Global patterns of parasite diversity in cephalopods
1.
Boyle, P. & Rodhouse, P. Cephalopods: ecology and fisheries (Wiley, Hoboken, 2008).
Google Scholar
2.
Iglesias, J., Fuentes, L. & Villanueva, R. Cephalopod culture (Springer, Dordrecht, 2014).
Google Scholar
3.
Huffard, C. L. Cephalopod neurobiology: an introduction for biologists working in other model systems. Invertebr. Neurosci. 13, 11–18 (2013).
Google Scholar
4.
Marini, G., De Sio, F., Ponte, G. & Fiorito, G. Behavioral analysis of learning and memory in cephalopods. In Learning and memory: a comprehensive reference 2nd edn (ed. Byrne, J. H.) 441–462 (Academic Press, Amsterdam, 2017).
Google Scholar
5.
Moltschaniwskyj, N. A. et al. Ethical and welfare considerations when using cephalopods as experimental animals. Rev. Fish Biol. Fish. 17, 455–476 (2007).
Google Scholar
6.
Xavier, J. C. et al. Future challenges in cephalopod research. J. Mar. Biol. Assoc. UK 95, 999–1015 (2015).
Google Scholar
7.
Clarke, M. R. The role of cephalopods in the world’s oceans: an introduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 979–983 (1996).
ADS Google Scholar
8.
Gestal, C., Abollo, E. & Pascual, S. Observations on associated histopathology with Aggregata octopiana infection (Protista: Apicomplexa) in Octopus vulgaris. Dis. Aquat. Org. 50, 45–49 (2002).
CAS PubMed Google Scholar
9.
Tedesco, P. et al. Morphological and molecular characterization of Aggregata spp. Frenzel 1885 (Apicomplexa: Aggregatidae) in Octopus vulgaris Cuvier 1797 (Mollusca: Cephalopoda) from Central Mediterranean. Protist 168, 636–648 (2017).
PubMed Google Scholar
10.
Giribet, G. & Edgecombe, G. D. The invertebrate tree of life (Princeton University Press, Princeton, 2020).
Google Scholar
11.
Hochberg, F. G. Diseases of Mollusca Cephalopoda—diseases caused by protistans and metazoans. In Diseases of marine animals Vol. III (ed. Kinne, O.) 47–202 (Biologische Anstalt Helgoland, Hamburg, 1990).
Google Scholar
12.
Humes, A. G. & Voight, J. R. Cholidya polypi (Copepoda: Harpacticoida: Tisbidae), a parasite of deep sea octopuses in the north Atlantic and northeastern Pacific. Ophelia 46, 65–81 (1997).
Google Scholar
13.
Combes, C. Parasitism: the ecology and evolution of intimate interactions (University of Chicago Press, Chicago, 2001).
Google Scholar
14.
Lindenfors, P. et al. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob. Ecol. Biogeogr. 1, 1–14 (2007).
Google Scholar
15.
Kuhn, T., Cunze, S., Kochmann, J. & Klimpel, S. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 6, 30246. https://doi.org/10.1038/srep30246 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
16.
Pascual, S., González, A. F. & Guerra, A. The recruitment of gill-infesting copepods as a categorical predictor of size-at-age data in squid populations. ICES J. Mar. Sci. 62, 629–633 (2005).
Google Scholar
17.
González, A. F., Pascual, S., Gestal, C., Abollo, E. & Guerra, A. What makes a cephalopod a suitable host for parasite? The case of Galician waters. Fish. Res. 60, 177–183 (2003).
Google Scholar
18.
Bower, J. R. & Miyahara, K. The diamond squid (Thysanoteuthis rhombus): a review of the fishery and recent research in Japan. Fish. Res. 73, 1–11 (2005).
Google Scholar
19.
Klimpel, S. & Palm, H. W. Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? In Progress in parasitology (ed. Mehlhorn, H.) 201–222 (Springer, Berlin, 2011).
