem services of desert plants from ground-mounted solar energy development

    1.
    Halmo, D. B., Stoffle, R. W. & Evans, M. J. Paitu Nanasuagaindu Pahonupi (Three Sacred Valleys): cultural significance of Gosiute, Paiute, and Ute plants. Hum. Organ. 52, 142–150 (1993).
    Google Scholar 
    2.
    Stoffle, R. W., Halmo, D. B. & Austin, D. E. Cultural landscapes and traditional cultural properties: a southern Paiute view of the Grand Canyon and Colorado River. Am. Indian Q. 21, 229–249 (1997).
    Google Scholar 

    3.
    Lee, R. B. in Man the Hunter (eds Lee, R. B. & DeVore, I.) 30–48 (Aldine, 1968).

    4.
    Smith, M., Veth, P., Hiscock, P. & Wallis, L. A. in Desert Peoples, Archaeological Perspectives Vol. 1 (eds Veth, P. et al.) Ch. 1 (Blackwell, 2005).

    5.
    Stoffle, R. W. & Evans, M. J. Holistic conservation and cultural triage: American Indian perspectives on cultural resources. Hum. Organ 49, 91–99 (1990).
    Google Scholar 

    6.
    Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (UC Press, 2005).

    7.
    Saenz-Hernandez, C., Corrales-Garcia, J. & Aquino-Perez, G. in Cacti: Biology and Uses (ed. Nobel, P. S.) 211–234 (UC Press, 2002).

    8.
    Larsen, L. & Harlan, S. L. Desert dreamscapes: residential landscape preference and behavior. Landsc. Urban Plan. 78, 8–100 (2006).
    Google Scholar 

    9.
    Rokeach, M. The Nature of Human Values (Free Press, 1973).

    10.
    Schwartz, S. H. & Bilksy, W. Toward a universal psychology structure of human values. J. Person. Soc. Psychol. 58, 878–891 (1987).
    Google Scholar 

    11.
    Kamakura, W. A. & Novak, T. P. Value system segmentation: exploring the meaning of LOV. J. Consum. Res. 19, 119–132 (1992).
    Google Scholar 

    12.
    Moore-O’Leary, K. A. et al. Sustainability of utility-scale solar energy—critical ecological concepts. Front. Ecol. Environ. 15, 385–394 (2017).
    Google Scholar 

    13.
    Hernandez, R. R. et al. Techno-ecological synergies of solar energy produce beneficial outcomes across industrial-ecological boundaries to mitigate global change. Nat. Sustain. 2, 560–568 (2019).
    Google Scholar 

    14.
    Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).
    CAS  Google Scholar 

    15.
    Folke, C. et al. Resilience and sustainable development: building adaptive capacity in a world of transformations. AMBIO 31, 437–440 (2002).
    Google Scholar 

    16.
    Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).
    CAS  Google Scholar 

    17.
    Chan, K. M. A. et al. Where are cultural and social in ecosystem services? A framework for constructive engagement. BioScience 62, 744–756 (2012).
    Google Scholar 

    18.
    Farber, S. C., Constanza, R. & Wilson, M. A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375–392 (2002).
    Google Scholar 

    19.
    Copeland, S. M., Bradford, J. B., Duniway, M. C. & Schuster, R. M. Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere 8, e01823 (2017).

    20.
    Durant, S. M. et al. Forgotten biodiversity in desert ecosystems. Science 336, 1379–1380 (2012).
    CAS  Google Scholar 

    21.
    McDonald, R. I. et al. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS ONE 4, e6802 (2009).
    Google Scholar 

    22.
    Hernandez, R. R. et al. Solar energy development impacts on terrestrial ecosystems. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015a).
    CAS  Google Scholar 

    23.
    Hernandez, R. R. et al. The land-use efficiency of big solar. Environ. Sci. Technol. 48, 1315–1323 (2014).
    CAS  Google Scholar 

    24.
    Lovich, J. E. & Bainbridge, D. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration. Environ. Manag. 24, 309–326 (1999).
    CAS  Google Scholar 

    25.
    Hoffacker, M. K., Allen, M. F. & Hernandez, R. R. Land sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, USA. Environ. Sci. Technol. 51, 14472–14482 (2017).
    CAS  Google Scholar 

    26.
    Potter, C. Landsat time series analysis of vegetation changes in solar energy development areas of the Lower Colorado Desert, southern California. J. Geosci. Environ. Prot. 4, 1–6 (2016).
    Google Scholar 

