More stories

  • in

    The gut microbiota of brood parasite and host nestlings reared within the same environment: disentangling genetic and environmental effects

    1.
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Parfrey LW, Moreau CS, Russell JA. Introduction: the host-associated microbiome: pattern, process and function. Mol Ecol. 2018;27:1749–65.
    PubMed  Google Scholar 

    3.
    Moran NA, Ochman H, Hammer TJ. Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst. 2019;50:451–75.
    Google Scholar 

    4.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Colston TJ, Jackson CR. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol. 2016;25:3776–800.
    PubMed  Google Scholar 

    6.
    O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.
    PubMed  PubMed Central  Google Scholar 

    7.
    Browne HP, Neville BA, Forster SC, Lawley TD. Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol. 2017;15:531–43.
    PubMed  PubMed Central  Google Scholar 

    8.
    Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N, Martins AJ, et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature. 2018;554:255–9.
    CAS  PubMed  Google Scholar 

    9.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–41.
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF. Microbiota and the social brain. Science. 2019;366:eaar2016.
    CAS  PubMed  Google Scholar 

    11.
    Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13:790–801.
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26:493–501.
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Knowles SCL, Eccles RM, Baltrūnaitė L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22:826–37.
    CAS  PubMed  Google Scholar 

    16.
    Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Carmody Rachel N, Gerber Georg K, Luevano Jesus M Jr., Gatti Daniel M, Somes L, Svenson Karen L, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17:72–84.
    CAS  PubMed  Google Scholar 

    19.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
    CAS  PubMed  Google Scholar 

    20.
    Seedorf H, Griffin Nicholas W, Ridaura Vanessa K, Reyes A, Cheng J, Rey Federico E, et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell. 2014;159:253–66.
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Hildebrand F, Nguyen TLA, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 2013;14:R4.
    PubMed  PubMed Central  Google Scholar 

    22.
    Schloss PD, Iverson KD, Petrosino JF, Schloss SJ. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome. 2014;2:25.
    PubMed  PubMed Central  Google Scholar 

    23.
    Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. eLife. 2013;2:e00458.
    PubMed  PubMed Central  Google Scholar 

    24.
    Maurice CF, Cl Knowles S, Ladau J, Pollard KS, Fenton A, Pedersen AB, et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 2015;9:2423–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Ren T, Boutin S, Humphries MM, Dantzer B, Gorrell JC, Coltman DW, et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome. 2017;5:163.
    PubMed  PubMed Central  Google Scholar 

    26.
    Wang J, Chen L, Zhao N, Xu X, Xu Y, Zhu B. Of genes and microbes: solving the intricacies in host genomes. Protein Cell. 2018;9:446–61.
    PubMed  PubMed Central  Google Scholar 

    27.
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.
    CAS  PubMed  Google Scholar 

    28.
    Amato KR, G. Sanders J, Song SJ, Nute M, Metcalf JL, Thompson LR, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2019;13:576–87.
    CAS  PubMed  Google Scholar 

    29.
    Nishida AH, Ochman H. Rates of gut microbiome divergence in mammals. Mol Ecol. 2018;27:1884–97.
    PubMed  PubMed Central  Google Scholar 

    30.
    Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 2016;14:e2000225.
    PubMed  PubMed Central  Google Scholar 

    31.
    Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, Hahn BH, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8:e1000546.
    PubMed  PubMed Central  Google Scholar 

    32.
    Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM. Covariation of diet and gut microbiome in African megafauna. Proc Natl Acad Sci USA. 2019;116:23588–93.
    CAS  PubMed  Google Scholar 

    33.
    Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, González A, Knight R. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol. 2014;23:1301–17.
    CAS  PubMed  Google Scholar 

    35.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Ruiz-Rodríguez M, Martín-Vivaldi M, Martínez-Bueno M, Soler JJ. Gut microbiota of great spotted cuckoo nestlings is a mixture of those of their foster magpie siblings and of cuckoo adults. Genes. 2018;9:381.
    PubMed Central  Google Scholar 

    37.
    Davies NB. Cuckoo adaptations: trickery and tuning. J Zool. 2011;284:1–14.
    Google Scholar 

    38.
    Payne RB. The cuckoos. New York: Oxford University Press; 2005.
    Google Scholar 

    39.
    Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–73.
    CAS  Google Scholar 

    40.
    Soler M, Martínez JG, Soler JJ, Møller AP. Preferential allocation of food by magpie Pica pica to great spotted cuckoo Clamator glandarius chicks. Behav Ecol Sociobiol. 1995;37:7–13.
    Google Scholar 

    41.
    Soler JJ, Martínez JG, Soler M, Møller AP. Coevolutionary interactions in a host-parasite system. Ecol Lett. 2001;4:470–6.
    Google Scholar 

    42.
    Birkhead TR. The Magpies. The ecology and behaviour of black-billed and yellow-billed magpies. London: T & A D Poyser; 1991.
    Google Scholar 

    43.
    Ruiz-Rodríguez M, Lucas FS, Heeb P, Soler JJ. Differences in intestinal microbiota between avian brood parasites and their hosts. Biol J Linn Soc. 2009;96:406–14.
    Google Scholar 

    44.
    Soler JJ, Martin-Galvez D, De Neve L, Soler M. Brood parasitism correlates with the strength of spatial autocorrelation of life history and defensive traits in Magpies. Ecology. 2013;94:1338–46.
    PubMed  Google Scholar 

    45.
    Moreno-Rueda G, Soler M, Soler JJ, Martínez JG, Pérez-Contreras T. Rules of food allocation between nestlings of the black-billed magpie Pica pica, a species showing brood reduction. Ardeola. 2007;54:15–25.
    Google Scholar 

    46.
    Soler M, Soler JJ, Martínez JG. Duration of sympatry and coevolution between the great spotted cuckoo (Clamator glandarius) and its primary host, the magpie (Pica pica). In: Rothstein SI, SK Robinson SK, editors. Parasitic Birds and their hosts, studies in coevolution. Oxford: Oxford University Press; 1998. p. 113–28.

    47.
    Soler M, Soler JJ. Growth and development of great spotted cuckoos and their magpie host. Condor. 1991;93:49–54.
    Google Scholar 

    48.
    Martín-Gálvez D, Pérez-Contreras T, Soler M, Soler JJ. Benefits associated with escalated begging behaviour of black-billed magpie nestlings overcompensate the associated energetic costs. J Exp Biol. 2011;214:1463–72.
    PubMed  Google Scholar 

    49.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2:e00191–00116.
    PubMed  PubMed Central  Google Scholar 

    52.
    Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3:e00021–00018.
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
    PubMed  PubMed Central  Google Scholar 

    55.
    de Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones DS, et al. Recognizing the reagent microbiome. Nat Microbiol. 2018;3:851–3.
    PubMed  Google Scholar 

    56.
    Whittaker RH. Evolution and measurement of species diversity. Taxon. 1972;21:213–51.
    Google Scholar 

    57.
    Shannon CE. A mathematical theory of communication. Bell Labs Tech J. 1948;27:379–423.
    Google Scholar 

    58.
    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22:i07.
    Google Scholar 

    61.
    Moeller A, Suzuki T, Lin D, Lacey E, Wasser S, Nachman M. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc Natl Acad Sci USA. 2017;114:13768–73.
    CAS  PubMed  Google Scholar 

    62.
    Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8:14319.
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Soler M, Soler JJ. Innate versus learned recognition of conspecifics in great spotted cuckoos Clamator glandarius. Anim Cogn. 1999;2:97–102.
    Google Scholar 

    65.
    Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360:795–800.
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.
    CAS  PubMed  Google Scholar 

    67.
    Sicard J-F, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387.
    PubMed  PubMed Central  Google Scholar 

    68.
    Soler JJ, Møller AP, Soler M, Martíne1z JG. Interactions between a brood parasite and its host in relation to parasitism and immune defence. Evol Ecol Res. 1999;1:189–210.
    Google Scholar 

    69.
    Ruiz-Rodríguez M, Soler JJ, Lucas FS, Heeb P, Palacios M, Martín-Gálvez D, et al. Bacterial diversity at the cloaca relates to an immune response in magpie Pica pica and to body condition of great spotted cuckoo Clamator glandarius nestlings. J Avian Biol. 2009;40:42–8.
    Google Scholar 

    70.
    Soler JJ, De Neve L, Pérez-Contreras T, Soler M, Sorci G. Trade-off between immunocompetence and growth in magpies: an experimental study. Proc R Soc Lond B Biol Sci. 2003;270:241–8.
    Google Scholar 

    71.
    Soler M, Rubio LA, Perez-Contreras T, Ontanilla J, De Neve L. Intestinal digestibility of great spotted cuckoo nestlings is less efficient than that of magpie host nestlings. Biol J Linn Soc. 2017;122:675–80.
    Google Scholar 

    72.
    Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, et al. Captivity humanizes the primate microbiome. Proc Natl Acad Sci USA. 2016;113:10376–81.
    CAS  PubMed  Google Scholar 

    73.
    Kohl K, Skopec M, Dearing MD. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Cons Physiol. 2014;2:cou009.
    Google Scholar  More

  • in

    Preying on seals pushes killer whales from Norway above pollution effects thresholds

