Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt
1.
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.
CAS PubMed Google Scholar
2.
Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95 6578–83.
3.
Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 2018;362:776–80.
CAS PubMed Google Scholar
4.
Penesyan A, Kjelleberg S, Egan S. Development of novel drugs from marine surface associated microorganisms. Mar drugs. 2010;8:438–59.
CAS PubMed PubMed Central Google Scholar
5.
Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils. 2012;48:489–99.
Google Scholar
6.
Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U. Soil fertility and biodiversity in organic farming. Science. 2002;296:1694–7.
PubMed Google Scholar
7.
Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JA, Cregger MA, et al. Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: what lies ahead? Ecosphere. 2015;6:1–21.
Google Scholar
8.
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.
PubMed PubMed Central Google Scholar
9.
Van Der Heijden MG, Bardgett RD, Van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310.
PubMed Google Scholar
10.
Hawkes CV, Wren IF, Herman DJ, Firestone MK. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett. 2005;8:976–85.
Google Scholar
11.
Yuan J, Zhao J, Wen T, Zhao M, Li R, Goossens P, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome. 2018;6:156.
PubMed PubMed Central Google Scholar
12.
De Corato U, Patruno L, Avella N, Lacolla G, Cucci G. Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome. Crop Prot. 2019;124:104870.
Google Scholar
13.
Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.
PubMed PubMed Central Google Scholar
14.
Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends plant Sci. 2012;17:478–86.
CAS PubMed Google Scholar
15.
Ploetz RC. Fusarium wilt of banana. Phytopathology. 2015;105:1512–21.
PubMed Google Scholar
16.
Cha J-Y, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10:119.
CAS PubMed Google Scholar
17.
Gordon TR. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annu Rev Phytopathol. 2017;55:23–39.
CAS PubMed Google Scholar
18.
Laurence MH, Burgess LW, Summerell BA, Liew ECY. High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia. Fungal Biol. 2012;116:289–97.
CAS PubMed Google Scholar
19.
Nyvad B, Fejerskov O. An ultrastructural-study of bacterial invasion and tissue breakdown in human experimental root-surface caries. J Dent Res. 1990;69:1118–25.
CAS PubMed Google Scholar
20.
Klein E, Ofek M, Katan J, Minz D, Gamliel A. Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology. 2012;103:23–33.
Google Scholar
21.
Mendes LW, Mendes R, Raaijmakers JM, Tsai SM. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 2018;12:3038–42.
CAS PubMed PubMed Central Google Scholar
22.
Xiong W, Li R, Ren Y, Liu C, Zhao Q, Wu H, et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol Biochem. 2017;107:198–207.
CAS Google Scholar
23.
Ye XF, Li ZK, Luo X, Wang WH, Li YK, Li R, et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. Microbiome. 2020;8:17.
Google Scholar
24.
Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, et al. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils. 2008;44:1073.
Google Scholar
25.
Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem. 2017;104:39–48.
CAS Google Scholar
26.
Shen Z, Ruan Y, Xue C, Zhong S, Li R, Shen Q, et al. Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant. 2015;393:21–33.
CAS Google Scholar
27.
De Corato U, Patruno L, Avella N, Salimbeni R, Lacolla G, Cucci G, et al. Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters. Appl Soil Ecol. 2020;154:103601.
Google Scholar
28.
Zhou D, Jing T, Chen Y, Wang F, Qi D, Feng R, et al. Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiol. 2019;19:161.
PubMed PubMed Central Google Scholar
29.
da C Jesus E, Marsh TL, Tiedje JM, de S Moreira FM. Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J. 2009;3:1004–11.
Google Scholar
30.
Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103:626–31.
31.
Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A, Ciancio A, Grenni P, et al. Belowground microbiota and the health of tree crops. Front Microbiol. 2018;9:1006.
PubMed PubMed Central Google Scholar
32.
Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.
CAS PubMed Google Scholar
33.
Qiu M, Zhang R, Xue C, Zhang S, Li S, Zhang N, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol Fertil Soils. 2012;48:807–16.
CAS Google Scholar
34.
Wang B, Li R, Ruan Y, Ou Y, Zhao Y, Shen Q. Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities. Soil Biol Biochem. 2015b;86:77–86.
CAS Google Scholar
35.
Alabouvette C. Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol. 1999;28:57–64.
Google Scholar
36.
Hornby D. Suppressive soils. Australas Plant Pathol. 1983;21:65–85.
Google Scholar
37.
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
38.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
CAS PubMed PubMed Central Google Scholar
39.
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
PubMed PubMed Central Google Scholar
40.
McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience. 2012;1:7.
PubMed PubMed Central Google Scholar
41.
Liaw A, Wiener M. Classification and regression by randomForest. R N. 2002;2:18–22.
Google Scholar
42.
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.
Google Scholar
43.
Wright RE. Logistic regression. In Grimm LG, & Yarnold PR, (Eds), Reading and understanding multivariate statistics (p. 217–244). Washington, DC: American Psychological Association; 1995.
44.
