More stories

  • in

    Global patterns of parasite diversity in cephalopods

    1.
    Boyle, P. & Rodhouse, P. Cephalopods: ecology and fisheries (Wiley, Hoboken, 2008).
    Google Scholar 
    2.
    Iglesias, J., Fuentes, L. & Villanueva, R. Cephalopod culture (Springer, Dordrecht, 2014).
    Google Scholar 

    3.
    Huffard, C. L. Cephalopod neurobiology: an introduction for biologists working in other model systems. Invertebr. Neurosci. 13, 11–18 (2013).
    Google Scholar 

    4.
    Marini, G., De Sio, F., Ponte, G. & Fiorito, G. Behavioral analysis of learning and memory in cephalopods. In Learning and memory: a comprehensive reference 2nd edn (ed. Byrne, J. H.) 441–462 (Academic Press, Amsterdam, 2017).
    Google Scholar 

    5.
    Moltschaniwskyj, N. A. et al. Ethical and welfare considerations when using cephalopods as experimental animals. Rev. Fish Biol. Fish. 17, 455–476 (2007).
    Google Scholar 

    6.
    Xavier, J. C. et al. Future challenges in cephalopod research. J. Mar. Biol. Assoc. UK 95, 999–1015 (2015).
    Google Scholar 

    7.
    Clarke, M. R. The role of cephalopods in the world’s oceans: an introduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 979–983 (1996).
    ADS  Google Scholar 

    8.
    Gestal, C., Abollo, E. & Pascual, S. Observations on associated histopathology with Aggregata octopiana infection (Protista: Apicomplexa) in Octopus vulgaris. Dis. Aquat. Org. 50, 45–49 (2002).
    CAS  PubMed  Google Scholar 

    9.
    Tedesco, P. et al. Morphological and molecular characterization of Aggregata spp. Frenzel 1885 (Apicomplexa: Aggregatidae) in Octopus vulgaris Cuvier 1797 (Mollusca: Cephalopoda) from Central Mediterranean. Protist 168, 636–648 (2017).
    PubMed  Google Scholar 

    10.
    Giribet, G. & Edgecombe, G. D. The invertebrate tree of life (Princeton University Press, Princeton, 2020).
    Google Scholar 

    11.
    Hochberg, F. G. Diseases of Mollusca Cephalopoda—diseases caused by protistans and metazoans. In Diseases of marine animals Vol. III (ed. Kinne, O.) 47–202 (Biologische Anstalt Helgoland, Hamburg, 1990).
    Google Scholar 

    12.
    Humes, A. G. & Voight, J. R. Cholidya polypi (Copepoda: Harpacticoida: Tisbidae), a parasite of deep sea octopuses in the north Atlantic and northeastern Pacific. Ophelia 46, 65–81 (1997).
    Google Scholar 

    13.
    Combes, C. Parasitism: the ecology and evolution of intimate interactions (University of Chicago Press, Chicago, 2001).
    Google Scholar 

    14.
    Lindenfors, P. et al. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob. Ecol. Biogeogr. 1, 1–14 (2007).
    Google Scholar 

    15.
    Kuhn, T., Cunze, S., Kochmann, J. & Klimpel, S. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 6, 30246. https://doi.org/10.1038/srep30246 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Pascual, S., González, A. F. & Guerra, A. The recruitment of gill-infesting copepods as a categorical predictor of size-at-age data in squid populations. ICES J. Mar. Sci. 62, 629–633 (2005).
    Google Scholar 

    17.
    González, A. F., Pascual, S., Gestal, C., Abollo, E. & Guerra, A. What makes a cephalopod a suitable host for parasite? The case of Galician waters. Fish. Res. 60, 177–183 (2003).
    Google Scholar 

    18.
    Bower, J. R. & Miyahara, K. The diamond squid (Thysanoteuthis rhombus): a review of the fishery and recent research in Japan. Fish. Res. 73, 1–11 (2005).
    Google Scholar 

    19.
    Klimpel, S. & Palm, H. W. Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? In Progress in parasitology (ed. Mehlhorn, H.) 201–222 (Springer, Berlin, 2011).
    Google Scholar 