    Sampling
    Killer whale biopsy samples of skin and blubber from 38 individuals were collected year-round from August 2017 to July 2018 in northern Norway. All whales were sampled according to relevant guidelines and regulations, and conducted under the permit FOTS-ID 10176 issued by Mattilsynet (the Norwegian Food Safety Authority, report nr. 2016/179856). Details of seasonal sampling locations, stable isotope dietary descriptors and classification of sampled individuals are described in a previous study14. In the current study, total Hg was analysed in skin from all individuals (n = 38), whereas organohalogen contaminants (OHC) was analysed in blubber of 31 individuals due to insufficient blubber for the remaining 7 individuals.
    OHC analysis
    OHC analysis was conducted at the Laboratory of Environmental Toxicology at the Norwegian University of Life Sciences, Oslo, Norway. We analysed a total of 83 OHCs: 49 organochlorines (OCs), including 34 PCBs and 15 organochlorine pesticides (OCPs), 18 brominated flame retardants (BFRs), including newer and unregulated compounds, and 16 hydroxylated metabolites (OH-metabolites) of PCBs and polybrominated diphenylethers (PBDEs). A full list of analysed compounds can be found in Supplementary Table S1.
    We analysed OCs and BFRs using a multicomponent method, first described in 197842, and since modified for a range of compounds and biological matrices43,44,45,46. The analysis of the OH-metabolites was conducted according to previously published methods47,48. An outline of the method is described in the Supplementary Information. Reported concentrations were blank corrected based on the average concentration detected within blank samples. The limit of detection (LOD) was defined as three times the average noise in chromatograms, and ranged from 0.40 to 11.10 ng/g w.w. for OCs, 0.012 to 0.362 ng/g w.w. for BFRs and 0.013 to 0.040 ng/g w.w. for OH-metabolites (see Supplementary Table S2). Internal reference materials for OCs and BFRs (contaminated seal blubber, MTref01) and OH-metabolites (contaminated seal blood, MTref03) were also extracted in conjunction with sample material to assess method performance. Internal standard recoveries are listed in Supplementary Table S2.
    Hg analysis
    We analysed total Hg by atomic absorption spectrometry at the University of Oslo, using a Direct Mercury Analyser (DMA-80, Milestone Srl, Soirsole, Italy). Killer whale skin samples were freeze dried in a Leybold-Heraeus GT2 freeze dryer with a Leybold Vakuum GmbH vacuum pump (Leybold, Cologne, Germany) and then homogenised to a fine powder using an agate pestle and mortar. Approximately 0.002 g of killer whale skin were analysed in parallel with sample blanks and certified reference material (DORM-4, fish protein; DOLT-5, dogfish liver, National Research Council, Ottawa, Canada). If enough material, samples were analysed in duplicates to ensure precision of measurements and the arithmetic mean value used. Average recoveries of the certified reference materials were within 10% of the reported values. The detection limit of the instrument was 0.05 ng mercury.
    Data treatment
    We included OHC compounds found in levels above the instrument’s LOD in a minimum of 65% of the individual whale samples for statistical analysis (see Supplementary Table S1, Supporting Information for pollutants excluded). For individual concentrations below the LOD, we imputed left-censored data by replacing missing values with a random number between 0 and the LOD assuming a beta distribution (α = 5, β = 1) to retain the pattern of the dataset. In total, 95 values below the LOD were replaced, representing 6.52% of the OHC dataset. All total Hg samples were above the LOD.
    We defined the ΣPCBs as the sum of all 28 PCB congeners detected in more than 65% of the whale samples (PCB-28, -66, -74, -87, -99, -101, 105, -110, -114, -118, -128, -137, -138, -141, -149, -151, -153, -156-, 157, 170, -180, -183, -187, -189, 194, -196, -206, -209). The definition for ΣPCBs varies within killer whale literature, with some studies analysing only a few core PCB congeners35, some all 209 of the possible congeners36, and others not providing a definition (e.g. for thresholds for possible health effects7). There will therefore inevitably be some errors in comparisons. However, since the ΣPCBs in killer whales is dominated by a few commonly reported congeners, typically PCB-153 and -13816,37, it is unlikely that the inclusion of other minor constituents will have a major influence on the total load. PCBs were further grouped according to the number of chlorine substitutions per molecule, i.e. homologue group to compare the pattern of PCBs. ΣDDTs was defined as the sum of p,p′-DDT, p,p′-DDD and p,p′-DDE, the ΣPBDEs as the sum of BDE-28, -47, -99, -100, -153 and -154 and the sum of chlordanes (ΣCHLs) as the sum of oxychlordane, trans-chlordane, cis-chlordane, trans-nonachlor and cis-nonachlor.
    Statistical analyses
    Statistical analyses were performed using R v. 3.4.149. The significance level was to set to α = 0.05, except in cases where the value was adjusted due to multiple testing, and was two-tailed. In addition to visual inspection, normality was tested using the Shapiro–Wilk’s test50 and homogeneity of variance by Levene’s test51 using the R package car52.
    Whale dietary groups
    The dietary groups used in this study are based on a previous study, which used stable isotope values inputted into a Gaussian mixture model to assign sampled individuals to two fish-eating groups: Herring-eaters and Lumpfish-eaters and one mammal-eating group Seal-eaters14. The three dietary groups were characterised by disparate, non-overlapping isotopic niches that were consistent with predatory field observations. The seal-eating group was defined by higher δ15N values than the two fish-eating groups.
    We found that the herring and lumpfish-eating killer whales did not differ in either their OHC levels (Tukey’s HSD: p = 0.49) or total Hg levels (pairwise Welch’s t-test: p = 0.67). In this study, we thus combined the dietary groups Herring-eaters and Lumpfish-eaters into the group Fish-eaters, to enable easier comparison to the seal-eating killer whales.
    We then used Welch’s t-test to compare the ΣPCB levels in the seal-eating and fish-eating dietary groups (using a log10 transformation), and to compare the total Hg levels in the skin between the two dietary groups.
    OHC dataset
    We used multivariate analysis to compare and visualise the differences in all the OHCs between the dietary groups, age and sex classes using the vegan package in R53. Principle Component Analysis (PCA) was used to visualise the main structure of the data: reducing the dimensions to two new, uncorrelated, latent variables termed principle components 1 and 2 (PC1 and PC2). We log-10 transformed contaminant levels to ensure normality and homogeneity of variance, and the presence of any influential outliers were checked by the Cook’s distance test. Redundancy Analysis (RDA) was used to extract and summarise the variation in the OHC levels constrained, and thereby explained, by a set of explanatory variables54. Significant associations between response variables and the explanatory variables were identified by an RDA based forward model selection, followed by a Monte Carlo forward permutation test (1,000 unrestricted permutations). The samples’ scores along PC1 were subject to one-way Analysis of Variance (ANOVA) followed by Tukey’s honestly significant difference post hoc test (Tukey’s HSD) to analyse differences between the three dietary groups. PC1 scores were also used to evaluate correlation to total Hg levels in the skin using a Spearman’s rank correlation test. Absolute concentrations were subject to PCA with lipid % as a covariate, after checking its significance using RDA, as lipid normalising data in inferential statistics can often lead to misleading conclusions55.
    We lipid-normalised OHC values when comparing levels to threshold values for toxicity or other killer whale populations, and used the geometric mean as the average for each dietary group to reflect the log normal distribution of the data. In accordance with convention, efforts were made to only compare adult males with other worldwide populations, as reproductive female whales are known to transfer a substantial portion of their OHC burden to their calves35,36,38. In any case of comparison, similar metrics were compared (i.e. arithmetic mean, geometric mean, median) and all variables kept similar (i.e. sex, age, biopsy/stranded animals). We make the assumption in this study that the killer whales sampled in 2002 in Norway were fish-eaters for the following reasons: firstly, the whales were sampled on herring overwintering grounds, feeding on herring, and photographs were taken of five of the eight adults sampled and were identified as herring-eaters from previous field observations16. Secondly, the PCB pattern in the sampled whales showed 76% of ΣPCBs higher chlorinated congeners (hexaCBs or higher), which is more similar to the fish-eaters from our study (80% higher chlorinated congeners) than the seal-eaters (87% higher chlorinated congeners). Thirdly, the upper 95% confidence range of all pollutants reported in the 2002 killer whales falls below both the geometric and arithmetic mean values for seal-eaters from this study.
    Total Hg dataset
    The normal distribution of the data within each dietary group meant we used the arithmetic mean as an average. The three dietary groups (Herring-eaters, Lumpfish-eaters and Seal-eaters) were compared using a pairwise Welch’s t-test with a Benjamini–Hochberg False Discovery Rate correction to adjust for multiple testing. Because we found no difference between the Herring-eaters and Lumpfish-eaters (p = 0.67), we combined these two groups to a group called “Fish-eaters” for easier comparison with the seal-eaters. The total Hg levels in the skin of the two groups, Fish-eaters and Seal-eaters were compared using Welch’s t-test.
    There is a strong positive correlation between Hg levels in the skin and liver in toothed whales, and this can be used to compare Hg levels measured in skin with hepatic toxicity threshold values56,57,58. To extrapolate to liver from skin in our samples, we chose an equation based on a model using concentrations in the liver (Hgliver μg/g w.w) and skin (Hgskin μg/g w.w) of bottlenose dolphins (Tursiops truncatus) (Eq. 1)58. We converted dry weight to wet weight using the water content for each individual whale measured during freeze drying.

    $$ln left( {Hg_{liver} } right) = 1.6124 times ln left( {Hg_{skin} } right) + 2.0346$$
    (1)

    When comparing Hg concentrations to other worldwide populations, both male and female whales were included. This was due to a lack of information of sex in one of the populations for comparisons and because killer whales are unlikely to pass on Hg burdens to calves5,59. More

  • in

    Species traits predict the aryl hydrocarbon receptor 1 (AHR1) subtypes responsible for dioxin sensitivity in birds

    1.
    White, S. S. & Birnbaum, L. S. An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 27, 197–211 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Harris, M. L. & Elliott, J. E. Effects of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans, and polybrominated diphenyl ethers in wild birds. In Environmental Contaminants in Biota: Interpreting Tisue Concentrations (eds Beyer, W. N. & Meador, J. P.) 477–528 (CRC Press, Cambridge, 2011).
    Google Scholar 

    3.
    Grasman, K. A., Scanlon, P. F. & Fox, G. A. Reproductive and physiological effects of environmental contaminants in fish-eating birds of the Great Lakes: A review of historical trends. Environ. Monit. Assess. 53, 117–145 (1998).
    CAS  Google Scholar 

    4.
    Okey, A. B. An aryl hydrocarbon receptor odyssey to the shores of toxicology: The Deichmann Lecture, International Congress of Toxicology-XI. Toxicol. Sci. 98, 5–38 (2007).
    CAS  PubMed  Google Scholar 

    5.
    Denison, M. S., Soshilov, A. A., He, G., DeGroot, D. E. & Zhao, B. Exactly the same but different: Promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 124, 1–22 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Tian, J. et al. The aryl hydrocarbon receptor: A key bridging molecule of external and internal chemical signals. Environ. Sci. Technol. 49, 9518–9531 (2015).
    CAS  PubMed  PubMed Central  ADS  Google Scholar 

    7.
    Beischlag, T. V., Morales, J. L., Hollingshead, B. D. & Perdew, G. H. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 18, 207–250 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Hahn, M. E. Aryl hydrocarbon receptors: Diversity and evolution. Chem. Biol. Interact. 141, 131–160 (2002).
    CAS  PubMed  ADS  Google Scholar 

    9.
    Hwang, J.-H. et al. Ecological factors drive natural selection pressure of avian aryl hydrocarbon receptor 1 genotypes. Sci. Rep. 6, 27526 (2016).
    CAS  PubMed  PubMed Central  ADS  Google Scholar 

    10.
    Head, J. A., Hahn, M. E. & Kennedy, S. W. Key amino acids in the aryl hydrocarbon receptor predict dioxin sensitivity in avian species. Environ. Sci. Technol. 42, 7535–7541 (2008).
    CAS  PubMed  ADS  Google Scholar 

    11.
    Farmahin, R. et al. Amino acid sequence of the ligand-binding domain of the aryl hydrocarbon receptor 1 predicts sensitivity of wild birds to effects of dioxin-like compounds. Toxicol. Sci. 131, 139–152 (2013).
    CAS  PubMed  Google Scholar 

    12.
    Head, J. A. & Kennedy, S. W. Correlation between an in vitro and an in vivo measure of dioxin sensitivity in birds. Ecotoxicology 19, 377–382 (2010).
    CAS  PubMed  Google Scholar 

    13.
    Karchner, S. I., Franks, D. G., Kennedy, S. W. & Hahn, M. E. The molecular basis for differential dioxin sensitivity in birds: Role of the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. U.S.A. 103, 6252–6257 (2006).
    CAS  PubMed  PubMed Central  ADS  Google Scholar 

    14.
    Farmahin, R. et al. Sequence and in vitro function of chicken, ring-necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins. Environ. Sci. Technol. 46, 2967–2975 (2012).
    CAS  PubMed  ADS  Google Scholar 

    15.
    Manning, G. E. et al. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD(50) of polychlorinated biphenyls in avian species. Toxicol. Appl. Pharmacol. 263, 390–401 (2012).
    CAS  PubMed  Google Scholar 

    16.
    Fujisawa, N. et al. Dioxin sensitivity-related two critical amino acids of aryl hydrocarbon receptor may not correlate with the taxonomy of phylogeny in avian species. J. Vet. Med. Sci. 75, 1577–1583 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    McGill, B. J., Enquist, B. J., Wiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    PubMed  Google Scholar 

    18.
    Menezes, S., Baird, D. J. & Soares, A. M. V. M. Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J. Appl. Ecol. 47, 711–719 (2010).
    Google Scholar 

    19.
    Chown, S. L. Trait-based approaches to conservation physiology: Forecasting environmental change risks from the bottom up. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1615–1627 (2012).
    PubMed  PubMed Central  Google Scholar 

    20.
    Baird, D. J., Rubach, M. N. & Van den Brink, P. J. Trait-based ecological risk assessment (TERA): The new frontier?. Integr. Environ. Assess. Manage. 4, 2–3 (2008).
    Google Scholar 

    21.
    De Lange, H., Lahr, J., Van der Pol, J. J., Wessels, Y. & Faber, J. H. Ecological vulnerability in wildlife: An expert judgment and multicriteria analysis tool using ecological traits to assess relative impact of pollutants. Environ. Toxicol. Chem. 28, 2233–2240 (2009).
    PubMed  Google Scholar 

    22.
    Klaassen, M., Hoye, B. J., Nolet, B. A. & Buttemer, W. A. Ecophysiology of avian migration in the face of current global hazards. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1719–1732 (2012).
    PubMed  PubMed Central  Google Scholar 

    23.
    Reynolds, J. D. Life histories and extinction risk. In Macroecology (eds Blackburn, T. M. & Gaston, K. J.) 195–217 (Blackwell Publishing, Ltd., Hoboken, 2003).
    Google Scholar 

    24.
    Bennett, P. M. & Owens, I. P. F. Variation in extinction risk among birds: change or evolutionary predisposition?. Proc. R. Soc. Lond. B 264, 401–408 (1997).
    ADS  Google Scholar 

