1.
Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7. https://doi.org/10.1038/ncomms8615 (2015).
CAS Article Google Scholar
2.
Hodgson, E. E. & Halpern, B. S. Investigating cumulative effects across ecological scales. Conserv. Biol. 33, 22–32. https://doi.org/10.1111/cobi.13125 (2018).
Article PubMed Google Scholar
3.
Lu, Y. et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 239, 670–680. https://doi.org/10.1016/j.envpol.2018.04.016 (2018).
CAS Article PubMed Google Scholar
4.
Ostle, C. et al. The rise in ocean plastics evidenced from a 60-year time series. Nat. Commun. 10, 1622. https://doi.org/10.1038/s41467-019-09506-1 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
5.
Doan, N. X. et al. Extreme temperature impairs growth and productivity in a common tropical marine copepod. Sci. Rep. 9, 4550. https://doi.org/10.1038/s41598-019-40996-7 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
6.
Barcelos e Ramos, J., Biswas, H., Schulz, K. G., LaRoche, J. & Riebesell, U. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Glob. Biogeochem. Cycles 21, 2028. https://doi.org/10.1029/2006GB002898 (2007).
ADS CAS Article Google Scholar
7.
Srinivasan, U. T., Cheung, W. W. L., Watson, R. & Sumaila, U. R. Food security implications of global marine catch losses due to overfishing. J. Bioecon. 12, 183–200. https://doi.org/10.1007/s10818-010-9090-9 (2010).
Article Google Scholar
8.
Frommel, A. Y., Stiebens, V., Clemmesen, C. & Havenhand, J. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences 7, 3915–3919. https://doi.org/10.5194/bg-7-3915-2010 (2010).
ADS CAS Article Google Scholar
9.
Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030. https://doi.org/10.1002/ece3.516 (2013).
Article PubMed PubMed Central Google Scholar
10.
Jackson, M. C. Interactions among multiple invasive animals. Ecology 96, 2035–2041. https://doi.org/10.1890/15-0171.1 (2015).
CAS Article PubMed Google Scholar
11.
Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140. https://doi.org/10.1111/gcb.12833 (2015).
ADS Article Google Scholar
12.
Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312. https://doi.org/10.1111/gcb.12619 (2014).
ADS Article Google Scholar
13.
Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x (2008).
Article PubMed Google Scholar
14.
Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496. https://doi.org/10.1016/j.tree.2007.07.001 (2007).
Article PubMed Google Scholar
15.
Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871.x (2006).
ADS Article PubMed Google Scholar
16.
King, A. Avoiding ecological surprise: Lessons from long-standing communities. Acad. Manag. Rev. 20, 961–985 (1995).
Article Google Scholar
17.
Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286. https://doi.org/10.1111/j.1461-0248.2008.01243.x (2008).
Article PubMed Google Scholar
18.
Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 1–9. https://doi.org/10.1098/rspb.2015.2592 (2016).
Article Google Scholar
19.
Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).
ADS Article Google Scholar
20.
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).
ADS CAS Article Google Scholar
21.
Villazan, B., Pedersen, M. F., Brun, F. G. & Vergara, J. J. Elevated ammonium concentrations and low light form a dangerous synergy for eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 493, 141–154. https://doi.org/10.3354/meps10517 (2013).
ADS CAS Article Google Scholar
22.
Peachey, R. B. J. The synergism between hydrocarbon pollutants and UV radiation: A potential link between coastal pollution and larval mortality. J. Exp. Mar. Biol. Ecol. 315, 103–114. https://doi.org/10.1016/j.jembe.2004.09.009 (2005).
CAS Article Google Scholar
23.
Przeslawski, R., Davis, A. R. & Benkendorff, K. Synergistic effects associated with climate change and the development of rocky shore molluscs. Glob. Change Biol. 11, 515–522. https://doi.org/10.1111/j.1365-2486.2005.00918.x (2005).
ADS Article Google Scholar
24.
Gieswein, A., Hering, D. & Feld, C. K. Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed. Sci. Total Environ. 593–594, 27–35. https://doi.org/10.1016/j.scitotenv.2017.03.116 (2017).
ADS CAS Article PubMed Google Scholar
25.
McRoy, C. P. & McMillan, C. Seagrass Ecosystems. 53–87 (Marcel Dekker, New York, 1977).
26.
Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106, 12377–12381. https://doi.org/10.1073/pnas.0905620106 (2009).
ADS Article PubMed Google Scholar
27.
Campagne, C. S., Salles, J. M., Boissery, P. & Deter, J. The seagrass Posidonia oceanica: Ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 97, 391–400. https://doi.org/10.1016/j.marpolbul.2015.05.061 (2014).