    20.
    Lafferty, K. D. & Kuris, A. M. How environmental stress affects the impact of parasites. Limnol. Oceanogr. 44, 925–931 (1999).
    ADS  Google Scholar 

    21.
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 99, 93–263 (2018).
    PubMed  Google Scholar 

    22.
    Poulin, R. & Leung, T. L. F. Taxonomic resolution in parasite community studies: are things getting worse?. Parasitology 137, 1967–1973 (2010).
    CAS  PubMed  Google Scholar 

    23.
    Bartoli, P., Jousson, O. & Russell-Pinto, F. The life cycle of Monorchis parvus (Digenea: Monorchiidae) demonstrated by developmental and molecular data. J. Parasitol. 86, 479–489 (2000).
    CAS  PubMed  Google Scholar 

    24.
    Caira, J. N. Synergy advances parasite taxonomy and systematics: an example from elasmobranch tapeworms. Parasitology 138, 1675–1687 (2011).
    PubMed  Google Scholar 

    25.
    Mattiucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). J. Parasitol. 100, 199–215 (2014).
    CAS  PubMed  Google Scholar 

    26.
    Roumbedakis, K., Drábková, M., Tyml, T. & di Cristo, C. A perspective around cephalopods and their parasites, and suggestions on how to increase knowledge in the field. Front. Physiol. 9, 1573. https://doi.org/10.3389/fphys.2018.01573 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Redi, F. Osservazioni di Francesco Redi academico della Crusca intorno agli animali viventi che si trovano negli animali viventi (Firenze, 1684).

    28.
    Lopez-Gonzalez, P. J. et al. Description of Genesis vulcanoctopusi gen. et sp. nov. (Copepoda: Tisbidae) parasitic on a hydrothermal vent octopod and a reinterpretation of the life cycle of cholidyinid harpacticoids. Cah. Biol. Mar. 41, 241–253 (2000).
    Google Scholar 

    29.
    Avdeev, G. V. Amplipedicola pectinatus gen. et sp. n. (Copepoda, Harpacticoida, Tisbidae), a parasite of octopuses in the Bering Sea. Crustaceana 83, 1363–1370 (2010).
    Google Scholar 

    30.
    Ho, J. S. & Kim, I. H. New species of Doridicola (Copepoda, Rhynchomolgidae) from Thailand, with a cladistic analysis of the genus. J. Crustacean Biol. 21, 78–89 (2001).
    Google Scholar 

    31.
    Mehrdana, F. et al. Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Vet. Parasitol. 205, 581–587 (2014).
    PubMed  Google Scholar 

    32.
    Ghadam, M., Banaii, M., Mohammed, E. T., Suthar, J. & Shamsi, S. Morphological and molecular characterization of selected species of Hysterothylacium (Nematoda: Raphidascarididae) from marine fish in Iraqi waters. J. Helminthol. 92, 116–124 (2018).
    CAS  PubMed  Google Scholar 

    33.
    Rosa, R. et al. Global patterns of species richness in coastal cephalopods. Front. Mar. Sci. 6, 469 (2019).
    Google Scholar 

    34.
    Furuya, H. & Tsuneki, K. Biology of dicyemid mesozoans. Zool. Sci. 20, 519–533 (2003).
    PubMed  Google Scholar 

    35.
    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Dicyemid fauna composition and infection patterns in relation to cephalopod host biology and ecology. Folia Parasitol. 61, 301–310 (2014).
    PubMed  Google Scholar 

    36.
    Bender, M. G. et al. Isolation drives taxonomic and functional nestedness in tropical reef fish faunas. Ecography 40, 425–435 (2017).
    Google Scholar 

    37.
    Bevilacqua, S. & Terlizzi, A. Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-diversity at varying depth in marine benthos. Divers. Distrib. https://doi.org/10.1111/ddi.13025 (2020) ((in press)).
    Article  Google Scholar 

    38.
    Poulin, R., Besson, A., Bélanger Morin, M. & Randhawa, H. S. Missing links: testing the completeness of host-parasite checklists. Parasitology 143, 114–122 (2016).
    PubMed  Google Scholar 