    25.
    Morrow, E. H. & Pitcher, T. E. Sexual selection and the risk of extinction in birds. Proc. R. Soc. Lond. B 270, 1793–1799 (2003).
    Google Scholar 

    26.
    Thomas, G. H., Lanctot, R. B. & Székely, T. Can intrinsic factors explain population declines in North American breeding shorebirds? A comparative analysis. Anim. Conserv. 9, 252–258 (2006).
    Google Scholar 

    27.
    Nosek, J. A., Craven, S. R., Karasov, W. H. & Peterson, R. E. 2,3,7,8-Tetrachlorodibenzo-p-dioxin in terrestrial environments: Implications for resource management. Wildl. Soc. Bull. 21, 179–187 (1993).
    Google Scholar 

    28.
    Borga, K., Fisk, A. T., Hoekstra, P. E. & Muir, D. C. G. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ. Toxicol. Chem. 23, 2367–2385 (2004).
    CAS  PubMed  Google Scholar 

    29.
    Post, D. M. The long and short of food-chain length. Trends Ecol. Evol. 17, 269–277 (2002).
    Google Scholar 

    30.
    Arnoldsson, K., Andersson, P. L. & Haglund, P. Photochemical formation of polybrominated dibenzo-p-dioxins from environmentally abundant hydroxylated polybrominated diphenyl ethers. Environ. Sci. Technol. 46, 7567–7574 (2012).
    CAS  PubMed  ADS  Google Scholar 

    31.
    Haglund, P. et al. Brominated dibenzo-p-dioxins: A new class of marine toxins?. Environ. Sci. Technol. 41, 3069–3074 (2007).
    CAS  PubMed  ADS  Google Scholar 

    32.
    Gribble, G. W. Naturally Occurring Organohalogen Compounds: A Comprehensive Update (Springer, Wien, 2010).
    Google Scholar 

    33.
    Sawada, T., Aono, M., Asakawa, S., Ito, A. & Awano, K. Structure determination and total synthesis of a novel antibacterial substance, AB0022A, produced by a cellular slime mold. J. Antibiot. (Tokyo) 53, 959–966 (2000).
    CAS  Google Scholar 

    34.
    Tanahashi, T., Takenaka, Y., Nagakura, N. & Hamada, N. Dibenzofurans from the cultured lichen mycobionts of Lecanora cinereocarnea. Phytochemistry 58, 1129–1134 (2001).
    CAS  PubMed  Google Scholar 

    35.
    Leighton, F. A. The toxicity of petroleum oils to birds. Environ. Rev. 1, 92–103 (1993).
    CAS  Google Scholar 

    36.
    Albers, P. H. Birds and polycyclic aromatic hydrocarbons. Avian Poult. Biol. Rev. 17, 125–140 (2006).
    Google Scholar 

    37.
    Latimer, J. S. & Zheng, J. The sources, transport, and fat of PAHs in the marine environment. In PAHs: An Ecotoxicological Perspective (ed. Douben, P. E. T.) (Wiley, Hoboken, 2003).
    Google Scholar 

    38.
    Machala, M., Vondracek, J., Blaha, L., Ciganek, M. & Neca, J. Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutat. Res. 497, 49–62 (2001).
    CAS  PubMed  Google Scholar 

    39.
    Abdel-Shafy, H. I. & Mansour, M. S. M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25, 107–123 (2016).
    Google Scholar 

    40.
    Tanabe, S. Contamination and toxic effects of persistent endocrine disrupters in marine mammals and birds. Mar. Pollut. Bull. 45, 69–77 (2002).
    CAS  PubMed  ADS  Google Scholar 

    41.
    Booth, S. et al. Global deposition of airborne dioxin. Mar. Pollut. Bull. 75, 182–186 (2013).
    CAS  PubMed  Google Scholar 

    42.
    Rowe, C. L. “The calamity of so long life”: Life histories, contaminants, and potential emerging threats to long-lived vertebrates. Bioscience 58, 623–631 (2008).
    Google Scholar 

    43.
    Sutter, G. I. Analyses of Laboratory and Field Studies of Reproductive Toxicity in Birds Exposed to Dioxin-Like Compounds for the Use in Ecological Risk Assessment (2003).

    44.
    Rodewald, P. G. (ed.) The Birds of North America (Cornell Laboratory of Ornithology, Itaca, 2015).
    Google Scholar 

    45.
    Pitcher, T. E., Dunn, P. O. & Whittingham, L. A. Sperm competition and the evolution of testes size in birds. J. Evol. Biol. 18, 557–567 (2005).
    CAS  PubMed  Google Scholar 

    46.
    Robinson, S. A., Lajeunesse, M. J. & Forbes, M. R. Sex differences in mercury contamination of birds: Testing multiple hypotheses with meta-analysis. Environ. Sci. Technol. 46, 7094–7101 (2012).
    CAS  PubMed  ADS  Google Scholar 

    47.
    Dunning, J. B. J. CRC Handbook of Avian Body Masses (CRC Press, Boca Raton, 2007).
    Google Scholar 

    48.
    Google Maps, North America. (2015). www.google.ca/maps/place/North+America/@2.8138232,163.4417995,2z/data=!3m1!4b1!4m2!3m1!1s0x52b30b71698e729d:0x131328839761a382. Accessed 20 Dec 2015.

    49.
    Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P. & Saino, N. Using the birdtree.org website to obtain robust phylogenies for avian comparative studies: A primer. Curr. Zool. 61, 959–965 (2015).
    PubMed  PubMed Central  Google Scholar 

    50.
    Jetz, W., Thomas, G. H., Joy, J. B., Harman, K. & Mooers, O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    CAS  PubMed  PubMed Central  ADS  Google Scholar 

    51.
    Jetz, W. et al. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014).
    CAS  PubMed  Google Scholar 

    52.
    Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).
    CAS  PubMed  ADS  Google Scholar 

    53.
    Holder, M. T., Sukumaran, J. & Lewis, P. O. A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. Syst. Biol. 57, 814–821 (2008).
    PubMed  Google Scholar 

    54.
    Sukumaran, J. & Holder, M. T. Sumtrees: Phylogenetic tree summarization, version 4.0.0. https://github.com/jeetsumkamaran/DendroPy. Accessed 31 Jan 2015

    55.
    Sukumaran, J. & Holder, M. T. DendroPy: A Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).
    CAS  PubMed  Google Scholar 

    56.
    Python Software Foundation. Python Language Reference (2015).

    57.
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  PubMed  Google Scholar 

    58.
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    R Core Team. R: A Language and Environment for Statistical Computing (2019).

    60.
    Mundry, R. Statistical issues and assumptions of phylogenetic generalized least squares. In Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 131–153 (Springer, New York, 2014).
    Google Scholar 

    61.
    De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 88, 243–251 (2007).
    PubMed  Google Scholar 

    62.
    Elith, J., Leathwick, J. R. & Hastie, T. A. A working gruide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
    CAS  PubMed  Google Scholar 

    63.
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, Oxford, 1991).
    Google Scholar 

    64.
    De’ath, G. Multivariate regression trees: A new technique for constrined classification analysis. Ecology 83, 1103–1117 (2002).
    Google Scholar 

    65.
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).
    CAS  PubMed  Google Scholar 

    66.
    Freckleton, R. P., Cooper, N. & Jetz, W. Comparative methods as a statistical fix: The dangers of ignoring an evolutionary model. Am. Nat. 178, E10–E17 (2011).
    PubMed  Google Scholar 

    67.
    Diniz-Filho, J. A. F., San’Ana, L. M. & Bini, M. An eigenvector method for estimating phylogenetic inertia. Evolution 52, 1247–1262 (1998).
    Google Scholar 

    68.
    Covain, R., Dray, S., Fisch-Muller, S. & Monotoya-Burgos, J. I. Assessing phylogenetic dependence of morphological traits using co-inertia prior to investigate character evolution in Loricariinae catfishes. Mol. Phylogenet. Evol. 46, 986–1002 (2008).
    PubMed  Google Scholar 

    69.
    Galvan, I. & Moller, A. P. Brain size and the expression of pheomelanin-based colour in birds. J. Evol. Biol. 24, 999–1006 (2011).
    CAS  PubMed  Google Scholar 

    70.
    Galvan, I. et al. Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution 69, 2776–2784 (2015).
    CAS  PubMed  Google Scholar 

    71.
    Nogues-Bravo, D. et al. Phenotypic correlates of potential range size and range filling in European trees. Perspect. Plant Ecol. Evol. Syst. 16, 219–227 (2014).
    Google Scholar 

    72.
    Bisson, I.-A., Safi, K. & Holland, R. A. Evidence for repeated independent evolution of migration in the largest family of bats. PLoS ONE 4, e7504 (2009).
    PubMed  PubMed Central  ADS  Google Scholar 

    73.
    Diniz-Filho, J. A. F. & Torres, N. M. Phylogenetic comparative methods and the geographic range size–body relationship in new world terrestrial carnivora. Evol. Ecol. 16, 51–67 (2002).
    Google Scholar 

    74.
    Diniz-Filho, J. A. F. et al. On the selection of phylogenetic eigenvectors for ecological analyses. Ecography 35, 239–249 (2012).
    Google Scholar 

    75.
    Diniz-Filho, J. A. F., Rangel, T. F., Santos, T. & Bini, L. M. Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution (N. Y.) 66, 1079–1090 (2012).
    Google Scholar 

    76.
    Hijmans, R. J., Phillips, R. J., Leathwick, S. & Elith, J. dismo: Species distrubution modeling (2016). More

  • in

    The Andaman day gecko paradox: an ancient endemic without pronounced phylogeographic structure

    1.
    Heaney, L. R. Is a new paradigm emerging for oceanic island biogeography?. J. Biogeogr. 34, 753–757 (2007).
    Google Scholar 
    2.
    Avise, J. C. Molecular Markers, Natural History and Evolution (Springer, New York, 2012).
    Google Scholar 

    3.
    Ali, J. R. Islands as biological substrates: Classification of the biological assemblage components and the physical island types. J. Biogeogr. 44, 984–994 (2017).
    Google Scholar 

    4.
    de Wit, M. J. Madagascar: Heads it’s a continent, tails it’s an island. Annu. Rev. Earth Planet. Sci. 31, 213–248 (2003).
    ADS  Google Scholar 

    5.
    Das, I. Biogeography of the amphibians and reptiles of the Andaman and Nicobar Islands, India. In Tropical Island Herpetofauna. Origin, Current Diversity and Current Status 43–77 (Elsevier, 1999).