Google Scholar
20.
Lafferty, K. D. & Kuris, A. M. How environmental stress affects the impact of parasites. Limnol. Oceanogr. 44, 925–931 (1999).
ADS Google Scholar
21.
Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 99, 93–263 (2018).
PubMed Google Scholar
22.
Poulin, R. & Leung, T. L. F. Taxonomic resolution in parasite community studies: are things getting worse?. Parasitology 137, 1967–1973 (2010).
CAS PubMed Google Scholar
23.
Bartoli, P., Jousson, O. & Russell-Pinto, F. The life cycle of Monorchis parvus (Digenea: Monorchiidae) demonstrated by developmental and molecular data. J. Parasitol. 86, 479–489 (2000).
CAS PubMed Google Scholar
24.
Caira, J. N. Synergy advances parasite taxonomy and systematics: an example from elasmobranch tapeworms. Parasitology 138, 1675–1687 (2011).
PubMed Google Scholar
25.
Mattiucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). J. Parasitol. 100, 199–215 (2014).
CAS PubMed Google Scholar
26.
Roumbedakis, K., Drábková, M., Tyml, T. & di Cristo, C. A perspective around cephalopods and their parasites, and suggestions on how to increase knowledge in the field. Front. Physiol. 9, 1573. https://doi.org/10.3389/fphys.2018.01573 (2018).
Article PubMed PubMed Central Google Scholar
27.
Redi, F. Osservazioni di Francesco Redi academico della Crusca intorno agli animali viventi che si trovano negli animali viventi (Firenze, 1684).
28.
Lopez-Gonzalez, P. J. et al. Description of Genesis vulcanoctopusi gen. et sp. nov. (Copepoda: Tisbidae) parasitic on a hydrothermal vent octopod and a reinterpretation of the life cycle of cholidyinid harpacticoids. Cah. Biol. Mar. 41, 241–253 (2000).
Google Scholar
29.
Avdeev, G. V. Amplipedicola pectinatus gen. et sp. n. (Copepoda, Harpacticoida, Tisbidae), a parasite of octopuses in the Bering Sea. Crustaceana 83, 1363–1370 (2010).
Google Scholar
30.
Ho, J. S. & Kim, I. H. New species of Doridicola (Copepoda, Rhynchomolgidae) from Thailand, with a cladistic analysis of the genus. J. Crustacean Biol. 21, 78–89 (2001).
Google Scholar
31.
Mehrdana, F. et al. Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Vet. Parasitol. 205, 581–587 (2014).
PubMed Google Scholar
32.
Ghadam, M., Banaii, M., Mohammed, E. T., Suthar, J. & Shamsi, S. Morphological and molecular characterization of selected species of Hysterothylacium (Nematoda: Raphidascarididae) from marine fish in Iraqi waters. J. Helminthol. 92, 116–124 (2018).
CAS PubMed Google Scholar
33.
Rosa, R. et al. Global patterns of species richness in coastal cephalopods. Front. Mar. Sci. 6, 469 (2019).
Google Scholar
34.
Furuya, H. & Tsuneki, K. Biology of dicyemid mesozoans. Zool. Sci. 20, 519–533 (2003).
PubMed Google Scholar
35.
Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Dicyemid fauna composition and infection patterns in relation to cephalopod host biology and ecology. Folia Parasitol. 61, 301–310 (2014).
PubMed Google Scholar
36.
Bender, M. G. et al. Isolation drives taxonomic and functional nestedness in tropical reef fish faunas. Ecography 40, 425–435 (2017).
Google Scholar
37.
Bevilacqua, S. & Terlizzi, A. Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-diversity at varying depth in marine benthos. Divers. Distrib. https://doi.org/10.1111/ddi.13025 (2020) ((in press)).
Article Google Scholar
38.