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc. 1996;58:267–88.
Google Scholar
45.
Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21:3940–1.
CAS PubMed Google Scholar
46.
Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, et al. A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome. 2013;1:11.
PubMed PubMed Central Google Scholar
47.
Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.
CAS PubMed Google Scholar
48.
Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687.
CAS PubMed PubMed Central Google Scholar
49.
Csardi G, Nepusz T. The igraph software package for complex network research. Int J Complex Syst. 2006;1695:1–9.
Google Scholar
50.
Newman ME. The structure and function of complex networks. SIAM Rev. 2003;45:167–56.
Google Scholar
51.
Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Msystems. 2016;1:e00009–15.
PubMed Google Scholar
52.
McKay G, Brown AE, Bjourson A, Mercer P. Molecular characterisation of Alternaria linicola and its detection in linseed. Eur J Plant Pathol. 1999;105:157–66.
CAS Google Scholar
53.
Adams RI, Bateman AC, Bik HM, Meadow JF. Microbiota of the indoor environment: a meta-analysis. Microbiome. 2015;3:49.
PubMed PubMed Central Google Scholar
54.
Cornejo-Granados F, Gallardo-Becerra L, Leonardo-Reza M, Ochoa-Romo JP, Ochoa-Leyva A. A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ. 2018;6:e5382.
PubMed PubMed Central Google Scholar
55.
Koren O, Knights D, Gonzalez A, Waldron L, Segata N, Knight R, et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol. 2013;9:e1002863.
CAS PubMed PubMed Central Google Scholar
56.
Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8:1784.
PubMed PubMed Central Google Scholar
57.
Rocca JD, Simonin M, Blaszczak JR, Ernakovich JG, Gibbons SM, Midani FS, et al. The Microbiome Stress Project: towards a global meta-analysis of environmental stressors and their effects on microbial communities. Front Microbiol. 2018;9:3272.
PubMed Google Scholar
58.
Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods. 2018;15:796–8.
CAS PubMed PubMed Central Google Scholar
59.
Baxter NT, Ruffin MT, Rogers MA, Schloss PD. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 2016;8:37.
PubMed PubMed Central Google Scholar
60.
Belk A, Xu ZZ, Carter DO, Lynne A, Bucheli S, Knight R, et al. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes. 2018;9:104.
PubMed Central Google Scholar
61.
Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–9.
CAS PubMed PubMed Central Google Scholar
62.
Manici L, Caputo F. Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy. Ann Appl Biol. 2009;155:245–58.
Google Scholar
63.
Ploetz RC. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology. 2006;96:653–6.
PubMed Google Scholar
64.
Shen Z, Xue C, Taylor PWJ, Ou Y, Wang B, Zhao Y, et al. Soil pre-fumigation could effectively improve the disease suppressiveness of biofertilizer to banana Fusarium wilt disease by reshaping the soil microbiome. Biol Fertil Soils. 2018;54:793–806.
CAS Google Scholar
65.
Wang B, Li R, Ruan Y, Ou Y, Zhao Y, Shen Q. Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities. Soil Biol Biochem. 2015a;86:77–86.
CAS Google Scholar
66.
Wu X, Guo S, Jousset A, Zhao Q, Shen Q. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol Biochem. 2017;114:238–47.
Google Scholar
67.
Forsyth LM, Smith LJ, Aitken EA. Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycological Res. 2006;110:929–35.
Google Scholar
68.
Lemanceau P, Alabouvette C. Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot. 1991;10:279–86.
Google Scholar
69.
Liu L, Kong J, Cui H, Zhang J, Wang F, Cai Z, et al. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biol Control. 2016;101:103–13.
CAS Google Scholar
70.
Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, et al. The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC genomics. 2009;10:616.
PubMed PubMed Central Google Scholar
71.
Li X, Zhang YN, Ding C, Jia Z, He Z, Zhang T, et al. Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biol Fertil soils. 2015;51:935–46.
Google Scholar
72.
Wu L, Yang B, Li M, Chen J, Xiao Z, Wu H, et al. Modification of rhizosphere bacterial community structure and functional potentials to control pseudostellaria heterophylla replant disease. Plant Dis. 2019;104:25–34.
PubMed Google Scholar
73.
Shang Q, Yang G, Wang Y, Wu X, Zhao X, Hao H, et al. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World J Microbiol Biotechnol. 2016;32:95.
PubMed Google Scholar
74.
Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M. Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Front Microbiol. 2019;10:1505.
PubMed PubMed Central Google Scholar
75.
Liotti RG, da Silva Figueiredo MI, Soares MA. Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biol Control. 2019;138:104065.
CAS Google Scholar
76.
Tahvonen R. Microbial control of plant diseases with Streptomyces spp. 1. Eppo Bull. 2010;18:55–9.
Google Scholar
77.
Yang Y, Zhang S-W, Li K-t. Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi. World J Microbiol Biotechnol. 2019;35:145.
PubMed Google Scholar
78.
Cha J-Y, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2015;10:119–29.
PubMed PubMed Central Google Scholar More