    6.
    Bandopadhyay, P. C. & Carter, A. Chapter 6 geological framework of the Andaman–Nicobar Islands. Geol. Soc. Lond. Mem. 47, 75–93 (2017).
    Google Scholar 

    7.
    Ali, J. R. Islands as biological substrates: Continental. J. Biogeogr. 45, 1003–1018 (2018).
    Google Scholar 

    8.
    Smith, M. A. The herpetology of the Andaman and Nicobar Islands. Proc. Linn. Soc. London 153, 150–158 (1941).

    9.
    Biswas, S. & Sanyal, D. A report on the Reptilia fauna of Andaman and Nicobar Islands in the collection of Zoological Survey of India. Rec. Zool. Surv. India 77, 255–292 (1980).
    Google Scholar 

    10.
    Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).
    CAS  Google Scholar 

    11.
    Harikrishnan, S., Vasudevan, K. & Choudhury, B. C. A review of herpetofaunal descriptions and studies from Andaman and Nicobar Islands, with an updated checklist in Recent trends in biodiversity of Andaman and Nicobar Islands (Zoological Survey of India, Kolkata, 2010).
    Google Scholar 

    12.
    Chakravarty, R., Chattopadhyay, B., Ramakrishnan, U. & Sivasundar, A. Comparative population structure in species of bats differing in ecology and morphology in the Andaman Islands India. Acta Chiropt. 20, 85–98 (2018).
    Google Scholar 

    13.
    Mohan, A. V., Swamy, P. & Shanker, K. Population structure in the Andaman keelback, Xenochrophis tytleri: Geographical distance and oceanic barriers to dispersal influence genetic divergence on the Andaman archipelago. PeerJ 6, 5752. https://doi.org/10.7717/peerj.5752 (2018).
    Article  Google Scholar 

    14.
    Rocha, S. et al. Phylogenetic systematics of day geckos, genus Phelsuma, based on molecular and morphological data (Squamata: Gekkonidae). Zootaxa 2429, 1 (2010).
    Google Scholar 

    15.
    Austin, J. J., Arnold, E. N. & Jones, C. G. Reconstructing an island radiation using ancient and recent DNA: The extinct and living day geckos (Phelsuma) of the Mascarene islands. Mol. Phylogenet. Evol. 31, 109–122 (2004).
    CAS  PubMed  Google Scholar 

    16.
    Rocha, S., Posada, D., Carretero, M. A. & Harris, D. J. Phylogenetic affinities of Comoroan and East African day geckos (genus Phelsuma): Multiple natural colonisations, introductions and island radiations. Mol. Phylogenet. Evol. 43, 685–692 (2007).
    CAS  PubMed  Google Scholar 

    17.
    Rocha, S., Vences, M., Glaw, F., Posada, D. & Harris, D. J. Multigene phylogeny of Malagasy day geckos of the genus Phelsuma. Mol. Phylogenet. Evol. 52, 530–537 (2009).
    CAS  PubMed  Google Scholar 

    18.
    Rocha, S. Phylogeography and diversification history of the day-gecko genus Phelsuma in the Seychelles islands. BMC Evol. Biol. 13, 3. https://doi.org/10.1186/1471-2148-13-3 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Cheke, A. & Hume, J. P. Lost Land of the Dodo: The Ecological History of Mauritius, Réunion and Rodrigues (Bloomsbury Publishing, London, 2010).
    Google Scholar 

    20.
    Harmon, L. J., Harmon, L. L. & Jones, C. G. Competition and community structure in diurnal arboreal geckos (genus Phelsuma) in the Indian Ocean. Oikos 116, 1863–1878 (2007).
    Google Scholar 

    21.
    Ratnam, J. Distribution and Behavioural Ecology of the Andaman Day Gecko (Phelsuma andamanensis). MSc dissertation, Pondicherry University (1992).

    22.
    Humphrey, J. E. & Ward, C. F. M. Madagascan Day Geckos (Phelsuma spp.) exhibit differing responses along a gradient of land-use change. Trop. Conserv. Sci. https://doi.org/10.1177/1940082918760282 (2018).
    Article  Google Scholar 

    23.
    Boumans, L., Vieites, D. R., Glaw, F. & Vences, M. Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles. Mol. Phylogenet. Evol. 45, 822–839 (2007).
    CAS  PubMed  Google Scholar 

    24.
    Gehring, P.-S., Glaw, F., Gehara, M., Ratsoavina, F. M. & Vences, M. Northern origin and diversification in the central lowlands? Complex phylogeography and taxonomy of widespread day geckos (Phelsuma) from Madagascar. Org. Divers. Evol. 13, 605–620 (2013).
    Google Scholar 

    25.
    Mohan, A. V. Comparative phylogeography and patterns of deep genetic differentiation of two gecko species, Paroedura gracilis and Phelsuma guttata, across north-eastern Madagascar. Salamandra 55, 211–220 (2019).
    Google Scholar 

    26.
    Beaumont, M. A. Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41, 379–406 (2010).
    Google Scholar 

    27.
    Csilléry, K., Blum, M. G., Gaggiotti, O. E. & François, O. Approximate Bayesian computation (ABC) in practice. Trends Ecol. & Evol. 25, 410–418 (2010).
    Google Scholar 

    28.
    Arbogast, B. S. & Kenagy, G. J. Comparative phylogeography as an integrative approach to historical biogeography: guest editorial. J. Biogeogr. 28, 819–825 (2008).
    Google Scholar 

    29.
    Crottini, A. et al. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. Proc. Natl. Acad. Sci. 109, 5358–5363 (2012).
    ADS  CAS  PubMed  Google Scholar 

    30.
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
    CAS  PubMed  Google Scholar 

    31.
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures: invited technical review. Mol. Ecol. Resour. 11, 5–18 (2011).
    PubMed  Google Scholar 

    32.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Verity, R. & Nichols, R. A. Estimating the number of subpopulations (K) in structured populations. Genetics 203, 1827–1839 (2016).
    PubMed  PubMed Central  Google Scholar 

    34.
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).
    PubMed  PubMed Central  Google Scholar 

    35.
    Thangaraj, K. et al. Genetic affinities of the Andaman Islanders, a vanishing human population. Curr. Biol. 13, 86–93 (2003).
    CAS  PubMed  Google Scholar 

    36.
    Chaubey, G. & Endicott, P. The Andaman Islanders in a regional genetic context: Reexamining the evidence for an early peopling of the archipelago from South Asia. Human Bio. 85, 153–172 (2013).
    Google Scholar 

    37.
    Rico, C. et al. Null alleles are ubiquitous at microsatellite loci in the Wedge Clam (Donax trunculus). 10.7717/peerj.3188 (2017).

    38.
    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111, 15296–15303 (2014).
    ADS  CAS  PubMed  Google Scholar 

    39.
    Sharief, M. U. Ethnobotanical studies of the dwindling aboriginal Jarawa tribe in Andaman Islands India. Gen. Res. Crop Evol. 64, 1861–1872 (2017).
    Google Scholar 

    40.
    Chandramouli, S. R. First record of a Phelsuma Gray, 1825 (Sauria: Gekkonidae) from the Nicobar Archipelago, Bay of Bengal. Sauria 39, 49–51 (2017).
    Google Scholar 

    41.
    Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).
    PubMed  Google Scholar 

    42.
    Andrews, H. V., Vasumati, S. & others. Sustainable management of protected areas in the Andaman and Nicobar Islands. In Sustainable Management of Protected Areas in the Andaman Nicobar Island (2002).

    43.
    Sekhsaria, P. & Pandya, V. Jarawa Tribal Reserve dossier: cultural & biological diversities in the Andaman Islands (UNESCO, 2010).

    44.
    Shen, X.-X., Liang, D. & Zhang, P. The development of three long universal nuclear protein-coding locus markers and their application to osteichthyan phylogenetics with nested PCR. PLoS ONE 7, 39256. https://doi.org/10.1371/journal.pone.0039256 (2012).
    ADS  CAS  Article  Google Scholar 

    45.
    Bauer, A. M., de Silva, A., Greenbaum, E. & Jackman, T. A new species of day gecko from high elevation in Sri Lanka, with a preliminary phylogeny of Sri Lankan Cnemaspis (Reptilia, Squamata, Gekkonidae). Mitteilungen aus dem Museum für Naturkunde Berlin Zool. Reihe 83, 22–32 (2007).
    Google Scholar 

    46.
    Leaché, A. D. & McGuire, J. A. Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene tree. Mol. Phylogenet. Evol. 39, 628–644 (2006).
    PubMed  Google Scholar 

    47.
    Gamble, T., Bauer, A. M., Greenbaum, E. & Jackman, T. R. Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. J. Biogeogr. 35, 88–104 (2008).
    Google Scholar 

    48.
    Silvestro, D. & Michalak, I. raxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337 (2012).
    Google Scholar 

    49.
    Perl, R. G. B. et al. Population genetic analysis of the recently rediscovered Hula painted frog (Latonia nigriventer) reveals high genetic diversity and low inbreeding. Sci. Rep. 8, 5588. https://doi.org/10.1038/s41598-018-23587-w (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).
    CAS  PubMed  Google Scholar 

    51.
    Bruford, M. Single-locus and multilocus DNA fingerprint. In: Hoelzel, A.R. (Ed.), Molecular Genetic Analysis of Populations: A Practical Approach. IRL Press, Oxford, pp. 225–270 (1992).

    52.
    Ryan, W. B. F. et al. Global multi-resolution topography synthesis: Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, 03014. https://doi.org/10.1029/2008GC002332 (2009).
    ADS  Article  Google Scholar 

    53.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment: Cervus likelihood model. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Google Scholar 

    54.
    Kamvar, Z., Tabima, J. & Grünwald, N. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2, 281. https://doi.org/10.7717/peerj.281 (2014).
    Article  Google Scholar 

    55.
    Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
    PubMed  Google Scholar 

    56.
    Fisher, R. The logic of scientific inference. J. R. Stat. Soc. 98, 39–54 (1935).
    MATH  Google Scholar 

    57.
    Adamack, A. T. & Gruber, B. Pop gen report: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).
    Google Scholar 

    58.
    Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Paradis, E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).
    CAS  PubMed  Google Scholar 

    60.
    Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets: Program note. Mol. Ecol. Notes 3, 167–169 (2003).
    CAS  Google Scholar 

    61.
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity : An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
    Google Scholar 

    62.
    Francis, R. M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).
    CAS  PubMed  Google Scholar 

    63.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Google Scholar 

    64.
    Janes, J. K. et al. The K = 2 conundrum. Mol. Ecol. 26, 3594–3602 (2017).
    PubMed  Google Scholar 

    65.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
    CAS  PubMed  Google Scholar 

    67.
    Piry, S. et al. Mapping averaged pairwise information (MAPI): A new exploratory tool to uncover spatial structure. Methods Ecol. Evol. 7, 1463–1475 (2016).
    Google Scholar 

    68.
    Cornuet, J.-M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Google Scholar 

    69.
    Estoup, A., Jarne, P. & Cornuet, J.-M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 11, 1591–1604 (2002).
    CAS  PubMed  Google Scholar 

    70.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    CAS  PubMed  Google Scholar 

    71.
    Palumbi, S. Simple fool’s guide to PCR. (1991).

    72.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  PubMed  Google Scholar 

    73.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  Google Scholar 

    74.
    Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
    CAS  PubMed  Google Scholar 

    75.
    Winter, D. J. mmod: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 12, 1158–1160 (2012).
    CAS  PubMed  Google Scholar  More

  • in

    Tall fescue sward structure affects the grazing process of sheep

    1.
    Keating, B. A., Carberry, P., Thomas, S., Clark, J. Eco-efficient agriculture and climate change: Conceptual foundations and frameworks. In Eco-Efficiency: From Vision to Reality (ed. Hershey, C. H., Neate, P.) 19–28 (CIAT, Cali, 2013).
    2.
    Herrero, M. et al. Livestock and the environment: What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202. https://doi.org/10.1146/annurev-environ-031113-093503 (2015).
    Article  Google Scholar 

    3.
    Rouquette, F. M. Jr. Grazing systems research and impact of stocking strategies on pasture–animal production efficiencies. Crop Sci. 55, 2513–2530. https://doi.org/10.2135/cropsci2015.01.0062 (2015).
    CAS  Article  Google Scholar 

    4.
    Carvalho, P. C. F. et al. From the bite to precision grazing: Understanding the plant-animal interface to exploit the multi-functionality of grasslands. R. Bras. Zootec. 38, 109–122 (2009).
    Article  Google Scholar 

    5.
    Laca, E. A. Precision livestock production: Tools and concepts. R. Bras. Zootec. 38, 123–132 (2009).
    Article  Google Scholar 

    6.
    Bonaudo, T. et al. Agroecological principles for the redesign of integrated crop–livestock systems. Eur. J. Agron. 57, 43–51. https://doi.org/10.1016/j.eja.2013.09.010 (2014).
    Article  Google Scholar 

    7.
    Massey, F. P. & Hartley, S. E. Experimental demonstration of the anti-herbivore effects of silica in grasses: Impacts on foliage digestibility and vole growth rates. Proc. R. Soc. B. 273, 2299–2304. https://doi.org/10.1098/rspb.2006.3586 (2006).
    CAS  Article  PubMed  Google Scholar 

    8.
    Shipley, L. A. The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos 116, 1964–1974. https://doi.org/10.1111/j.2007.0030-1299.15974.x (2007).
    Article  Google Scholar 

    9.
    Mendoza, M. & Palmqvist, P. Hypsodonty in ungulates: An adaptation for grass consumption or for foraging in open habitat?. J. Zool. 274, 134–142. https://doi.org/10.1111/j.1469-7998.2007.00365.x (2008).
    Article  Google Scholar 

    10.
    Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Ann. Rev. Earth Planet Sci. 39, 517–544. https://doi.org/10.1146/annurev-earth-040809-152402 (2011).
    ADS  CAS  Article  Google Scholar 

    11.
    Allden, W. G. & Whittaker, I. A. M. D. The determinants of herbage intake by grazing sheep: The interrelationship of factors influencing herbage intake and availability. Aust. J. Agric. Res. 21, 755–766 (1970).
    Article  Google Scholar 

    12.
    Laca, E. A., Ungar, E. D., Seligman, N. G. & Demment, M. W. Effects of sward height and bulk density on the bite dimensions of cattle grazing homogeneous sward. Grass Forage Sci. 47, 91–102. https://doi.org/10.1111/j.1365-2494.1992.tb02251.x (1992).
    Article  Google Scholar 

    13.
    Laca, E. A., Ortega, I. M. Integrating foraging mechanisms across spatial and temporal scales. In Proceedings of the 5th International Rangeland Congress (Scarnecchia, D.L., West, N.E., eds.) 129−132 (Society for Range Management, Denver, 1996).