    39.
    Poulin, R. How many parasite species are there: are we close to answers?. Int. J. Parasitol. 26, 1127–1129 (1996).
    CAS  PubMed  Google Scholar 

    40.
    Smith, J. A. et al. Cephalopod research and EU Directive 2010/63/EU: requirements, impacts and ethical review. J. Exp. Mar. Biol. Ecol. 447, 31–45 (2013).
    Google Scholar 

    41.
    Walther, B. A., Cotgreave, P., Price, R. D., Gregory, R. D. & Clayton, D. H. Sampling effort and parasite species richness. Parasitol. Today 11, 306–310 (1995).
    CAS  PubMed  Google Scholar 

    42.
    Drábková, M. et al. Population co-divergence in common cuttlefish (Sepia officinalis) and its dicyemid parasite in the Mediterranean Sea. Sci. Rep. 9, 14300. https://doi.org/10.1038/s41598-019-50555-92019 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Jereb, P., Vecchione, M. & Roper, C. F. E. Family Loliginidae. In Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Myopsid and Oegopsid squids, no. 4 Vol. 2 (eds Jereb, P. & Roper, C. F. E.) 38–117 (FAO Species Catalogue for Fishery Purposes, FAO, Rome, 2010).
    Google Scholar 

    44.
    Roper, C. F. E., Nigmatullin, C. & Jereb, P. Family Ommastrephidae. In Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Myopsid and Oegopsid squids, no. 4 Vol. 2 (eds Jereb, P. & Roper, C. F. E.) 269–347 (FAO Species Catalogue for Fishery Purposes, FAO, Rome, 2010).
    Google Scholar 

    45.
    Bordes, F., Morand, S., Kelt, D. A. & Van Vuren, D. H. Home range and parasite diversity in mammals. Am. Nat. 173, 467–474 (2009).
    PubMed  Google Scholar 

    46.
    Feliu, C. et al. A comparative analysis of parasite species richness of Iberian rodents. Parasitology 115, 453–466 (1997).
    PubMed  Google Scholar 

    47.
    Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 597–614 (2003).
    PubMed  Google Scholar 

    48.
    Ambrose, R. F. & Nelson, B. V. Predation by Octopus vulgaris in the Mediterranean. Mar. Ecol. 4, 251–261 (1983).
    ADS  Google Scholar 

    49.
    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Using the giant Australian cuttlefish (Sepia apama) mass breeding aggregation to explore the life cycle of dicyemid parasites. Acta Parasitol. 58, 599–602 (2013).
    PubMed  Google Scholar 

    50.
    Furuya, H. & Souidenne, D. Dicyemids. In Handbook of pathogens and diseases in cephalopods (eds Gestal, C. et al.) 159–168 (Springer, Cham, 2019).
    Google Scholar 

    51.
    Ruhnke, T. R. Tapeworms of Elasmobranchs (Part III). A monograph on the Phyllobothriidae (Platyhelminthes, Cestoda). Bull. Univ. Nebr. State Mus. 25, 1–208 (2011).
    Google Scholar 

    52.
    Randhawa, H. S. & Poulin, R. Tapeworm discovery in elasmobranch fishes: quantifying patterns and identifying their correlates. Mar. Freshw. Res. 71, 78–88 (2020).
    Google Scholar 

    53.
    Cake, E. W. A key to larval cestodes of shallow-water, benthic mollusks of the northern Gulf of Mexico. Proc. Helminthol. Soc. Wash. 43, 160–171 (1976).
    Google Scholar 

    54.
    Agusti, C. et al. Morphological and molecular characterization of tetraphyllidean merocercoids (Platyhelminthes: Cestoda) of striped dolphins (Stenella coeruleoalba) from the western Mediterranean. Parasitology 130, 461–474 (2005).
    CAS  PubMed  Google Scholar 

    55.
    Jensen, K. & Bullard, S. A. Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life cycles. Int. J. Parasitol. 40, 889–910 (2010).
    CAS  PubMed  Google Scholar 

    56.
    Mills, K. E. & Bever, J. D. Maintenance of diversity within plant communities: soil pathogens as agents of negative feedback. Ecology 79, 1595–1601 (1998).
    Google Scholar 