    27.
    Li, Y. et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361, 1019–1022 (2018).
    CAS  Google Scholar 

    28.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    CAS  Google Scholar 

    29.
    Bidak, L. M., Kamal, S. A., Halmy, M. W. A. & Heneidy, S. Z. Goods and services provided by native plants in desert ecosystems: examples from the northwestern coastal desert of Egypt. Glob. Ecol. Conserv. 3, 433–447 (2015).
    Google Scholar 

    30.
    Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).
    CAS  Google Scholar 

    31.
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).
    CAS  Google Scholar 

    32.
    Brooks, M. L. & Matchett, J. R. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980-2004. J. Arid Environ. 67, 148–164 (2006).
    Google Scholar 

    33.
    Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015).
    CAS  Google Scholar 

    34.
    Drennan, P. M. & Nobel, P. S. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 23, 767–781 (2000).
    CAS  Google Scholar 

    35.
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).
    Google Scholar 

    36.
    Daily, G. C. & Matson, P. A. Ecosystem services: from theory to implementation. Proc. Natl Acad. Sci. USA 105, 9455–9456 (2008).
    CAS  Google Scholar 

    37.
    Kuletz, V. L. The Tainted Desert: Environmental and Social Ruin in the American West (Routledge, 1998).

    38.
    Adamson, J. American Indian Literature, Environmental Justice, and Ecocriticism (Univ. Arizona Press, 2001).

    39.
    Romero, H., Mendez, M. & Smith, P. Mining development and environmental injustice in the Atacama Desert of northern Chile. Environ. Justice 5, 70–76 (2012).
    Google Scholar 

    40.
    Vine, D. Base Nation: How U.S. Military Bases Abroad Harm America and the World (Henry Holt and Co., 2015).

    41.
    Tsosie, R. Indigenous people and environmental justice: the impact of climate change. Univ. Col. Law Rev. 78, 1625–1678 (2007).
    Google Scholar 

    42.
    Mulvaney, D. Identifying the roots of Green Civil War over utility-scale solar energy projects on public lands across the American Southwest. J. Land Use Sci. 12, 493–515 (2017).
    Google Scholar 

    43.
    Brookshire, D. & Kaza, N. Planning for seven generations: energy planning of American Indian tribes. Energy Policy 62, 1506–1514 (2013).
    Google Scholar 

    44.
    Bronin, S. C. The promise and perils of renewable energy on tribal lands. Tulane Environ. Law J. 26, 221–237 (2013).
    Google Scholar 

    45.
    Polis, G. A. The Ecology of Desert Communities (Univ. Arizona Press, 1991).

    46.
    Aranda-Rickert, A., Diez, P. & Marazzi, B. Extrafloral nectar fuels ant life in deserts. AoB PLANTS 6, plu068 (2014).
    Google Scholar 

    47.
    Rickleffs, R. E. & Hainsworth, F. R. Tenperature regulation in nestling cactus wren: the nest environment. Condor 71, 32–37 (1969).
    Google Scholar 

    48.
    Pfeiler, E. & Markow, T. A. Phylogeography of the cactophilic Drosophila and other arthropods associated with cactus necroses in the Sonoran Desert. Insects 2, 218–231 (2011).
    Google Scholar 

    49.
    Pellmyr, O., Thompson, J. N., Brown, J. M. & Harrison, R. G. Evolution of pollination and mutualism in the yucca moth lineage. Am. Nat. 148, 827–847 (1996).
    Google Scholar 

    50.
    Abella, S. R. & Berry, K. H. Enhancing and restoring habitat for the desert tortoise. J. Fish. Wildl. Manag. 7, 255–279 (2016).
    Google Scholar 

    51.
    Hernandez, R. R. et al. Efficient use of land to meet sustainable energy needs. Nat. Clim. Change 5, 353–358 (2015).
    Google Scholar 

    52.
    Clark, W. C., van Kerkhoff, L., Lebel, L. & Gallopin, G. C. Crafting usable knowledge for sustainable development. Proc. Natl Acad. Sci. USA 113, 4570–4578 (2016).
    CAS  Google Scholar  More