    14.
    Prache, S. & Delagarde, R. The influence of vegetation characteristics on foraging strategy and ingestive behaviour. In Grassland Productivity and Ecosystem Services (eds Lemaire, G. et al.) 27–36 (CABI, Cambridge, 2011).
    Google Scholar 

    15.
    Gross, J. E., Shipley, L. A., Hobbs, N. T., Spalinger, D. E. & Wunder, B. A. Functional response of herbivores in food-concentrated patches: Tests of a mechanistic model. Ecology 74, 778–791. https://doi.org/10.2307/1940805 (1993).
    Article  Google Scholar 

    16.
    Decruyenaere, V., Buldgen, A. & Stilmant, D. Factors affecting intake by grazing ruminants and related quantification methods: A review. Biotechnol. Agron. Soc. Environ. 13, 559–573 (2009).
    Google Scholar 

    17.
    Amaral, M. F. et al. Sward structure management for a maximum short-term intake rate in annual ryegrass. Grass Forage Sci. 68, 271–277. https://doi.org/10.1111/j.1365-2494.2012.00898.x (2012).
    ADS  Article  Google Scholar 

    18.
    Barre, J. P. et al. Morphological characteristics of perennial ryegrass leaves that influence short-term intake in dairy cows. Agron. J. 98, 978–985. https://doi.org/10.2134/agronj2005.0213 (2006).
    Article  Google Scholar 

    19.
    Hodgson J. Grazing Management: Science Into Practice. Longman Scientific and Technical. 1st edn. (Longman Group, London, 1990).

    20.
    Fonseca, L. et al. Management targets for maximizing the short-term herbage intake rate of cattle grazing in Sorghum bicolor. Livest. Sci. 145, 205–211. https://doi.org/10.1016/j.livsci.2012.02.003 (2012).
    Article  Google Scholar 

    21.
    Mezzalira, J. C. et al. Rotational grazing management in a tropical pasture to maximize the dairy cow’s herbage intake rate. Arq. Bras. Med. Vet. Zootec. 65, 833–840 (2013).
    Article  Google Scholar 

    22.
    Mezzalira, J. C. et al. Behavioural mechanisms of intake rate by heifers grazing swards of contrasting structures. Appl. Anim. Behav. Sci. 153, 1–9. https://doi.org/10.1016/j.applanim.2013.12.014 (2014).
    Article  Google Scholar 

    23.
    Orr, R. et al. Intake characteristics of perennial ryegrass varieties when grazed by sheep under continuous stocking management. Euphytica 134, 247–260. https://doi.org/10.1023/B:EUPH.0000004949.49050.78 (2003).
    Article  Google Scholar 

    24.
    Guzatti, G. C. et al. Changes in the short-term intake rate of herbage by heifers grazing annual grasses throughout the growing season. Grassl. Sci. 63, 255–264. https://doi.org/10.1111/grs.12170 (2017).
    Article  Google Scholar 

    25.
    Bailey, D. W. et al. Mechanisms that result in large herbivore grazing distribution patterns. J. Range Manag. 49, 386–400 (1996).
    Article  Google Scholar 

    26.
    Griffiths, W. M., Hodgson, J. & Arnold, G. C. The influence of sward canopy structure on foraging decisions by grazing cattle I. Patch selection. Grass Forage Sci. 58, 112–124. https://doi.org/10.1046/j.1365-2494.2003.00360.x (2003).
    Article  Google Scholar 

    27.
    Gonçalves, E. N. et al. Plant-animal relationships in pastoral heterogeneous environment: Process of herbage intake. R. Bras. Zootec. 38, 611–617 (2009).
    Article  Google Scholar 

    28.
    Fonseca, L. et al. Effect of sward surface height and level of herbage depletion on bite features of cattle grazing Sorghum bicolor swards. J. Anim. Sci. 91, 4357–4365. https://doi.org/10.2527/jas2012-5602 (2013).
    CAS  Article  PubMed  Google Scholar 

    29.
    Carvalho, P. C. F. Harry stobbs memorial lecture: Can grazing behavior support innovations in grassland management?. Trop. Grassl-Forrajes Trop. 1, 137–155 (2013).
    Article  Google Scholar 

    30.
    Baumont, R., Cohen-Salmon, D., Prache, S. & Sauvant, D. A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Anim. Feed Sci. Technol. 112, 5–28. https://doi.org/10.1016/j.anifeedsci.2003.10.005 (2004).
    Article  Google Scholar 

    31.
    Mezzalira, J. C. et al. Mechanisms and implications of a type iv functional response for short-term intake rate of dry matter in large mammalian herbivores. J. Anim. Ecol. 86, 1159–1168. https://doi.org/10.1111/1365-2656.12698 (2017).
    Article  PubMed  Google Scholar 

    32.
    Ungar, E. D., Genizi, A. & Demment, M. W. Bite dimensions and herbage intake by cattle grazing short hand-constructed swards. Agron. J. 83, 973–978. https://doi.org/10.2134/agronj1991.00021962008300060010x (1991).
    Article  Google Scholar 

    33.
    Laca, E. A., Ungar, E. D. & Demment, M. W. Mechanisms of handling time and intake rate of a large mammalian grazer. Appl. Anim. Behav. Sci. 39, 3–19. https://doi.org/10.1016/0168-1591(94)90011-6 (1994).
    Article  Google Scholar 

    34.
    Black, J. L. & Kenney, P. A. Factors affecting diet selection by sheep. II. Height and density of pasture. Aust. J. Agric. Res. 35, 551–563. https://doi.org/10.1071/AR9840565 (1984).
    Article  Google Scholar 

    35.
    Burlison, A. J., Hodgson, J. & Illius, A. W. Sward canopy structure and the bite dimensions and bite weight of grazing sheep. Grass Forage Sci. 46, 29–38. https://doi.org/10.1111/j.1365-2494.1991.tb02205.x (1991).
    Article  Google Scholar 

    36.
    Gregorini, P. et al. Effect of herbage depletion on short-term foraging dynamics and diet quality of steers grazing wheat pastures. J. Anim. Sci. 89, 3824–3830. https://doi.org/10.2527/jas.2010-3725 (2011).
    CAS  Article  PubMed  Google Scholar 

    37.
    Benvenutti, M. A., Gordon, I. J. & Poppi, D. P. The effect of the density and physical properties of grass stems on the foraging behaviour and instantaneous intake rate by cattle grazing an artificial reproductive tropical sward. Grass Forage Sci. 61, 272–281. https://doi.org/10.1111/j.1365-2494.2006.00531.x (2006).
    Article  Google Scholar 

    38.
    Benvenutti, M. A., Gordon, I. J. & Poppi, D. P. The effects of stem density of tropical swards and age of grazing cattle on their foraging behaviour. Grass Forage Sci. 63, 1–8. https://doi.org/10.1111/j.1365-2494.2007.00609.x (2008).
    Article  Google Scholar 

    39.
    Pretorius, Y. et al. Why elephant have trunks and giraffe long tongues: how plants shape large herbivoremouth morphology. Acta Zool. 97, 246–254. https://doi.org/10.1111/azo.12121 (2016).
    Article  Google Scholar 

    40.
    Verdenal, A., Combes, D. & Escobar-Gutiérrez, A. J. A study of ryegrass architecture as a self-regulated system, using functional–structural plant modelling. Funct. Plant Biol. 35, 911–924. https://doi.org/10.1071/FP08050 (2008).
    Article  Google Scholar 

    41.
    Sonohat, G. et al. Leaf dispersion and light partitioning in three dimensionally digitized tall fescue–white clover mixtures. Plant Cell Environ. 25, 529–538. https://doi.org/10.1046/j.1365-3040.2002.00833.x (2002).
    Article  Google Scholar 

    42.
    Greenwood, R. M. & Atkinson, I. A. E. Evolution of divaricating plants in new zealand in relation to moa browsing. Proc. N. Z. Ecol. Soc. 24, 21–33 (1977).
    Google Scholar 

    43.
    McQueen, D. R. Divaricating shrubs in patagonia and new zealand. N Z J. Ecol. 24, 69–80 (2000).
    Google Scholar 

    44.
    Bond, W. J., Lee, W. G. & Craine, J. M. Plant structural defenses against browsing birds: A legacy of New Zealand’ extinct moas. Oikos 104, 500–508. https://doi.org/10.1111/j.0030-1299.2004.12720.x (2004).
    Article  Google Scholar 

    45.
    Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Evol. Syst. 2, 369–404 (1971).
    Article  Google Scholar 

    46.
    Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).
    Article  Google Scholar 

    47.
    Illius, A. W., Gordon, I. J., Milne, J. D. & Wright, W. Costs and benefits of foraging on grasses varying in canopy structure and resistance to defoliation. Funct. Ecol. 9, 894–903. https://doi.org/10.2307/2389988 (1995).
    Article  Google Scholar 

    48.
    Hirata, M., Kunieda, E. & Tobisa, M. Short-term ingestive behaviour of cattle grazing tropical stoloniferous grasses with contrasting growth forms. J. Agric. Sci. 148, 615–624. https://doi.org/10.1017/S0021859610000353 (2010).
    Article  Google Scholar 

    49.
    Savian, J. V. et al. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep. J. Clean Prod. 186, 602–608. https://doi.org/10.1016/j.jclepro.2018.03.162 (2018).
    Article  Google Scholar 

    50.
    Soreng, R. J., Terrell, E. E., Wiersema, J., Darbyshire, S. J. (1488) Proposal to conserve the name Schedonorus arundinaceus (Schreb.) Dumort. against Schedonorus arundinaceus Roem. & Schult. (Poaceae: Poeae). Taxonomy 50, 915–917 (2001).

    51.
    Barthram GT. Experimental techniques: The HFRO sward stick. In Biennial Report of the Hill Farming Research Organization (ed. Alcock, M. M.) 29–30 (Midlothian: Hill Farming Research Organization, 1985).

    52.
    Rutter, S. M., Champion, R. A. & Penning, P. D. An automatic system to record foraging behaviour in free-ranging ruminants. Appl. Anim. Behav. Sci. 54, 185–195. https://doi.org/10.1016/S0168-1591(96)01191-4 (1997).
    Article  Google Scholar 

    53.
    Rutter, S. M. Graze: A program to analyze recordings of the jaw movements of ruminants. Behav. Res. Methods 32, 86–92. https://doi.org/10.3758/BF03200791 (2000).
    CAS  Article  Google Scholar 

    54.
    Gibb M. Animal grazing/intake terminology and definitions. In Pasture Ecology and Animal Intake 21–37 (Proceedings 3, Dublin, 1998).