Poulin, R., Besson, A., Bélanger Morin, M. & Randhawa, H. S. Missing links: testing the completeness of host-parasite checklists. Parasitology 143, 114–122 (2016).
PubMed Google Scholar
39.
Poulin, R. How many parasite species are there: are we close to answers?. Int. J. Parasitol. 26, 1127–1129 (1996).
CAS PubMed Google Scholar
40.
Smith, J. A. et al. Cephalopod research and EU Directive 2010/63/EU: requirements, impacts and ethical review. J. Exp. Mar. Biol. Ecol. 447, 31–45 (2013).
Google Scholar
41.
Walther, B. A., Cotgreave, P., Price, R. D., Gregory, R. D. & Clayton, D. H. Sampling effort and parasite species richness. Parasitol. Today 11, 306–310 (1995).
CAS PubMed Google Scholar
42.
Drábková, M. et al. Population co-divergence in common cuttlefish (Sepia officinalis) and its dicyemid parasite in the Mediterranean Sea. Sci. Rep. 9, 14300. https://doi.org/10.1038/s41598-019-50555-92019 (2019).
ADS Article PubMed PubMed Central Google Scholar
43.
Jereb, P., Vecchione, M. & Roper, C. F. E. Family Loliginidae. In Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Myopsid and Oegopsid squids, no. 4 Vol. 2 (eds Jereb, P. & Roper, C. F. E.) 38–117 (FAO Species Catalogue for Fishery Purposes, FAO, Rome, 2010).
Google Scholar
44.
Roper, C. F. E., Nigmatullin, C. & Jereb, P. Family Ommastrephidae. In Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Myopsid and Oegopsid squids, no. 4 Vol. 2 (eds Jereb, P. & Roper, C. F. E.) 269–347 (FAO Species Catalogue for Fishery Purposes, FAO, Rome, 2010).
Google Scholar
45.
Bordes, F., Morand, S., Kelt, D. A. & Van Vuren, D. H. Home range and parasite diversity in mammals. Am. Nat. 173, 467–474 (2009).
PubMed Google Scholar
46.
Feliu, C. et al. A comparative analysis of parasite species richness of Iberian rodents. Parasitology 115, 453–466 (1997).
PubMed Google Scholar
47.
Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 597–614 (2003).
PubMed Google Scholar
48.
Ambrose, R. F. & Nelson, B. V. Predation by Octopus vulgaris in the Mediterranean. Mar. Ecol. 4, 251–261 (1983).
ADS Google Scholar
49.
Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Using the giant Australian cuttlefish (Sepia apama) mass breeding aggregation to explore the life cycle of dicyemid parasites. Acta Parasitol. 58, 599–602 (2013).
PubMed Google Scholar
50.
Furuya, H. & Souidenne, D. Dicyemids. In Handbook of pathogens and diseases in cephalopods (eds Gestal, C. et al.) 159–168 (Springer, Cham, 2019).
Google Scholar
51.
Ruhnke, T. R. Tapeworms of Elasmobranchs (Part III). A monograph on the Phyllobothriidae (Platyhelminthes, Cestoda). Bull. Univ. Nebr. State Mus. 25, 1–208 (2011).
Google Scholar
52.
Randhawa, H. S. & Poulin, R. Tapeworm discovery in elasmobranch fishes: quantifying patterns and identifying their correlates. Mar. Freshw. Res. 71, 78–88 (2020).
Google Scholar
53.
Cake, E. W. A key to larval cestodes of shallow-water, benthic mollusks of the northern Gulf of Mexico. Proc. Helminthol. Soc. Wash. 43, 160–171 (1976).
Google Scholar
54.
Agusti, C. et al. Morphological and molecular characterization of tetraphyllidean merocercoids (Platyhelminthes: Cestoda) of striped dolphins (Stenella coeruleoalba) from the western Mediterranean. Parasitology 130, 461–474 (2005).
CAS PubMed Google Scholar
55.