  • in

    Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability

    Study area
    The study area is located in the north-eastern Italian Alps (Argentario range, in Val di Cembra and Valsugana; Autonomous Province of Trento), covers c. 16 km2 and ranges between 500 and 1,000 m a.s.l. The topography is generally mild, but steeper slopes ( > 30°) occur in the northern portion. The climate is continental and characterized by a mean temperature of 1.0 °C in January and 21.0 °C in July, and a mean annual rainfall of 966 mm (average 2000–2018; https://www.meteotrentino.it). There is occasional snow cover between December and March, although the soil is mostly frozen at night. The study area is covered by 80.0% forest, mostly as relatively homogeneous secondary growth stands interspersed with small pastures. The forests are dominated by Pinus sylvestris with abundant shrub undergrowth, and by mixed stands of Fagus sylvatica, Picea abies and Abies alba and, to a lower extent, by Quercus petraea stands.
    Roe deer is the primary large herbivore in the study area (6–9 individuals km−2; ref. values from Autonomous Province of Trento Wildlife Office). Adult roe deer do not have natural predators in this landscape, but young fawns may be predated by red fox (Vulpes vulpes). The fine-scale food selection of roe deer in the Alps has been described as mainly dependent on shrubs or regeneration of tree species as well as a diversity of herbaceous plants from the undergrowth from spring to fall, switching between items according to the temporal trends of availability48. In the winter time, roe deer strongly select for forested environments and opportunistically for supplemental food where available22.
    Supplemental feeding management of roe deer is conducted at  > 50 distinct feeding sites within the study area (FS; Supplementary Information S1: Fig. S1) and authorized year-round within a larger zone of c. 45 km2 (official authorization: “Autonomous Province of Trento order n. 2852/2013”). FS are typically shaped as wooden hopper dispensers that provide a continuous supply of corn accessible through a tray (Fig. 1). They have been deployed and provided continuously with food (at least in fall and winter) for many years (i.e., for longer that the average lifespan of roe deer in our study area). They are managed by private hunters for roe deer but are also attended sporadically by red deer (Cervus elaphus), as well as non-target mammals (Meles meles, Sciurus vulgaris, Apodemus sp., Microtus sp.) and birds (Garrulus glandarius, Columba palumbus).
    Experimental design
    We took advantage of roe deer use of a focal, identifiable resource—the FS—to design an in situ experimental manipulation of resource availability. We created three successive experimental phases based on the availability of this resource—pre-closure, closure and post-closure—by physically managing the accessibility of food at the FS. During the closure phase, access to forage at FS was transitorily restricted by placing wooden boards obstructing the tray; boards were then removed again in the post-closure phase (Fig. 1).
    The experiment was conducted between January and April, when the use of high-nutritional supplemental feed (i.e., corn) by roe deer is the most intense17, for three consecutive winters (2017, 2018 and 2019). We implemented the experiment on 18 individuals, of which seven could be manipulated in two consecutive years—five individuals were recaptured and two collar deployments spanned two winters—leading to a total of 25 individual winter trajectories i.e., “animal-years” (21 adults: 15 females, 6 males; 4 yearlings: 2 females, 2 males; sample size n = 4, 11 and 10 in 2017, 2018 and 2019 respectively; see Supplementary Information S1 for details). Because roe deer captures at middle to low density in Alpine, heavily forested environments are rare events that have to rely on low-efficiency techniques such as box traps and because we had to account for stakeholder acceptance, repeating the experiment on single individuals in consecutive years allowed us to take full advantage of our sample.
    Roe deer were captured using baited box traps (n = 21 capture events) or net drives (n = 2), and were fitted with GPS-GSM radio collars programmed to acquire hourly GPS locations for a year, after which they were released via a drop-off mechanism. Captures and marking were performed complying with ethical and welfare rules, under authorization of the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015); all methods and experiments were carried out in accordance with the relevant guidelines and regulations. Radio-collared roe deer moved an average of 61.2 m per hour. This value of the average hourly movement distance (l) was subsequently utilized in the analyses described below.
    For all captured animals, we assumed a post-capture response in ranging behaviour. We therefore considered the first re-visitation of the capture location as a likely sign of resettlement in the original range and we used this time as onset of the experimental pre-closure phase. Although not all the individuals were manipulated at the same time, we avoided interference between capture operations and FS manipulations, and between co-occurring different manipulation phases (i.e., ensuring that co-occurring manipulations occurred in separate areas).