    57.
    Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).
    PubMed  PubMed Central  Google Scholar 

    58.
    Johnson, P. T. et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).
    PubMed  Google Scholar 

    59.
    Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
    Google Scholar 

    60.
    Clarke, K. R. & Warwick, R. M. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 216, 265–278 (2001).
    ADS  Google Scholar 

    61.
    Anu, A. & Sabu, T. K. Biodiversity analysis of forest litter ant assemblages in the Wayanad region of Western Ghats using taxonomic and conventional diversity measures. J. Insect Sci. 7, 06. https://doi.org/10.1673/031.007.0601 (2007).
    Article  Google Scholar 

    62.
    Bevilacqua, S., Fraschetti, S., Musco, L., Guarnieri, G. & Terlizzi, A. Low sensitiveness of taxonomic distinctness indices to human impacts: evidences across marine benthic organisms and habitat types. Ecol. Indic. 11, 448–455 (2011).
    Google Scholar 

    63.
    Guo, C. & Xu, H. Use of functional distinctness of periphytic ciliates for monitoring water quality in coastal ecosystems. Ecol. Indic. 96, 213–218 (2019).
    CAS  Google Scholar 

    64.
    Luque, J. L., Mouillot, D. & Poulin, R. Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology 128, 671–682 (2004).
    CAS  PubMed  Google Scholar 

    65.
    Quiroz-Martínez, B. & Salgado-Maldonado, G. Taxonomic distinctness and richness of helminth parasite assemblages of freshwater fishes in Mexican hydrological basins. PLoS ONE 8, e74419. https://doi.org/10.1371/journal.pone.0074419 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Leonard, D. R. P., Clarke, K. R., Somerfield, P. J. & Warwick, R. M. The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments. J. Environ. Manag. 78, 52–62 (2006).
    CAS  Google Scholar 

    67.
    Bevilacqua, S., Sandulli, R., Plicanti, A. & Terlizzi, A. Taxonomic distinctness in Mediterranean marine nematodes and its relevance for environmental impact assessment. Mar. Pollut. Bull. 64, 1409–1416 (2012).
    CAS  PubMed  Google Scholar 

    68.
    Price, A. R. G., Vincent, L. P. A., Venkatachalam, A. J., Bolton, J. J. & Basson, P. W. Concordance between different measures of biodiversity in Indian Ocean macroalgae. Mar. Ecol. Prog. Ser. 319, 85–91 (2006).
    ADS  Google Scholar 

    69.
    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 

    70.
    Clarke, K. R. & Warwick, R. M. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Mar. Ecol. Prog. Ser. 184, 21–29 (1999).
    ADS  Google Scholar 

    71.
    Baselga, A. The relationship between species replacement, dissimilarity derived from turnover, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).
    Google Scholar 

    72.
    Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered Nautiluses and Sepioids (Nautilidae, Sepiidae, Sepiadariidae, Idiosepiidae and Spirulidae) (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 1, Rome, FAO, 2005).

    73.
    Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and Oegopsid Squids (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 2, Rome, FAO, 2010).

    74.
    Jereb, P., Roper, C. F. E., Norman, M.D. & Julian, K. F. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 3. Octopods and Vampire Squids (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 3, Rome, FAO 2014).

    75.
    Cephbase (2018). https://cephbase.eol.org/. Accessed December 2018.

    76.
    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).
    Google Scholar 

    77.
    Clarke, K. R. & Gorley, R. N. PRIMER v6: user manual/tutorial (PRIMER-E, Plymouth, 2006).
    Google Scholar 

    78.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).