Jensen, K. & Bullard, S. A. Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life cycles. Int. J. Parasitol. 40, 889–910 (2010).
CAS PubMed Google Scholar
56.
Mills, K. E. & Bever, J. D. Maintenance of diversity within plant communities: soil pathogens as agents of negative feedback. Ecology 79, 1595–1601 (1998).
Google Scholar
57.
Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).
PubMed PubMed Central Google Scholar
58.
Johnson, P. T. et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).
PubMed Google Scholar
59.
Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
Google Scholar
60.
Clarke, K. R. & Warwick, R. M. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 216, 265–278 (2001).
ADS Google Scholar
61.
Anu, A. & Sabu, T. K. Biodiversity analysis of forest litter ant assemblages in the Wayanad region of Western Ghats using taxonomic and conventional diversity measures. J. Insect Sci. 7, 06. https://doi.org/10.1673/031.007.0601 (2007).
Article Google Scholar
62.
Bevilacqua, S., Fraschetti, S., Musco, L., Guarnieri, G. & Terlizzi, A. Low sensitiveness of taxonomic distinctness indices to human impacts: evidences across marine benthic organisms and habitat types. Ecol. Indic. 11, 448–455 (2011).
Google Scholar
63.
Guo, C. & Xu, H. Use of functional distinctness of periphytic ciliates for monitoring water quality in coastal ecosystems. Ecol. Indic. 96, 213–218 (2019).
CAS Google Scholar
64.
Luque, J. L., Mouillot, D. & Poulin, R. Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology 128, 671–682 (2004).
CAS PubMed Google Scholar
65.
Quiroz-Martínez, B. & Salgado-Maldonado, G. Taxonomic distinctness and richness of helminth parasite assemblages of freshwater fishes in Mexican hydrological basins. PLoS ONE 8, e74419. https://doi.org/10.1371/journal.pone.0074419 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
66.
Leonard, D. R. P., Clarke, K. R., Somerfield, P. J. & Warwick, R. M. The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments. J. Environ. Manag. 78, 52–62 (2006).
CAS Google Scholar
67.
Bevilacqua, S., Sandulli, R., Plicanti, A. & Terlizzi, A. Taxonomic distinctness in Mediterranean marine nematodes and its relevance for environmental impact assessment. Mar. Pollut. Bull. 64, 1409–1416 (2012).
CAS PubMed Google Scholar
68.
Price, A. R. G., Vincent, L. P. A., Venkatachalam, A. J., Bolton, J. J. & Basson, P. W. Concordance between different measures of biodiversity in Indian Ocean macroalgae. Mar. Ecol. Prog. Ser. 319, 85–91 (2006).
ADS Google Scholar
69.
Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
Google Scholar
70.
Clarke, K. R. & Warwick, R. M. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Mar. Ecol. Prog. Ser. 184, 21–29 (1999).
ADS Google Scholar
71.
Baselga, A. The relationship between species replacement, dissimilarity derived from turnover, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).
Google Scholar
72.
Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered Nautiluses and Sepioids (Nautilidae, Sepiidae, Sepiadariidae, Idiosepiidae and Spirulidae) (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 1, Rome, FAO, 2005).
73.
Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and Oegopsid Squids (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 2, Rome, FAO, 2010).
74.
Jereb, P., Roper, C. F. E., Norman, M.D. & Julian, K. F. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 3. Octopods and Vampire Squids (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 3, Rome, FAO 2014).
75.
Cephbase (2018). https://cephbase.eol.org/. Accessed December 2018.
76.
Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).
Google Scholar
77.
Clarke, K. R. & Gorley, R. N. PRIMER v6: user manual/tutorial (PRIMER-E, Plymouth, 2006).
Google Scholar
78.
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).
79.
Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
Google Scholar
80.
Colwell R. K. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9 and earlier. User’s guide and application. https://viceroy.colorado.edu/estimates (2013). More