CAS Article Google Scholar
28.
Lau, W. W. Y. Beyond carbon: Conceptualizing payments for ecosystem services in blue forests on carbon and other marine and coastal ecosystem services. Ocean Coast. Manag. 83, 5–14. https://doi.org/10.1016/j.ocecoaman.2012.03.011 (2013).
Article Google Scholar
29.
Watson, R. A., Watson, R. A. & Long, W. J. L. Simulation estimates of annual yield and landed value for commercial penaeid prawns from a tropical seagrass habitat, Northern Queensland, Australia. Mar. Freshw. Res. 44, 211–219. https://doi.org/10.1071/MF9930211 (1993).
Article Google Scholar
30.
Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 144, 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010 (2011).
Article Google Scholar
31.
Dewsbury, B. M., Bhat, M. & Fourqurean, J. W. A review of seagrass economic valuations: Gaps and progress in valuation approaches. Ecosyst. Serv. 18, 68–77. https://doi.org/10.1016/j.ecoser.2016.02.010 (2016).
Article Google Scholar
32.
Short, F. T. & Wyllie-Echeverria, S. Natural and human-induced disturbance of seagrasses. Environ. Conserv. 23, 17–27. https://doi.org/10.1017/S0376892900038212 (1996).
Article Google Scholar
33.
García-Redondo, V., Bárbara, I. & Díaz-Tapia, P. Zostera marina meadows in the northwestern Spain: Distribution, characteristics and anthropogenic pressures. Biodivers. Conserv. 28, 1743–1757. https://doi.org/10.1007/s10531-019-01753-4 (2019).
Article Google Scholar
34.
Duarte, C. M. The future of seagrass meadows. Environ. Conserv. 29, 192–206. https://doi.org/10.1017/S0376892902000127 (2002).
Article Google Scholar
35.
Duffy, J. E. Biodiversity and the functioning of seagrass ecosystems. Mar. Ecol. Prog. Ser. 311, 233–250. https://doi.org/10.3354/meps311233 (2006).
ADS Article Google Scholar
36.
Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2 (2006).
Article Google Scholar
37.
Deter, J., Lozupone, X., Inacio, A., Boissery, P. & Holon, F. Boat anchoring pressure on coastal seabed: Quantification and bias estimation using AIS data. Mar. Pollut. Bull. 123, 175–181. https://doi.org/10.1016/j.marpolbul.2017.08.065 (2017).
CAS Article PubMed Google Scholar
38.
Pereda-Briones, L., Terrados, J. & Tomas, F. Negative effects of warming on seagrass seedlings are not exacerbated by invasive algae. Mar. Pollut. Bull. 141, 36–45. https://doi.org/10.1016/j.marpolbul.2019.01.049 (2019).
CAS Article PubMed Google Scholar
39.
Koweek, D. A. et al. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecol. Appl. 28, 1694–1714. https://doi.org/10.1002/eap.1771 (2018).
Article PubMed Google Scholar
40.
Burnell, O. W., Russell, B. D., Irving, A. D. & Connell, S. D. Eutrophication offsets increased sea urchin grazing on seagrass aused by ocean warming and acidification. Mar. Ecol. Prog. Ser. 485, 37–46. https://doi.org/10.3354/meps10323 (2013).
ADS CAS Article Google Scholar
41.
Egea, L. G., Jiménez-Ramos, R., Vergara, J. J., Hernández, I. & Brun, F. G. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Mar. Pollut. Bull. 134, 14–26. https://doi.org/10.1016/j.marpolbul.2018.02.029 (2018).
CAS Article PubMed Google Scholar
42.
Han, Q. & Liu, D. Macroalgae blooms and their effects on seagrass ecosystems. J. Ocean Univ. China 13, 791–798. https://doi.org/10.1007/s11802-014-2471-2 (2014).
ADS CAS Article Google Scholar
43.
Willette, D. A. & Ambrose, R. F. Effects of the invasive seagrass Halophila stipulacea on the native seagrass, Syringodium filiforme, and associated fish and epibiota communities in the Eastern Caribbean. Aquat. Bot. 103, 74–82. https://doi.org/10.1016/j.aquabot.2012.06.007 (2012).
Article Google Scholar
44.
Vonk, J. A., Christianen, M. J. A., Stapel, J. & O’Brien, K. R. What lies beneath: Why knowledge of belowground biomass dynamics is crucial to effective seagrass management. Ecol. Ind. 57, 259–267. https://doi.org/10.1016/j.ecolind.2015.05.008 (2015).