    79.
    Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
    Google Scholar 

    80.
    Colwell R. K. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9 and earlier. User’s guide and application. https://viceroy.colorado.edu/estimates (2013). More

  • in

    More severe disturbance regimes drive the shift of a kelp forest to a sea urchin barren in south-eastern Australia

    1.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
    CAS  Google Scholar 
    2.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).
    Google Scholar 

    4.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Fisher, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).
    ADS  Google Scholar 

    6.
    Bertocci, I., Maggi, E., Vaselli, S. & Benedetti-Cecchi, L. Contrasting effects of mean intensity and temporal variation of disturbance on a rocky seashore. Ecology 86, 2061–2067 (2005).
    Google Scholar 

    7.
    Byrnes, J. E. et al. Climate-driven increases in storm frequency simplify kelp forest food webs. Glob. Change Biol. 17, 2513–2524. https://doi.org/10.1111/j.1365-2486.2011.02409.x (2011).
    ADS  Article  Google Scholar 

    8.
    Pulsford, S. A., Lindenmayer, D. B. & Driscoll, D. A. A succession of theories: purging redundancy from disturbance theory. Biol. Rev. 91, 148–167 (2016).
    PubMed  Google Scholar 

    9.
    Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).
    Google Scholar 

    10.
    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Sousa, W. P. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353–391 (1984).
    Google Scholar 

    12.
    Cardinale, B. J. & Palmer, M. A. Disturbance moderates biodiversity ecosystem function relationships: evidence from suspension feeding caddisflies in stream mesocosms. Ecology 83, 1915–1927 (2002).
    Google Scholar 

    13.
    Dayton, P. K. Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971).
    Google Scholar 

    14.
    Paine, R. T. & Levin, S. A. Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr. 51, 145–178 (1981).
    Google Scholar 

    15.
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance recruitment and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
    Google Scholar 

    16.
    Sousa, W. P. In Marine Community Ecology (eds Bertness, M. D. et al.) 85–130 (Sinauer Assoc, Sunderland, 1984).
    Google Scholar 

    17.
    Mackey, R. L. & Currie, D. J. The diversity–disturbance relationship: is it generally strong and peaked?. Ecology 82, 3479–3492 (2001).
    Google Scholar 

    18.
    Hughes, A. R., Byrnes, J. E., Kimbro, D. L. & Stachowicz, J. J. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol. Lett. 10, 849–864 (2007).
    PubMed  Google Scholar 

    19.
    Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92 (2013).
    PubMed  Google Scholar 

    20.
    Coffin, D. P. & Lauenroth, W. K. The effects of disturbance size and frequency on a shortgrass plant community. Ecology 69, 1609–1617 (1988).
    Google Scholar 

    21.
    Keough, M. J. & Quinn, G. P. Effects of periodic disturbances from trampling on rocky intertidal algal beds. Ecol. Appl. 8, 141–161 (1998).
    Google Scholar 

    22.
    Reed, D. C., Raimondi, P. T., Carr, M. H. & Goldwasser, L. The role of dispersal and disturbance in determining spatial heterogeneity in sedentary organisms. Ecology 81, 2011–2026 (2000).
    Google Scholar 

    23.
    Clark, G. F. & Johnston, E. L. Temporal change in the diversity–invasibility relationship in the presence of a disturbance regime. Ecol. Lett. 14, 52–57 (2011).
    PubMed  Google Scholar 

    24.
    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organisation. Am. Nat. 111, 1119–1144 (1977).
    Google Scholar 

    25.
    Barry, J. P. Reproductive response of a marine annelid to winter storms: an analog to fire adaptation in plants?. Mar. Ecol. Prog. Ser. 54, 99–107 (1989).
    ADS  Google Scholar 

    26.
    Rydgren, K., Økland, R. H. & Hestmark, G. Disturbance severity and community resilience in a boreal forest. Ecology 85, 1906–1915 (2004).
    Google Scholar 

    27.
    Caplat, P. & Anand, M. Effects of disturbance frequency, species traits and resprouting on directional succession in an individual-based model of forest dynamics. J. Ecol. 97, 1028–1036 (2009).
    Google Scholar 

    28.
    Casanova, M. T. & Brock, M. A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?. Plant Ecol. 147, 237–250 (2000).
    Google Scholar 

    29.
    Villnäs, A. et al. The role of recurrent disturbances for ecosystem multifunctionality. Ecology 94, 2275–2287 (2013).
    PubMed  Google Scholar 

    30.
    Lenz, M., Molis, M. & Wahl, M. Experimental test of the intermediate disturbance hypothesis: frequency effects of emersion on fouling communities. J. Exp. Mar. Biol. Ecol. 305, 247–266 (2004).
    Google Scholar 