    55.
    Penning, P. D. & Hooper, G. E. N. An evaluation of the use of short-term weight changes in grazing sheep for estimating herbage intake. Grass Forage Sci. 40, 79–84. https://doi.org/10.1111/j.1365-2494.1985.tb01722.x (1985).
    Article  Google Scholar 

    56.
    Bonnet, O. J. F. et al. Continuous bite monitoring: A method to assess the foraging dynamics of herbivores in natural grazing conditions. Anim. Prod. Sci. 55, 339–349. https://doi.org/10.1071/AN14540 (2015).
    Article  Google Scholar 

    57.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016). More

  • in

    Species identification, phylogenetic analysis and detection of herbicide-resistant biotypes of Amaranthus based on ALS and ITS

    1.
    Sauer, J. D. Revision of the dioecious amaranths. Madroño 13, 5–46 (1955).
    Google Scholar 
    2.
    Bayón, N. D. Revisión taxonómica de las especies monoicas de Amaranthus L. (Amaranthaceae): Amaranthus subg. Albersia y Amaranthus subg. Amaranthus. Ann. Mo. Bot. Gard. 101, 261–383 (2015).
    Article  Google Scholar 

    3.
    Plant Protection and Quarantine. Weed risk assessment for Amaranthus palmeri (Amaranthaceae) – Palmer amaranth, ver. 3. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine (PPQ), Raleigh, NC. 27 pp. (2020).

    4.
    CABI. Fallopia japonica. Invasive Species Compendium. Wallingford, UK: CAB International. https://www.cabi.org/isc (2020).

    5.
    Mosyakin, S. L. & Robertson, K. R. New infrageneric taxa and combinations in Amaranthus (Amaranthaceae). Ann. Bot. Fenn. 33, 275–281 (1996).
    Google Scholar 

    6.
    Stetter, M. G. & Schmid, K. J. Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol. Phylogenet. Evol. 109, 80–92 (2017).
    Article  Google Scholar 

    7.
    Waselkov, K. E., Boleda, A. S. & Olsen, K. M. A phylogeny of the genus Amaranthus (Amaranthaceae) based on several low-copy nuclear loci and chloroplast regions. Syst. Bot. 43, 439–458 (2018).
    Article  Google Scholar 

    8.
    Heap, I. The International Survey of Herbicide Resistant Weeds. (Available at: www.weedscience.org; Accessed on: 16 March, 2020)

    9.
    Ward, S. M., Webster, T. M. & Steckel, L. E. Palmer Amaranth (Amaranthus palmeri): A review. Weed Tech. 27, 12–27 (2013).
    Article  Google Scholar 

    10.
    Hager, A. G., Wax, L. M., Stoller, E. W. & Bollero, G. A. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50, 607–610 (2002).
    CAS  Article  Google Scholar 

    11.
    Delye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).
    CAS  Article  Google Scholar 

    12.
    Jasieniuk, M., Brule-Babel, A. L. & Morrison, I. N. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44, 176–193 (1996).
    CAS  Article  Google Scholar 

    13.
    Umbarger, H. E. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 47, 533–606 (1978).
    CAS  Article  Google Scholar 

    14.
    Tranel, P. J., Jiang, W. L., Patzoldt, W. L. & Wright, T. R. Intraspecific variability of the acetolactate synthase gene. Weed Sci. 52, 236–241 (2004).
    CAS  Article  Google Scholar 

    15.
    Tranel, P. J., Wright, T. R. & Heap, I. M. Mutations in herbicide-resistant weeds to ALS inhibitors. (Available at: https://www.weedscience.com; Accessed on: 16 March, 2020).

    16.
    Tranel, P. J. & Wright, T. R. Resistance of weeds to ALS-inhibiting herbicides: what have we learned?. Weed Sci. 50, 700–712 (2002).
    CAS  Article  Google Scholar 

    17.
    Riggins, C. W., Peng, Y. H., Stewart, C. N. Jr. & Tranel, P. J. Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Manag. Sci. 66, 1042–1052 (2010).
    CAS  Article  Google Scholar 

    18.
    Baldwin, B. G., Sanderson, M. J. & Porter, J. M. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. MO. Bot. Gard. 82, 247–277 (1995).
    Article  Google Scholar 

    19.
    China Plant BOL Group et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646 (2011).
    ADS  Article  Google Scholar 

    20.
    Song, B. H., Chen, Z. D. & Wang, X. Q. Sequence analysis of the ITS region of nuclear ribosomal DNA (nrDNA) in Chinese Amaranthus and its systematic utility. Acta Botan. Sin. 11, 1184–1189 (2000).
    Google Scholar 

    21.
    Xu, H., Li, Z. Y. & Li, J. S. Phylogenetic analysis of alien species of Amaranthus in China based on ITS sequences. Guihaia 37, 139–144 (2017).
    Google Scholar 

    22.
    Murphy, B. P., Plewa, D. E., Phillippi, E., Bissonnette, S. M. & Tranel, P. J. A quantitative assay for Amaranthus palmeri identification. Pest Manag. Sci. 73, 2221–2224 (2017).
    CAS  Article  Google Scholar 

    23.
    Murphy, B. P. & Tranel, P. J. Identification and validation of Amaranthus species-specific SNPs within the its region: Applications in quantitative species identification. Crop Sci. 58, 304–311 (2018).
    CAS  Article  Google Scholar 

    24.
    Wassom, J. J. & Tranel, P. J. Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species. J. Hered. 96, 410–416 (2005).
    CAS  Article  Google Scholar 

    25.
    Nandula, V. K. et al. EPSPS Amplification in Glyphosate-Resistant Spiny Amaranth (Amaranthus spinosus): A case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer Amaranth (Amaranthus palmeri). Pest Manag. Sci. 70, 1902–1909 (2014).
    CAS  Article  Google Scholar 

    26.
    Molin, W. T. & Nandula, V. K. Morphological characterization of Amaranthus palmeri x A. spinosus hybrids. AJPS 8, 1499–1510 (2017).
    Article  Google Scholar 

    27.
    Pratt, D. B. & Clark, L. G. Amaranthus rudis and A. tuberculatus, one species or two?. J. Torrey Bot. Soc. 128, 282–296 (2001).
    Article  Google Scholar 

    28.
    Mosyakin, S. L. & Robertson, K. R. Amaranthus. In Flora of North America and North of Mexico 405–410 (Oxford University Press, Oxford, 2003).
    Google Scholar 

    29.
    Sauer, J. D. The grain amaranths and their relatives: A revised taxonomic and geographic survey. Ann. Mo. Bot. Gard. 54, 103–137 (1967).
    Article  Google Scholar 

    30.
    Sogbohossou, O. E. D. & Achigan-Dako, E. G. Phenetic differentiation and use-type delimitation in Amaranthus spp. from worldwide origins. Sci. Hortic. 178, 31–42 (2014).
    Article  Google Scholar 

    31.
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. NAR 30, 3059–3066 (2002).
    CAS  Article  Google Scholar 

    32.
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
    CAS  Article  Google Scholar 

    33.
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  Article  Google Scholar 

    34.
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
    CAS  Article  Google Scholar  More

  • in

    Factors controlling the distributions of dissolved organic matter in the East China Sea during summer

    1.
    Hedges, J. I. & Oades, J. M. Comparative organic geochemistries of soils and marine sediments. Org. Geochem. 27, 319–361. https://doi.org/10.1016/S0146-6380(97)00056-9 (1997).
    CAS  Article  Google Scholar 
    2.
    Hansell, D. A. In Carlson Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 685–715 (Academic Press, Cambridge, 2002).
    Google Scholar 

    3.
    Lechtenfeld, O. J. et al. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochim. Cosmochim. Acta 126, 321–337. https://doi.org/10.1016/j.gca.2013.11.009 (2014).
    ADS  CAS  Article  Google Scholar 

    4.
    Hansell, D. A. & Carlson, C. A. Marine dissolved organic matter and the carbon cycle. Oceanography 14, 41–49 (2001).
    Article  Google Scholar 

    5.
    Carlson, C. A. et al. Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep Sea Res. Part II 57, 1433–1445. https://doi.org/10.1016/j.dsr2.2010.02.013 (2010).
    ADS  CAS  Article  Google Scholar 

    6.
    Liu, Q. et al. Estimating dissolved organic carbon inventories in the East China Sea using remote-sensing data. J. Geophys. Res. 119, 6557–6574. https://doi.org/10.1002/2014jc009868 (2014).
    ADS  CAS  Article  Google Scholar 

    7.
    Letscher, R. T., Hansell, D. A., Carlson, C. A., Lumpkin, R. & Knapp, A. N. Dissolved organic nitrogen in the global surface ocean: Distribution and fate. Glob. Biogeochem. Cycles 27, 141–153. https://doi.org/10.1029/2012GB004449 (2013).
    ADS  CAS  Article  Google Scholar 

    8.
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Micro 8, 593–599 (2010).
    CAS  Article  Google Scholar 

    9.
    Chen, C.-T.A. & Wang, S.-L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J. Geophys. Res. 104, 20675–20686. https://doi.org/10.1029/1999JC900055 (1999).
    ADS  CAS  Article  Google Scholar 

    10.
    Gu, H., Moore, W. S., Zhang, L., Du, J. & Zhang, J. Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea. Cont. Shelf Res. 35, 95–107. https://doi.org/10.1016/j.csr.2012.01.002 (2012).
    ADS  Article  Google Scholar 

    11.
    Kim, J., Cho, H.-M. & Kim, G. Significant production of humic fluorescent dissolved organic matter in the continental shelf waters of the northwestern Pacific Ocean. Sci. Rep. 8, 4887. https://doi.org/10.1038/s41598-018-23299-1 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Su, Y. Water Masses in China Sea (Kluwer Academic Publishers, Boston, 1994).
    Google Scholar 

    13.
    Ogawa, H., Usui, T. & Koike, I. Distribution of dissolved organic carbon in the East China Sea. Deep Sea Res. Part II 50, 353–366. https://doi.org/10.1016/S0967-0645(02)00459-9 (2003).
    ADS  CAS  Article  Google Scholar 

    14.
    Zhang, J., Liu, S. M., Ren, J. L., Wu, Y. & Zhang, G. L. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog. Oceanogr. 74, 449–478. https://doi.org/10.1016/j.pocean.2007.04.019 (2007).
    ADS  Article  Google Scholar 

    15.
    Kwon, H. K. et al. Significant and conservative long-range transport of dissolved organic nutrients in the Changjiang diluted water. Sci. Rep. 8, 12768. https://doi.org/10.1038/s41598-018-31105-1 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Zhang, J. Biogeochemistry of Chinese estuarine and coastal waters: nutrients, trace metals and biomarkers. Reg. Environ. Change 3, 65–76. https://doi.org/10.1007/s10113-001-0039-3 (2002).
    Article  Google Scholar 

    17.
    Sun, Q., Wang, C., Wang, P., Hou, J. & Ao, Y. Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary. Environ. Sci. Pollut. Res. 21, 3460–3473. https://doi.org/10.1007/s11356-013-2287-4 (2014).
    CAS  Article  Google Scholar 

    18.
    Gao, L., Fan, D., Li, D. & Cai, J. Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China. Mar. Environ. Res. 69, 187–197. https://doi.org/10.1016/j.marenvres.2009.10.004 (2010).
    CAS  Article  PubMed  Google Scholar 

    19.
    Zhu, W.-Z., Zhang, H.-H., Zhang, J. & Yang, G.-P. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea. J. Mar. Syst. 180, 9–23. https://doi.org/10.1016/j.jmarsys.2017.12.003 (2018).
    Article  Google Scholar 

    20.
    Gao, X. & Song, J. Main Geochemical Characteristics and Key Biogeochemical Carbon Processes in the East China Sea. J. Coast. Res. 2006, 1330–1339, 1310 (2006).

