Rapid winter warming could disrupt coastal marine fish community structure
1.
Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
CAS Google Scholar
2.
Albouy, C. et al. Projected climate change and the changing biogeography of coastal Mediterranean fishes. J. Biogeogr. 40, 534–547 (2013).
Google Scholar
3.
Hoegh-Guldberg, O. et al. Impacts of 1.5 °C global warming on natural and human systems. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 212–251 (WMO, 2018).
4.
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
CAS Google Scholar
5.
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Google Scholar
6.
EUROSTAT EU Fishery Economic Report 2010. European Union Mediterranean and Black Sea Fishing Fleet (FIRMS, 2010).
7.
Abulafia, D. The Great Sea: a Human History of the Mediterranean (Oxford Univ. Press, 2011).
8.
Giakoumi, S. et al. Ecoregion-based conservation planning in the Mediterranean: dealing with large-scale heterogeneity. PLoS ONE 8, e76449 (2013).
CAS Google Scholar
9.
Katsanevakis, S. et al. Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Front. Mar. Sci. 1, 32 (2014).
Google Scholar
10.
Pinardi, N., Arneri, E., Crise, A., Ravaioli, M. & Zavatarelli, M. in The Sea Vol. 14 (eds Robinson, A. & Brink, K.) 1243–1330 (Harvard Univ. Press, 2006).
11.
Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Perez, T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).
Google Scholar
12.
Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).
Google Scholar
13.
Bintanja, R. & van der Linden, E. C. The changing seasonal climate in the Arctic. Sci. Rep. 3, 1556 (2013).
CAS Google Scholar
14.
Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).
Google Scholar
15.
Thibeault, J. M. & Seth, A. Changing climate extremes in the Northeast United States: observations and projections from CMIP5. Clim. Change 127, 273–287 (2014).
Google Scholar
16.
Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. Lond. B Biol. Sci. 2010, 1259–1266 (1685).
Google Scholar
17.
Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).
Google Scholar
18.
Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).
Google Scholar
19.
Hiddink, J. G. & Ter Hofstede, R. Climate induced increases in species richness of marine fishes. Glob. Change Biol. 14, 453–460 (2008).
Google Scholar
20.
Rutterford, L. A. et al. Future fish distributions constrained by depth in warming seas. Nat. Clim. Change 5, 569–573 (2015).
Google Scholar
21.
Colloca, F., Scarcella, G. & Libralato, S. Recent trends and impacts of fisheries exploitation on Mediterranean stocks and ecosystems. Front. Mar. Sci. 4, 244 (2017).
Google Scholar
22.
Barange, M. et al. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. FAO Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).
23.
IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).
24.
Rice, J. C. & Garcia, S. M. Fisheries, food security, climate change, and biodiversity: characteristics of the sector and perspectives on emerging issues. ICES J. Mar. Sci. 68, 1343–1353 (2011).
Google Scholar
25.
Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).
CAS Google Scholar
26.
Ben Rais Lasram, F. et al. The Mediterranean Sea as a ‘cul‐de‐sac’ for endemic fishes facing climate change. Glob. Change Biol. 16, 3233–3245 (2010).
Google Scholar
27.
Yeager, L. A., Deith, M. C., McPherson, J. M., Williams, I. D. & Baum, J. K. Scale dependence of environmental controls on the functional diversity of coral reef fish communities. Glob. Ecol. Biogeogr. 26, 1177–1189 (2017).
Google Scholar
28.
Zenetos, A. et al. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 6, 63–118 (2005).
Google Scholar
29.
The State of Mediterranean and Black Sea Fisheries: 2018 (FAO & General Fisheries Commission for the Mediterranean, 2018).
30.
Scientific Technical and Economic Committee for Fisheries (STECF) The 2015 Annual Economic Report on the EU Fishing Fleet (STECF-15-07) (Publications Office of the European Union, 2015).
31.
Albouy, C. et al. FishMed: traits, phylogeny, current and projected species distribution of Mediterranean fishes, and environmental data. Ecology 96, 2312–2313 (2015).
Google Scholar
32.
Beuvier, J. et al. Modeling the Mediterranean Sea interannual variability during 1961–2000: focus on the Eastern Mediterranean Transient. J. Geophys. Res. Oceans 115, C08017 (2010).