    31.
    Johnston, E. L. & Keough, M. J. Field assessment of the effects of timing and frequency of copper pulses on settlement of sessile marine invertebrates. Mar. Biol. 137, 1017–1029 (2000).
    Google Scholar 

    32.
    Johnston, E. L. & Keough, M. J. Direct and indirect effects of repeated pollution events of marine hard-substrate assemblages. Ecol. Appl. 12, 1212–1228 (2002).
    Google Scholar 

    33.
    Woods, K. D. Intermediate disturbance in a late-successional hemlock northern hardwood forest. J. Ecol. 92, 464–476 (2004).
    Google Scholar 

    34.
    Peterson, C. J., Krueger, L. M., Royo, A. A., Stark, S. & Carson, W. P. Disturbance size and severity covary in small and mid-size wind disturbances in Pennsylvania northern hardwoods forests. For. Ecol. Manag. 302, 273–279 (2013).
    Google Scholar 

    35.
    Ebeling, A. W., Laur, D. R. & Rowley, R. J. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 84, 287–294 (1985).
    Google Scholar 

    36.
    Foster, D. R. Disturbance history, community organization and vegetation dynamics of the old-growth Pisgah forest, south-western New Hampshire, USA. J. Ecol. 76, 105–134 (1988).
    Google Scholar 

    37.
    Romme, W. H., Everham, E. H., Frelich, L. E., Moritz, M. A. & Sparks, R. E. Are large infrequent disturbances qualitatively different from small frequent disturbances?. Ecosystems 1, 524–534 (1998).
    Google Scholar 

    38.
    Turner, M. G., Baker, W. L., Peterson, C. J. & Peet, R. K. Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1, 511–523 (1998).
    Google Scholar 

    39.
    Reed, D. C. et al. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology 92, 2108–2116 (2011).
    PubMed  Google Scholar 

    40.
    Irving, A. D., Connell, S. D. & Elsdon, T. S. Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J. Exp. Mar. Biol. Ecol. 310, 1–12 (2004).
    Google Scholar 

    41.
    Carnell, P. E. & Keough, M. J. The influence of herbivores on primary producers can vary spatially and interact with disturbance. Oikos https://doi.org/10.1111/oik.02502 (2016).
    Article  Google Scholar 

    42.
    Drake, J. A. Community assembly mechanics and the structure of an experimental species assemblage. Am. Nat. 137, 1–26 (1991).
    Google Scholar 

    43.
    Petraitis, P. S. & Latham, R. E. The importance of scale in testing the origins of alternative community states. Ecology 80, 429–442 (1999).
    Google Scholar 

    44.
    Petraitis, P. Multiple Stable States in Natural Ecosystems (Oxford University Press, Oxford, 2013).
    Google Scholar 

    45.
    Kennelly, S. J. Physical disturbances in an Australian kelp community I. Temporal effects. Mar. Ecol. Prog. Ser. 40, 145–153. https://doi.org/10.3354/meps040145 (1987).
    ADS  Article  Google Scholar 

    46.
    Dayton, P. K. The structure and regulation of some south american kelp communities. Ecol. Monogr. 55, 447–468 (1985).
    Google Scholar 

    47.
    Eckman, J. E., Duggins, D. O. & Sewell, A. T. Ecology of understory kelp environments I. Effects of kelps on flow and particle transport near the bottom. J. Exp. Mar. Biol. Ecol. 129, 173–188 (1989).
    Google Scholar 

    48.
    Kennelly, S. J. Effects of kelp canopies on understorey species due to shade and scour. Mar. Ecol. Prog. Ser. 50, 215–224 (1989).
    ADS  Google Scholar 

    49.
    Wernberg, T., Kendrick, G. A. & Toohey, B. D. Modification of physical environment by an Ecklonia radiata (Laminariales) canopy and its implications for associated foliose algae. Aquat. Ecol. 39, 419–430 (2005).
    Google Scholar 