    During the pre-closure phase, we ensured a continuous supply of food at all managed FS—i.e., that were provisioned at least once in the month prior to the experiment—located within 500 m of each roe deer locations (known through twice-daily download of GSM-transmitted GPS relocations). At the end of the pre-closure phase, we identified the “manipulated” FS (M) for each individual as the managed FS with the largest number of locations within a radius (l) during this initial phase, and considered it as the FS to which an individual is most familiar. All other managed FS were considered as “alternate” (A) FS. During the closure phase, corn was made inaccessible at M for a duration of approximately 15 days, depending on personnel availabilities (min = 14.0 days, max = 18.1, mean = 15.5). M was then re-opened, thereby initiating the post-closure phase. During both pre- and post-closure phases, corn was available ad libitum at M. All A FS had corn available ad libitum throughout the duration of the experiment. To ensure a continuous supply of food during the experiment, field personnel visited and replenished the FS every third day. Across the experimental manipulations, we used a total of twelve distinct FS as M, and 23 distinct FS as A (mean = 4.04 A sites per animal-year, (sigma hspace{0.17em})= 1.43; of these, an average of 1.76, (sigma hspace{0.17em})= 1.13, were actually used by roe deer; see Supplementary Information S1: Table S1 for details on the identity of M and A for all animal-years). M sites were separate from A sites by an average distance of 702.5 m ((sigma hspace{0.17em})= 310.5), and M and used A sites by an averaged distance of 567.5 m ((sigma hspace{0.17em})= 235.7).
    Data preparation
    To ensure meaningful comparisons between animal-years, we homogenized the durations of each experimental phase to the minimum length of the closure phase in our sample (i.e., 14 days). Specifically, we truncated the movement data by removing initial excess positions for the pre-closure and closure phases, and terminal excess positions for the post-closure phase. GPS acquisition success was extremely high (99.57% during the experiment) and we did not interpolate missing fixes in the collected data.
    The analyses of space-use and movement behaviour were based on spatially-explicit, raw movement trajectories. The analyses of resource use, instead, relied on spatially-implicit, state time series derived from the underlying movement data. To this end, we created an initial time series, for each animal-year, by intersecting the relocations with three spatial domains: vegetation (the matrix; V), manipulated FS (M) and alternate FS (A). We converted FS locations (M and A) into areas by buffering them. To investigate the sensitivity of buffer choice we considered six buffer sizes: l (i.e., 61.2 m) multiplied by 0.5, 1, 1.5, 2, 3 and 4. We associated all locations falling outside M and A to the state V. The three-state time series was then converted into three single-state presence/absence time series.
    Preference for feeding sites
    We calculated each individual’s preference for FS (({h}_{FS})) as the relative use of FS over natural vegetation during the pre-closure phase (i.e., the proportion of GPS fixes classified as either M or A). Because preference is considered to be temporally dynamic37, we chose to evaluate ({h}_{FS}) for each year separately in case individuals were manipulated in two separate winters. This reasoning allowed to account for the influence of individual condition and of the relative quality and quantity of vegetation resources on ({h}_{FS}). We included ({h}_{FS}) in all space-use, movement, and resource use analyses described below.
    The variability of ({h}_{FS}) across animal-years was maximal when FS attendance was defined as a GPS location within a distance equal to the population mean hourly step length (l) i.e., 61.2 m from the FS (interquartile range = 0.278, mean = 0.343; Supplementary Information S2: Table S1). Accordingly, the results described below are based on this definition (see Supplementary Information S6 for a sensitivity analysis). At this scale, ({h}_{FS}) did not differ consistently between sex (mean for females = 0.346; mean for males = 0.336; t-test: p value = 0.901).
    Analysis
    We analysed how the experimental manipulation, and its interaction with both preference for FS and sex, affected roe deer space-use, movement behaviour, and resource use.
    General modelling approach