Google Scholar
33.
Arnell, N. W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Change 14, 31–52 (2004).
Google Scholar
34.
Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dynam. 45, 2775–2802 (2015).
Google Scholar
35.
Whitehead, P. J. P., Bauchot, M., Hureau, J., Nielsen, J. & Tortonese, E. Fishes of the North-Eastern Atlantic and the Mediterranean Vol. 1 (UNESCO, 1984).
36.
Gonçalves, A. R., Von Zuben, F. J. & Banerjee, A. Multi-label structure learning with Ising model selection. In Proc. Twenty-Fourth International Joint Conference on Artificial Intelligence 3525–3531 (AAAI Press, 2015).
37.
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. & Herrera, F. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man. Cybern. C Appl. Rev. 42, 463–484 (2012).
Google Scholar
38.
Gravel, D. et al. Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography 42, 401–415 (2019).
Google Scholar
39.
Dayton, P. K. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971).
Google Scholar
40.
Dormann, C. F. et al. Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Glob. Ecol. Biogeogr. 27, 1004–1016 (2018).
Google Scholar
41.
Dormann, C. F., Fründ, J. & Schaefer, H. M. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584 (2017).
Google Scholar
42.
Golding, N., Nunn, M. A. & Purse, B. V. Identifying biotic interactions which drive the spatial distribution of a mosquito community. Parasites Vectors 8, 367 (2015).
Google Scholar
43.
Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).
Google Scholar
44.
Thorson, J. T. et al. Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. Glob. Ecol. Biog. 25, 1144–1158 (2016).
Google Scholar
45.
Azaele, S., Muneepeerakul, R., Rinaldo, A. & Rodriguez-Iturbe, I. Inferring plant ecosystem organization from species occurrences. J. Theor. Biol. 262, 323–329 (2010).
CAS Google Scholar
46.
Harris, D. J. Inferring species interactions from co‐occurrence data with Markov networks. Ecology 97, 3308–3314 (2016).
Google Scholar
47.
Cheng, J., Levina, E., Wang, P. & Zhu, J. A sparse Ising model with covariates. Biometrics 70, 943–953 (2014).
Google Scholar
48.
Lindberg, O. Markov Random Fields in Cancer Mutation Dependencies. MSc Thesis, Univ. Turku (2016).
49.
Clark, N. J., Wells, K. & Lindberg, O. Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology 99, 1277–1283 (2018).
Google Scholar
50.
Lee, J. D. & Hastie, T. J. Learning the structure of mixed graphical models. J. Comput. Graph. Stat. 24, 230–253 (2015).
Google Scholar
51.
Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B Stat. Methodol. 65, 95–114 (2003).
Google Scholar
52.
Kammann, E. & Wand, M. P. Geoadditive models. J. R. Stat. Soc. C Appl. Stat. 52, 1–18 (2003).
Google Scholar
53.
McInerny, G. J. & Purves, D. W. Fine‐scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. Methods Ecol. Evol. 2, 248–257 (2011).
Google Scholar
54.
Givan, O., Parravicini, V., Kulbicki, M. & Belmaker, J. Trait structure reveals the processes underlying fish establishment in the Mediterranean. Glob. Ecol. Biogeogr. 26, 142–153 (2017).
Google Scholar
55.
Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).
CAS Google Scholar
56.
Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2015).
Google Scholar
57.
Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).
CAS Google Scholar
58.
Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).
CAS Google Scholar
59.
Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1965, 1–9 (2006).
Google Scholar
60.
Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2017).
Google Scholar
61.
Miller, P. J., Lubke, G. H., McArtor, D. B. & Bergeman, C. S. Finding structure in data using multivariate tree boosting. Psychol. Methods 21, 583–602 (2016).
Google Scholar
62.
R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
63.
Clark, N. J., Wells, K. & Lindberg, O. MRFcov: Markov random fields with additional covariates. R package version 1.0 https://github.com/nicholasjclark/MRFcov (2018).
64.
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. Methodol. 73, 3–36 (2011).
Google Scholar
65.
Wickham, H. & Francois, R. dplyr: A grammar of data manipulation. R package version 0.7.2 https://CRAN.R-project.org/package=dplyr (2017).
66.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
67.
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
CAS Google Scholar More