    50.
    Carnell, P. E. & Keough, M. J. Spatially variable synergistic effects of disturbance and additional nutrients on kelp recruitment and recovery. Oecologia 175, 409–416. https://doi.org/10.1007/s00442-014-2907-9 (2014).
    ADS  Article  PubMed  Google Scholar 

    51.
    Kennelly, S. J. Physical disturbances in an Australian kelp community II. Effects on understorey species due to differences in kelp cover. Mar. Ecol. Prog. Ser. 40, 155–165. https://doi.org/10.3354/meps040145 (1987).
    ADS  Article  Google Scholar 

    52.
    Kohler, K. & Gill, S. Coral point count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).
    ADS  Google Scholar 

    53.
    Steneck, R. S. & Dethier, M. N. A functional group approach to the structure of algal-dominated communities. Oikos 69, 476–498 (1994).
    Google Scholar 

    54.
    Anderson, M. J. et al. Permanova+ for Primer: Guide to Software and Statistical Methods (PRIMER-E, Plymouth, 2008).
    Google Scholar 

    55.
    Kennelly, S. J. Inhibition of kelp recruitment by turfing algae and consequences for an Australian kelp community. J. Exp. Mar. Biol. Ecol. 112, 49–60. https://doi.org/10.1016/S0022-0981(87)80014-X (1987).
    Article  Google Scholar 

    56.
    Irving, A. D. & Connell, S. D. Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: algal versus invertebrate dominated assemblages. Mar. Ecol. Prog. Ser. 245, 83–91 (2002).
    ADS  Google Scholar 

    57.
    Toohey, B. D. et al. The effects of light and thallus scour from Ecklonia radiata canopy on an associated foliose algal assemblage: the importance of photoacclimation. Mar. Biol. 144, 1019–1027 (2004).
    Google Scholar 

    58.
    Toohey, B. D. & Kendrick, G. A. Survival of juvenile Ecklonia radiata sporophytes after canopy loss. J. Exp. Mar. Biol. Ecol. 349, 170–182 (2007).
    Google Scholar 

    59.
    Altamirano, M., Murakami, A. & Kawai, H. High light stress in the kelp Ecklonia cava. Aquat. Bot. 79, 125–135 (2004).
    Google Scholar 

    60.
    Longmore, A., & Nicholson, G. Baywide nutrient cycling (denitrification) monitoring program: milestone report no. 17 (December 2011–March 2012). www.oem.vic.gov.au/NutrientCycling (2012)

    61.
    Crockett, P. F. The Ecology and Ecophysiology of Caulerpa in Port Phillip Bay (School of Botany, The University of Melbourne, Melbourne, 2013).
    Google Scholar 

    62.
    Irving, A. D. & Connell, S. D. Physical disturbance by kelp abrades erect algae from the understorey. Mar. Ecol. Prog. Ser. 324, 127–137 (2006).
    ADS  Google Scholar 

    63.
    Konar, B. & Estes, J. A. The stability of boundary regions between kelp beds and deforested areas. Ecology 84, 174–185 (2003).
    Google Scholar 

    64.
    Konar, B., Edwards, M. S. & Estes, J. A. Biological interactions maintain the boundaries between kelp forests and urchin barrens in the Aleutian Archipelago. Hydrobiologia 724, 91–107 (2014).
    Google Scholar 

    65.
    Pickett, S. T. A. & White, P. S. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, New York, 1985).
    Google Scholar 

    66.
    Warner, R. R. & Chesson, P. L. Coexistence mediated by environmental variability: a field guide to the storage effect. Am. Nat. 126, 769–787 (1985).
    Google Scholar 

    67.
    Macreadie, P. I., York, P. H. & Sherman, C. D. H. Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery. Ecol. Evol. 4, 450–461 (2014).
    PubMed  PubMed Central  Google Scholar 

    68.
    Smith, T. M. et al. Recovery pathways from small-scale disturbance in a temperate Australian seagrass. Mar. Ecol. Prog. Ser. 542, 97–108 (2016).
    ADS  CAS  Google Scholar 

    69.
    Wootton, H. F. & Keough, M. J. Disturbance type and intensity combine to affect resilience of an intertidal community. Mar. Ecol. Prog. Ser. 560, 121–133 (2016).
    ADS  Google Scholar 