    21.
    Chen, C.-T.A. Distributions of nutrients in the East China Sea and the South China Sea connection. J. Oceanogr. 64, 737–751. https://doi.org/10.1007/s10872-008-0062-9 (2008).
    CAS  Article  Google Scholar 

    22.
    Stedmon, C. A. & Markager, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 50, 686–697 (2005).
    ADS  CAS  Article  Google Scholar 

    23.
    Yamashita, Y., Jaffé, R., Maie, N. & Tanoue, E. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol. Oceanogr. 53, 1900–1908 (2008).
    ADS  CAS  Article  Google Scholar 

    24.
    Fellman, J. B., Hood, E. & Spencer, R. G. M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol. Oceanogr. 55, 2452–2462. https://doi.org/10.4319/lo.2010.55.6.2452 (2010).
    ADS  CAS  Article  Google Scholar 

    25.
    Carlson, C. A. & Ducklow, H. W. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations. Deep Sea Res. Part II 42, 639–656. https://doi.org/10.1016/0967-0645(95)00023-J (1995).
    ADS  CAS  Article  Google Scholar 

    26.
    Doval, M. D. & Hansell, D. A. Organic carbon and apparent oxygen utilization in the western South Pacific and the central Indian Oceans. Mar. Chem. 68, 249–264. https://doi.org/10.1016/S0304-4203(99)00081-X (2000).
    CAS  Article  Google Scholar 

    27.
    Hansell, D. A. & Carlson, C. A. Net community production of dissolved organic carbon. Glob. Biogeochem. Cycles 12, 443–453. https://doi.org/10.1029/98gb01928 (1998).
    ADS  CAS  Article  Google Scholar 

    28.
    Chen, Y., Yang, G.-P., Xia, Q.-Y. & Wu, G.-W. Enrichment and characterization of dissolved organic matter in the surface microlayer and subsurface water of the South Yellow Sea. Mar. Chem. 182, 1–13. https://doi.org/10.1016/j.marchem.2016.04.001 (2016).
    CAS  Article  Google Scholar 

    29.
    Zhao, L. & Gao, L. Dynamics of dissolved and particulate organic matter in the Changjiang (Yangtze River) Estuary and the adjacent East China Sea shelf. J. Mar. Syst. 198, 103188. https://doi.org/10.1016/j.jmarsys.2019.103188 (2019).
    Article  Google Scholar 

    30.
    Hansell, D. A. & Carlson, C. A. Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn. Deep Sea Res. Part II 48, 1649–1667. https://doi.org/10.1016/S0967-0645(00)00153-3 (2001).
    ADS  CAS  Article  Google Scholar 

    31.
    Koike, I. & Tupas, L. Total dissolved nitrogen in the Northern North Pacific assessed by a high-temperature combustion method. Mar. Chem. 41, 209–214. https://doi.org/10.1016/0304-4203(93)90121-4 (1993).
    CAS  Article  Google Scholar 

    32.
    Vidal, M., Duarte, C. M. & Agusti, S. Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean. Limnol. Oceanogr. 44, 106–115. https://doi.org/10.4319/lo.1999.44.1.0106 (1999).
    ADS  CAS  Article  Google Scholar 

    33.
    Chen, Y., Yang, G.-P., Liu, L., Zhang, P.-Y. & Leng, W.-S. Sources, behaviors and degradation of dissolved organic matter in the East China Sea. J. Mar. Syst. 155, 84–97. https://doi.org/10.1016/j.jmarsys.2015.11.005 (2016).
    Article  Google Scholar 

    34.
    Guo, J.-Q. et al. Composition and bioavailability of dissolved organic matter in different water masses of the East China sea. Estuar. Coast. Shelf Sci. 212, 189–202. https://doi.org/10.1016/j.ecss.2018.07.009 (2018).
    ADS  CAS  Article  Google Scholar 

    35.
    Kim, T.-H. & Kim, G. Factors controlling the C:N: P stoichiometry of dissolved organic matter in the N-limited, cyanobacteria-dominated East/Japan Sea. J. Mar. Syst. 115–116, 1–9. https://doi.org/10.1016/j.jmarsys.2013.01.002 (2013).
    Article  Google Scholar 

    36.
    Murphy, K. R., Stedmon, C. A., Wenig, P. & Bro, R. OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 6, 658–661. https://doi.org/10.1039/C3AY41935E (2014).
    CAS  Article  Google Scholar 

    37.
    Coble, P. G. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107, 402–418. https://doi.org/10.1021/cr050350+ (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Kim, J. & Kim, G. Inputs of humic fluorescent dissolved organic matter via submarine groundwater discharge to coastal waters off a volcanic island (Jeju, Korea). Sci. Rep. 7, 7921. https://doi.org/10.1038/s41598-017-08518-5 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Kim, T.-H., Kwon, E., Kim, I., Lee, S.-A. & Kim, G. Dissolved organic matter in the subterranean estuary of a volcanic island, Jeju: Importance of dissolved organic nitrogen fluxes to the ocean. J. Sea Res. 78, 18–24. https://doi.org/10.1016/j.seares.2012.12.009 (2013).
    ADS  CAS  Article  Google Scholar 

    40.
    Milliman, J. D. & Meade, R. H. World-wide delivery of river sediment to the Oceans. J. Geol. 91, 1–21. https://doi.org/10.1086/628741 (1983).
    ADS  Article  Google Scholar 

    41.
    Isobe, A. et al. Freshwater and temperature transports through the Tsushima-Korea Straits. J. Geophys. Res. C 107, 2–1 (2002).
    Article  Google Scholar 

    42.
    Liu, S. M. et al. Nutrient dynamics from the Changjiang (Yangtze River) estuary to the East China Sea. J. Mar. Syst. 154, 15–27. https://doi.org/10.1016/j.jmarsys.2015.05.010 (2016).
    Article  Google Scholar 

    43.
    Hopkinson, C. S., Vallino, J. J. & Nolin, A. Decomposition of dissolved organic matter from the continental margin. Deep Sea Res. Part II 49, 4461–4478. https://doi.org/10.1016/S0967-0645(02)00125-X (2002).
    ADS  CAS  Article  Google Scholar 

    44.
    Lee, H., Kim, G., Kim, J., Park, G. & Song, K.-H. Tracing the flow rate and mixing ratio of the Changjiang diluted water in the northwestern Pacific marginal seas using radium isotopes. Geophys. Res. Lett. https://doi.org/10.1002/2014GL060230 (2014).
    Article  Google Scholar 

    45.
    McKnight, D. M. et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46, 38–48 (2001).
    ADS  CAS  Article  Google Scholar 

    46.
    Bai, Y., Su, R., Han, X., Zhang, C. & Shi, X. Investigation of seasonal variability of CDOM fluorescence in the southern changjiang river estuary by EEM-PARAFAC. Acta Oceanol. Sin. 34, 1–12. https://doi.org/10.1007/s13131-015-0714-8 (2015).
    ADS  CAS  Article  Google Scholar 

    47.
    Birdwell, J. E. & Engel, A. S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org. Geochem. 41, 270–280. https://doi.org/10.1016/j.orggeochem.2009.11.002 (2010).
    CAS  Article  Google Scholar 

    48.
    Huguet, A. et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 40, 706–719. https://doi.org/10.1016/j.orggeochem.2009.03.002 (2009).
    CAS  Article  Google Scholar 

    49.
    Calleja, M. L., Al-Otaibi, N. & Morán, X. A. G. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci. Rep. 9, 4690. https://doi.org/10.1038/s41598-019-40753-w (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Helms, J. R. et al. Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Mar. Chem. 155, 81–91. https://doi.org/10.1016/j.marchem.2013.05.015 (2013).
    CAS  Article  Google Scholar 

    51.
    Chupakova, A. A., Chupakov, A. V., Neverova, N. V., Shirokova, L. S. & Pokrovsky, O. S. Photodegradation of river dissolved organic matter and trace metals in the largest European Arctic estuary. Sci. Total Environ. 622–623, 1343–1352. https://doi.org/10.1016/j.scitotenv.2017.12.030 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    52.
    Miranda, M. L. et al. Impact of UV radiation on DOM transformation on molecular level using FT-ICR-MS and PARAFAC. Spectrochim. Acta Part A 230, 118027. https://doi.org/10.1016/j.saa.2020.118027 (2020).
    CAS  Article  Google Scholar 

    53.
    Spencer, R. G. M. et al. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J. Geophys. Res. https://doi.org/10.1029/2009JG000968 (2009).
    Article  Google Scholar 

    54.
    Zhao, W., Lv, L. & Miao, H. Tracing the variability of dissolved organic matter fluorescence in the East China Sea in the red tide season with use of excitation-emission matrix spectroscopy and parallel factor analysis. J. Mar. Sci. 4, 1–6 (2013).
    CAS  Google Scholar 

    55.
    Zheng, H. et al. Seasonal variations of dissolved organic matter in the East China Sea using EEM-PARAFAC and implications for carbon and nutrient cycling. Sustainability 10, 1444 (2018).
    Article  Google Scholar 

    56.
    Gong, G.-C., Wen, Y.-H., Wang, B.-W. & Liu, G.-J. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res. Part II 50, 1219–1236. https://doi.org/10.1016/S0967-0645(03)00019-5 (2003).
    ADS  CAS  Article  Google Scholar 

    57.
    Malej, A. et al. Changes in particulate and dissolved organic matter in nutrient-enriched enclosures from an area influenced by mucilage: the northern Adriatic Sea. J. Plankton Res. 25, 949–966. https://doi.org/10.1093/plankt/25.8.949 (2003).
    CAS  Article  Google Scholar 

    58.
    Hung, C. C. et al. Fluxes of particulate organic carbon in the East China Sea in summer. Biogeosciences 10, 6469–6484. https://doi.org/10.5194/bg-10-6469-2013 (2013).
    ADS  CAS  Article  Google Scholar 

    59.
    Chen, B. et al. The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production. Acta Oceanol. Sin. 33, 166–177. https://doi.org/10.1007/s13131-014-0528-0 (2014).
    Article  Google Scholar 

    60.
    Kinsey, J. D., Corradino, G., Ziervogel, K., Schnetzer, A. & Osburn, C. L. Formation of chromophoric dissolved organic matter by bacterial degradation of phytoplankton-derived aggregates. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00430 (2018).
    Article  Google Scholar 

    61.
    Zepp, R. G., Sheldon, W. M. & Moran, M. A. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Mar. Chem. 89, 15–36. https://doi.org/10.1016/j.marchem.2004.02.006 (2004).
    CAS  Article  Google Scholar 

    62.
    Stedmon, C. A. & Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr. 6, 572–579 (2008).
    CAS  Article  Google Scholar 

    63.
    Kim, J. & Kim, G. Significant anaerobic production of fluorescent dissolved organic matter in the deep East Sea (Sea of Japan). Geophys. Res. Lett. 43, 7609–7616. https://doi.org/10.1002/2016GL069335 (2016).
    ADS  CAS  Article  Google Scholar 

    64.
    Cory, R. M. & McKnight, D. M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 39, 8142–8149 (2005).
    ADS  CAS  Article  Google Scholar 

    65.
    Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 36, 742–746. https://doi.org/10.1021/es0155276 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    66.
    Murphy, K. R., Stedmon, C. A., Waite, T. D. & Ruiz, G. M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 108, 40–58 (2008).
    CAS  Article  Google Scholar 

    67.
    Murphy, K. R., Bro, R. & Stedmon, C. A. In Aquatic Organic Matter Fluorescence (eds Coble, P. G. et al.) 339–375 (Cambridge University Press, Cambridge, 2014).
    Google Scholar 

    68.
    Walker, S. A., Amon, R. M. W. & Stedmon, C. A. Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of large Arctic rivers. J. Geophys. Res. 118, 1689–1702. https://doi.org/10.1002/2013JG002320 (2013).
    CAS  Article  Google Scholar 

    69.
    Catalá, T. S. et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nat. Commun. https://doi.org/10.1038/ncomms6986 (2015).
    Article  PubMed  Google Scholar 

    70.
    Dalmagro, H. J. et al. Streams with Riparian Forest buffers versus impoundments differ in discharge and DOM characteristics for pasture catchments in Southern Amazonia. Water 11, 390 (2019).
    CAS  Article  Google Scholar 

    71.
    Liu, C. et al. Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging. Environ. Pollut. 246, 207–216. https://doi.org/10.1016/j.envpol.2018.11.092 (2019).
    CAS  Article  PubMed  Google Scholar 

    72.
    Dainard, P. G., Guéguen, C., McDonald, N. & Williams, W. J. Photobleaching of fluorescent dissolved organic matter in Beaufort Sea and North Atlantic Subtropical Gyre. Mar. Chem. 177, 630–637. https://doi.org/10.1016/j.marchem.2015.10.004 (2015).
    CAS  Article  Google Scholar 

    73.
    Yamashita, Y. et al. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Res. Part II 57, 1478–1485. https://doi.org/10.1016/j.dsr2.2010.02.016 (2010).
    ADS  CAS  Article  Google Scholar 

    74.
    Peleato, N. M., Sidhu, B. S., Legge, R. L. & Andrews, R. C. Investigation of ozone and peroxone impacts on natural organic matter character and biofiltration performance using fluorescence spectroscopy. Chemosphere 172, 225–233. https://doi.org/10.1016/j.chemosphere.2016.12.118 (2017).
    ADS  CAS  Article  PubMed  Google Scholar  More