Article Google Scholar
45.
Griffiths, L. L., Connolly, R. M. & Brown, C. J. Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean Coast. Manag. https://doi.org/10.1016/j.ocecoaman.2019.104946 (2019).
Article Google Scholar
46.
Clark, D., Goodwin, E., Sinner, J., Ellis, J. & Singh, G. Validation and limitations of a cumulative impact model for an estuary. Ocean Coast. Manag. 120, 88–98. https://doi.org/10.1016/j.ocecoaman.2015.11.013 (2016).
Article Google Scholar
47.
Andersson, S., Persson, M., Moksnes, P. O. & Baden, S. The role of the amphipod Gammarus locusta as a grazer on macroalgae in Swedish seagrass meadows. Mar. Biol. 156, 969–981. https://doi.org/10.1007/s00227-009-1141-1 (2009).
Article Google Scholar
48.
Hemmi, A. & Jormalainen, V. Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology 83, 1052–1064 (2002).
Article Google Scholar
49.
Kraufvelin, P. et al. Eutrophication-induced changes in benthic algae affect the behaviour and fitness of the marine amphipod Gammarus locusta. Aquat. Bot. 84, 199–209. https://doi.org/10.1016/j.aquabot.2005.08.008 (2006).
Article Google Scholar
50.
Burkepile, D. E. & Hay, M. E. Herbivore vs. nutrient control of marine primary producers: Context-dependent effects. Ecology 87, 3128–3139. https://doi.org/10.1890/0012-9658(2006)87[3128:Hvncom]2.0.Co;2 (2006).
Article PubMed Google Scholar
51.
Korpinen, S. & Jormalainen, V. Grazing and nutrients reduce recruitment success of Fucus vesiculosus L. (Fucales: Phaeophyceae). Estuar. Coast. Shelf Sci. 78, 437–444 (2008).
ADS Article Google Scholar
52.
Hasler-Sheetal, H., Castorani, M. C. N., Glud, R. N., Canfield, D. E. & Holmer, M. Metabolomics reveals cryptic interactive effects of species interactions and environmental stress on nitrogen and sulfur metabolism in seagrass. Environ. Sci. Technol. 50, 11602–11609. https://doi.org/10.1021/acs.est.6b04647 (2016).
ADS CAS Article PubMed Google Scholar
53.
Koch, M. S., Schopmeyer, S. A., Holmer, M., Madden, C. J. & Kyhn-Hansen, C. Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and hypoxia. Aquat. Bot. 87, 104–110. https://doi.org/10.1016/j.aquabot.2007.03.004 (2007).
CAS Article Google Scholar
54.
Touchette, B. W. Seagrass-salinity interactions: Physiological mechanisms used by submersed marine angiosperms for a life at sea. J. Exp. Mar. Biol. Ecol. 350, 194–215. https://doi.org/10.1016/j.jembe.2007.05.037 (2007).
Article Google Scholar
55.
Koch, M. S. & Erskine, J. M. Sulfide as a phytotoxin to the tropical seagrass Thalassia testudinum: Interactions with light, salinity and temperature. J. Exp. Mar. Biol. Ecol. 266, 81–95. https://doi.org/10.1016/s0022-0981(01)00339-2 (2001).
CAS Article Google Scholar
56.
Lamers, L. P. M. et al. Sulfide as a soil phytotoxin-a review. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00268 (2013).
Article PubMed PubMed Central Google Scholar
57.
Pedersen, O., Binzer, T. & Borum, J. Sulphide intrusion in eelgrass (Zostera marina L.). Plant Cell Environ. 27, 595–602. https://doi.org/10.1111/j.1365-3040.2004.01173.x (2004).
CAS Article Google Scholar
58.
Wahl, M. et al. in Advances in Marine Biology Vol. 59 (ed. Michael L.) 37–105 (Academic Press, London, 2011).
59.
Koch, M. S., Schopmeyer, S., Kyhn-Hansen, C. & Madden, C. J. Synergistic effects of high temperature and sulfide on tropical seagrass. J. Exp. Mar. Biol. Ecol. 341, 91–101. https://doi.org/10.1016/j.jembe.2006.10.004 (2007).
CAS Article Google Scholar
60.
Steen, H. & Scrosati, R. Intraspecific competition in Fucus serratus and F. evanescens (Phaeophyceae: Fucales) germlings: Effects of settlement density, nutrient concentration, and temperature. Mar. Biol. 144, 61–70. https://doi.org/10.1007/s00227-003-1175-8 (2004).
Article Google Scholar
61.