    We analysed the roe deer responses to the experiment using mixed effect models. The final fixed-effect structure was developed progressively, beginning with simple formulations and evaluating the consistency of our results to ascertain that our data could support more complex formulations. For example, regarding the analysis of home range size, we first fitted a simple function of the experimental phase (i.e., home range size ~ Phase), then evaluated a potential additive effect of preference for feeding sites (i.e., home range size ~ Phase + ({h}_{FS})), and then an interaction between the two covariates (i.e., home range size ~ Phase + ({h}_{FS})+ Phase:({h}_{FS})). We repeated this procedure when evaluating the effects of sex, and eventually, assessed the full fixed effect structure. We did not find irregularities in the behaviour of the nested models (i.e., marked changes in absolute parameter values or sign). In the full model, fixed effect terms were dropped when statistically non-significant (p value  > 0.05). We considered “animal-year” as the sampling unit to account for the fact that an individual may respond independently to manipulations in different years. The choice of an “animal-year” random effect (instead of an “animal” random effect) did not qualitatively affect our results (Supplementary Information S8).
    Space-use
    We assessed the changes of home range and core area sizes (P1.1), and space-use overlap (P1.2, P3.1) between experimental phases. We calculated utilization distributions (UD)49 for each animal-year and experimental phase using a Gaussian kernel density estimation. After visual inspection, we chose to compute the UDs at a spatial resolution of 10 m and with a fixed bandwidth set to half the average hourly movement distance (i.e., l/2 = 30.6 m).
    For home range and core area sizes, we calculated the area (in hectares) corresponding to the 95% and 50% UD contours, respectively, during each experimental phase (Phase; three levels; reference level: Pre-closure). We then analysed the log-transformed areas using a linear mixed-effect model (LMM) with five fixed effects: Phase, ({h}_{FS}), Sex (categorical predictor; reference level: Female), and two interaction terms (Phase:({h}_{FS}) and Phase:Sex). We included animal-year (ind) as random intercept.
    We estimated the space-use overlaps for three pairs of UDs—pre- and post-closure, pre-closure and closure, and closure and post-closure (Contrast; three levels; reference level: Pre-/Closure)—using the volume of intersection statistic (VI)50. VI ranges from 0 (no overlap) to 1 (complete overlap). We analysed the logit-transformed overlaps using an LMM with Contrast, hFS, Sex, Contrast:hFS and Contrast:Sex as fixed effects, and ind as random intercept.
    Movement behaviour
    We investigated the movement responses of roe deer to the experiment (P1.3) by analysing the changes in hourly step length (Euclidean distance between two successive relocations) and turning angle ({theta }_{t}) (angle between two successive movement steps). We analysed the log-transformed step length, ({s}_{t}) and, because turning angles range between (-pi) and (pi), and were symmetric around 0, the logit-transformed absolute turning angle, ({varphi }_{t}=logleft(frac{left|{theta }_{t}right|}{1-left|{theta }_{t}right|}right)). We used LMMs with Phase, ({h}_{FS}), Sex, Phase:hFS and Phase:Sex as fixed effects, and ind as random intercept. Because step length was characterized by strong serial autocorrelation at short temporal lags and at circadian periodicities (a common pattern in animal movement trajectories51), we also included step length measured at lags 1, 2 and 24 h (i.e., ({s}_{t-1},{s}_{t-2}),({s}_{t-24})) as fixed effects to reduce the autocorrelation of the model residuals.
    Resource use
    To test whether the experiment led to a transitory change in resource use (P1.4a–b, P3.2), we fitted separate mixed-effect logistic regression models to the three single-state presence/absence time series (({u}_{M,t}), ({u}_{A,t}) and ({u}_{V,t})) using Phase, ({h}_{FS}), Sex, Phase:({h}_{FS}) and Phase:Sex as fixed effects, and ind as random intercept. The pre-closure level for Phase was dropped for ({u}_{V}) to avoid circularity (({h}_{FS}=1-{{stackrel{-}{u}}_{V,t}}_{Pre-closure})). We also included the response variables measured at lags 1, 2 and 24 h (e.g., ({u}_{M,t-1},{u}_{M,t-2}),({u}_{M,t-24})) as fixed effects to reduce the autocorrelation of the model residuals. However, for the sake of conciseness and clarity, we omitted these response lags when visualizing resource use predictions. Because the model results were consistent regardless of the inclusion of the response lags (Supplementary Information S5: Tables S1, S2), this decision had no impact on the interpretation. Two animal-years were excluded from the analyses of resource use due to the absence of suitable A-state: F4-2017 did not seem to have visited any alternate FS (A) prior to the experiment; and F16-2016 had two distinct, highly-used FS during pre-closure, but only the second most visited FS could be manipulated (due to stakeholder acceptance). While the use of A was more variable when including these two outliers, the general patterns remained unchanged (Supplementary Information S5: Tables S1, S3).
    Software
    All analyses were conducted in the R environment52. We used the packages adehabitatLT and adehabitatHR53 for the spatial analyses, fitted all mixed-effect models via Maximum Likelihood with the package lme454. We obtained the p-values for the fixed effects using afex55 and coefficients of determination using MuMin56.
    Ethical statement
    All experimental protocols and data collection were approved by the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015). All experiments and methods were performed in accordance with relevant guideline and regulations. More