  • in

    Predation threats for a 24-h period activated the extension of axons in the brains of Xenopus tadpoles

    1.
    Spitze, K. Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139, 229–247 (1992).
    Google Scholar 
    2.
    Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: The roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).
    PubMed  Google Scholar 

    3.
    Relyea, R. A. et al. Phylogenetic patterns of trait and trait plasticity evolution: Insights from amphibian embryos. Evolution Int. J. Organic Evolut. 72, 663–678 (2018).
    Google Scholar 

    4.
    Reger, J., Lind, M. I., Robinson, M. R. & Beckerman, A. P. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evolut. 2, 100–107 (2018).
    Google Scholar 

    5.
    Nunes, A. L., Richter-Boix, A., Laurila, A. & Rebelo, R. Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study. Oecologia 171, 115–127 (2013).
    ADS  PubMed  Google Scholar 

    6.
    Johnston, C. A., Wilson Rankin, E. E. & Gruner, D. S. Foraging connections: Patterns of prey use linked to invasive predator diel movement. PLoS ONE 13, e0201883 (2018).
    PubMed  PubMed Central  Google Scholar 

    7.
    Hollander, J. & Bourdeau, P. E. Evidence of weaker phenotypic plasticity by prey to novel cues from non-native predators. Ecol. Evolut. 6, 5358–5365 (2016).
    Google Scholar 

    8.
    Relyea, R. A. Trait-mediated indirect effects in larval anurans: Reversing competition with the threat of predation. Ecology 81, 2278–2289 (2000).
    Google Scholar 

    9.
    Gallie, J. A., Mumme, R. L. & Wissinger, S. A. Experience has no effect on the development of chemosensory recognition of predators by tadpoles of the American toad, Bufo americanus. Herpetologica 57, 376–383 (2001).
    Google Scholar 

    10.
    McCollum, S. A. & Leimberger, J. D. Predator-induced morphological changes in an amphibian: Predation by dragonflies affects tadpole shape and color. Oecologia 109, 615–621 (1997).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).
    Google Scholar 

    12.
    Fraker, M. E. The effect of hunger on the strength and duration of the antipredator behavioral response of green frog (Rana clamitans) tadpoles. Behav. Ecol. Sociobiol. 62, 1201–1205 (2008).
    Google Scholar 

    13.
    VanBuskirk, J. & Relyea, R. A. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65, 301–328 (1998).
    Google Scholar 

    14.
    Kishida, O. & Nishimura, K. Multiple inducible defences against multiple predators in the anuran tadpole, Rana pirica. Evolut. Ecol. Res. 7, 619–631 (2005).
    Google Scholar 

    15.
    Van Buskirk, J., McCollum, S. A. & Werner, E. E. Natural selection for environmentally induced phenotypes in tadpoles. Evolution Int. J. Organic Evolut. 51, 1983–1992 (1997).
    Google Scholar 

    16.
    Kishida, O., Trussell, G. C., Mougi, A. & Nishimura, K. Evolutionary ecology of inducible morphological plasticity in predator-prey interaction: Toward the practical links with population ecology. Popul. Ecol. 52, 37–46 (2010).
    Google Scholar 

    17.
    Mori, T. et al. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles. Biol. Open 6, 1726–1733 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Middlemis Maher, J., Werner, E. E. & Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. Biol. Sci. 280, 20123075 (2013).
    PubMed  PubMed Central  Google Scholar 

    19.
    Adamec, R., Kent, P., Anisman, H., Shallow, T. & Merali, Z. Neural plasticity, neuropeptides and anxiety in animals—Implications for understanding and treating affective disorder following traumatic stress in humans. Neurosci. Biobehav. Rev. 23, 301–318 (1998).
    CAS  PubMed  Google Scholar 

    20.
    Figueiredo, H. F., Bodie, B. L., Tauchi, M., Dolgas, C. M. & Herman, J. P. Stress integration after acute and chronic predator stress: Differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144, 5249–5258 (2003).
    CAS  PubMed  Google Scholar 

    21.
    Jongren, M., Westander, J., Natt, D. & Jensen, P. Brain gene expression in relation to fearfulness in female red junglefowl (Gallus gallus). Genes Brain Behav. 9, 751–758 (2010).
    CAS  PubMed  Google Scholar 

    22.
    Sanogo, Y. O., Hankison, S., Band, M., Obregon, A. & Bell, A. M. Brain transcriptomic response of threespine sticklebacks to cues of a predator. Brain Behav. Evol. 77, 270–285 (2011).
    PubMed  PubMed Central  Google Scholar 

    23.
    Fraser, B. A., Weadick, C. J., Janowitz, I., Rodd, F. H. & Hughes, K. A. Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome. BMC Genomics 12, 202 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Drew, R. E. et al. Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics 13, 323 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Cinel, S. D. & Taylor, S. J. Prolonged bat call exposure induces a broad transcriptional response in the male fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae) brain. Front. Behav. Neurosci. 13, 36 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Miksys, S. & Tyndale, R. F. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab. Rev. 36, 313–333 (2004).
    CAS  PubMed  Google Scholar 

    27.
    Ekins, S. & Wrighton, S. A. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 31, 719–754 (1999).
    CAS  PubMed  Google Scholar 

    28.
    Hiroi, T. et al. Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology 142, 3901–3908 (2001).
    CAS  PubMed  Google Scholar 

    29.
    Seliskar, M. & Rozman, D. Mammalian cytochromes P450–importance of tissue specificity. Biochim. Biophys. Acta 1770, 458–466 (2007).
    CAS  PubMed  Google Scholar 

    30.
    Borkum, J. M. Migraine triggers and oxidative stress: A narrative review and synthesis. Headache 56, 12–35 (2016).
    PubMed  Google Scholar 

    31.
    Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. & Kretzschmar, H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112 (1997).
    CAS  PubMed  Google Scholar 

    32.
    Paitel, E., Fahraeus, R. & Checler, F. Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-dependent caspase 3-like activation. J. Biol. Chem. 278, 10061–10066 (2003).
    CAS  PubMed  Google Scholar 

    33.
    Kannan, K. & Jain, S. K. Oxidative stress and apoptosis. Pathophysiology 7, 153–163 (2000).
    CAS  PubMed  Google Scholar 

    34.
    Klingenberg, M. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta 1778, 1978–2021 (2008).
    CAS  PubMed  Google Scholar 

    35.
    Klumpe, I. et al. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress. J. Mol. Med. (Berlin, Germany) 94, 645–653 (2016).
    CAS  Google Scholar 

    36.
    Avila, D. V. et al. Phosphodiesterase 4b expression plays a major role in alcohol-induced neuro-inflammation. Neuropharmacology 125, 376–385 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    You, T. et al. Roflupram, a phosphodiesterase 4 inhibitor, suppresses inflammasome activation through autophagy in microglial cells. ACS Chem. Neurosci. 8, 2381–2392 (2017).
    CAS  PubMed  Google Scholar 

    38.
    Glover, E. M., Ressler, K. J. & Davis, M. Differing effects of systemically administered rapamycin on consolidation and reconsolidation of context vs cued fear memories. Learn. Mem. (Cold Spring Harbor, N.Y.) 17, 577–581 (2010).
    CAS  Google Scholar 

    39.
    Parsons, R. G., Gafford, G. M. & Helmstetter, F. J. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J. Neurosci. 26, 12977–12983 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Slipczuk, L. et al. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS ONE 4, e6007 (2009).
    ADS  PubMed  PubMed Central  Google Scholar 

    41.
    Fifield, K. et al. Time-dependent effects of rapamycin on consolidation of predator stress-induced hyperarousal. Behav. Brain Res. 286, 104–111 (2015).
    CAS  PubMed  Google Scholar 

    42.
    Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013).
    PubMed  PubMed Central  Google Scholar 

    43.
    Dubey, J., Ratnakaran, N. & Koushika, S. P. Neurodegeneration and microtubule dynamics: Death by a thousand cuts. Front. Cell. Neurosci. 9, 343 (2015).
    PubMed  PubMed Central  Google Scholar 

    44.
    Penazzi, L., Bakota, L. & Brandt, R. Microtubule dynamics in neuronal development, plasticity, and neurodegeneration. Int. Rev. Cell Mol. Biol. 321, 89–169 (2016).
    CAS  PubMed  Google Scholar 

    45.
    Govek, E. E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).
    CAS  PubMed  Google Scholar 

    46.
    Hoogenraad, C. C. & Bradke, F. Control of neuronal polarity and plasticity—A renaissance for microtubules?. Trends Cell Biol. 19, 669–676 (2009).
    CAS  PubMed  Google Scholar 

    47.
    Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).
    CAS  PubMed  Google Scholar 

    48.
    Vargas, J. P., Lopez, J. C. & Portavella, M. What are the functions of fish brain pallium?. Brain Res. Bull. 79, 436–440 (2009).
    PubMed  Google Scholar 

    49.
    Portavella, M. & Vargas, J. P. Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur. J. Neurosci. 21, 2800–2806 (2005).
    PubMed  Google Scholar 

    50.
    Fletcher, M. L. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses. Front. Syst. Neurosci. 6, 16 (2012).
    PubMed  PubMed Central  Google Scholar 

    51.
    Kass, M. D., Rosenthal, M. C., Pottackal, J. & McGann, J. P. Fear learning enhances neural responses to threat-predictive sensory stimuli. Science 342, 1389–1392 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Laberge, F. & Roth, G. Organization of the sensory input to the telencephalon in the fire-bellied toad, Bombina orientalis. J. Comp. Neurol. 502, 55–74 (2007).
    PubMed  Google Scholar 

    53.
    Laberge, F., Muhlenbrock-Lenter, S., Dicke, U. & Roth, G. Thalamo-telencephalic pathways in the fire-bellied toad Bombina orientalis. J. Comp. Neurol. 508, 806–823 (2008).
    PubMed  Google Scholar 

    54.
    54Nieuwenhuys, R., Donkelaar, H. J. t. & Nicholson, C. The Central Nervous System of Vertebrates. Vol. 3 (Springer, New York, 1998).

    55.
    Grossman, E. N., Giurumescu, C. A. & Chisholm, A. D. Mechanisms of ephrin receptor protein kinase-independent signaling in amphid axon guidance in Caenorhabditis elegans. Genetics 195, 899–913 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Borasio, G. D. et al. ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 2, 1087–1096 (1989).
    CAS  PubMed  Google Scholar 

    57.
    Sloniowski, S. & Ethell, I. M. Looking forward to EphB signaling in synapses. Semin. Cell Dev. Biol. 23, 75–82 (2012).
    CAS  PubMed  Google Scholar 

    58.
    Cruz, E. et al. Infralimbic EphB2 modulates fear extinction in adolescent rats. J. Neurosci. 35, 12394–12403 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).
    CAS  PubMed  Google Scholar 

    60.
    Watkins, J. C. & Evans, R. H. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165–204 (1981).
    CAS  PubMed  Google Scholar 

    61.
    61Garcia-Nafria, J., Herguedas, B., Watson, J. F. & Greger, I. H. The dynamic AMPA receptor extracellular region: A platform for synaptic protein interactions. J. Physiol. (2016).

    62.
    Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12, 5447–5454 (1992).
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Barrett, T. D. et al. Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)- 1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor. Mol. Pharmacol. 79, 910–920 (2011).
    CAS  PubMed  Google Scholar 

    64.
    Sugiyama, M. et al. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae). Biol. Open 1, 1035–1042 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66, 123–143 (2003).
    PubMed  Google Scholar 

    66.
    Komatsu, Y., Kishigami, S. & Mishina, Y. In situ hybridization methods for mouse whole mounts and tissue sections with and without additional beta-galactosidase staining. Methods Mol. Biol. (Clifton, N.Y.) 1092, 1–15 (2014).
    CAS  Google Scholar 

    67.
    Mori, T. et al. Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole, Rana pirica, using cDNA subtraction and microarray analysis. Biochem. Biophys. Res. Commun. 330, 1138–1145 (2005).
    CAS  PubMed  Google Scholar  More