Jenkins, S. R., Norton, T. A. & Hawkins, S. J. Interactions between canopy forming algae in the eulittoral zone of sheltered rocky shores on the Isle of Man. J. Mar. Biol. Assoc. UK 79, 341–349. https://doi.org/10.1017/S0025315498000381 (1999).
Article Google Scholar
62.
Kilminster, K. et al. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 534, 97–109 (2015).
ADS CAS Article Google Scholar
63.
de Vries, J., Kraak, M. H. S., Verdonschot, R. C. M. & Verdonschot, P. F. M. Quantifying cumulative stress acting on macroinvertebrate assemblages in lowland streams. Sci. Total Environ. 694, 133630. https://doi.org/10.1016/j.scitotenv.2019.133630 (2019).
ADS CAS Article PubMed Google Scholar
64.
Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, 1–11. https://doi.org/10.1890/ES13-00181.1 (2013).
Article Google Scholar
65.
Suchanek, T. H. Temperate coastal marine communities: Biodiversity and threats. Am. Zool. 34, 100–114. https://doi.org/10.1093/icb/34.1.100 (1994).
Article Google Scholar
66.
Stock, A. & Micheli, F. Effects of model assumptions and data quality on spatial cumulative human impact assessments. Glob. Ecol. Biogeogr. 25, 1321–1332. https://doi.org/10.1111/geb.12493 (2016).
Article Google Scholar
67.
Korpinen, S. & Andersen, J. H. A global review of cumulative pressure and impact assessments in marine environments. Front. Mar. Sci. 3, 153–164. https://doi.org/10.3389/fmars.2016.00153 (2016).
Article Google Scholar
68.
Coll, M., Steenbeek, J., Sole, J., Palomera, I. & Christensen, V. Modelling the cumulative spatial-temporal effects of environmental drivers and fishing in a NW Mediterranean marine ecosystem. Ecol. Model. 331, 100–114. https://doi.org/10.1016/j.ecolmodel.2016.03.020 (2016).
Article Google Scholar
69.
Griffith, G. P., Fulton, E. A., Gorton, R. & Richardson, A. J. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models. Conserv. Biol. 26, 1145–1152. https://doi.org/10.1111/j.1523-1739.2012.01937.x (2012).
Article PubMed Google Scholar
70.
Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546. https://doi.org/10.1111/ddi.12159 (2014).
Article Google Scholar
71.
Andersen, J. H., Halpern, B. S., Korpinen, S., Murray, C. & Reker, J. Baltic Sea biodiversity status vs. cumulative human pressures. Estuar. Coast. Shelf Sci. 161, 88–92. https://doi.org/10.1016/j.ecss.2015.05.002 (2015).
Article Google Scholar
72.
Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
CAS Article Google Scholar
73.
Hoffman, J. R., Hansen, L. J. & Klinger, T. Interactions between UV radiation and temperature limit inferences from single-factor experiments. J. Phycol. 39, 268–272. https://doi.org/10.1046/j.1529-8817.2003.01111.x (2003).
Article Google Scholar
74.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Grp, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 8, 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007 (2010).
Article PubMed Google Scholar
75.
Kahn, A. E. & Durako, M. J. Thalassia testudinum seedling responses to changes in salinity and nitrogen levels. J. Exp. Mar. Biol. Ecol. 335, 1–12. https://doi.org/10.1016/j.jembe.2006.02.011 (2006).
CAS Article Google Scholar
76.
Lange, K., Bruder, A., Matthaei, C. D., Brodersen, J. & Paterson, R. A. Multiple-stressor effects on freshwater fish: Importance of taxonomy and life stage. Fish Fish. 19, 974–983. https://doi.org/10.1111/faf.12305 (2018).
Article Google Scholar
77.
Hedges, L. V. & Olkin, I. Statistical methods for meta-analysis (Academic Press, London, 1985).
Google Scholar
78.
Gurevitch, J., Morrison, J. A. & Hedges, L. V. The interaction between competition and predation: A meta-analysis of field experiments. Am. Nat. 155, 435–453. https://doi.org/10.1086/303337 (2000).
Article PubMed Google Scholar
79.
Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. 82, 591–605. https://doi.org/10.1111/j.1469-185X.2007.00027.x (2007).
Article PubMed Google Scholar
80.
UNEP-WCMC & Short, F. T. Global Distribution of Seagrasses (version 6). Sixth update to the data layer used in Green and Short (2003), superseding version 5. Cambridge (UK): UN Environment World Conservation Monitoring Centre. https://data.unep-wcmc.org/datasets/7 (2018). More