    70.
    Coffin, D. P. & Lauenroth, W. K. Spatial and temporal variation in the seed bank of a semiarid grassland. Am. J. Bot. 76, 53–58 (1989).
    Google Scholar 

    71.
    Kalamees, R. & Zobel, M. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology S3, 1011–1025 (2002).
    Google Scholar 

    72.
    Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45 (2004).
    Google Scholar 

    73.
    Dayton, P. K. & Tegner, M. J. Bottoms below troubled waters: benthic impacts of the 1982–84 El Niño in the temperate zone. In Ecological Consequences of the 1982–83 El Niño to Marine Life. Elsevier Oceanography Series No. 52 (ed. Glynn, P. W.) 433–472 (Elsevier, Amsterdam, 1990).
    Google Scholar 

    74.
    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499. https://doi.org/10.3389/fmars.2019.00499 (2019).
    Article  Google Scholar 

    75.
    Piola, R. F. & Johnston, E. L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Div. Dist. 14, 329–342 (2008).
    Google Scholar 

    76.
    Catford, J. A. et al. The intermediate disturbance hypothesis and plant invasions: implications for species richness and management. Perspect. Plant Ecol. Evol. Syst. 14, 231–241 (2012).
    Google Scholar 

    77.
    Jauni, M., Gripenberg, S. & Ramula, S. Non-native plant species benefit from disturbance: a meta-analysis. Oikos 124, 122–129. https://doi.org/10.1111/oik.01416 (2014).
    Article  Google Scholar 

    78.
    Clark, G. F. & Johnston, E. L. Propagule pressure and disturbance interact to overcome biotic resistance of marine invertebrate communities. Oikos 118, 1679–1686 (2009).
    Google Scholar 

    79.
    Symons, C. C. & Arnott, S. E. Timing is everything: priority effects alter community invasibility after disturbance. Ecol. Evol. 4, 397–407 (2014).
    PubMed  PubMed Central  Google Scholar 

    80.
    Klinger, R. & Brooks, M. Alternative pathways to landscape transformation: invasive grasses, burn severity and fire frequency in arid ecosystems. J. Ecol. 105, 1521–1533 (2017).
    Google Scholar 

    81.
    Castorani, M. C. N., Reed, D. C. & Miller, R. J. Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 99, 2442–2454. https://doi.org/10.1002/ecy.2485 (2018).
    Article  PubMed  Google Scholar 

    82.
    Torda, G. et al. Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Sci. Rep. 8, 11885 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    83.
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).
    Google Scholar 

    84.
    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402. https://doi.org/10.1038/nclimate3303 (2017).
    ADS  Article  Google Scholar 

    85.
    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).
    Article  Google Scholar 

    86.
    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 1, 1–9. https://doi.org/10.1111/nph.15027 (2018).
    Article  Google Scholar 

    87.
    Johnston, E. L. & Keough, M. J. Reduction of pollution impacts through the control of toxicant release must be site- and season-specific. J. Exp. Mar. Biol. Ecol. 320, 9–33 (2005).
    Google Scholar 

    88.
    Sheil, D. & Burselem, D. F. R. P. Disturbing hypotheses in tropical forests. Trends Ecol. Evol. 18, 18–26 (2003).
    Google Scholar 

    89.
    Svensson, J. R., Lindegarth, M. & Pavia, H. Equal rates of disturbance cause different patterns of diversity. Ecology 90, 496–505. https://doi.org/10.1890/07-1628.1 (2009).
    Article  PubMed  Google Scholar  More

  • in

    Species richness both impedes and promotes alien plant invasions in the Brazilian Cerrado

    In a field study conducted at 38 sites in two regions, we measured the abundance of alien invasive species, species richness of the plant community, total and soil extractable pools of P and N, soil phosphatase activity and the root phosphatase activity of nine common plant species. An analysis of the data using structural equation modelling (SEM) revealed no significant relationship between soil extractable-P concentrations and the abundance of alien plants (Fig. 1), despite the fact that previous studies in Cerrado have found P fertilization to promote the invasion of alien species31. However, the SEM did find abundance of alien invasive plants to be influenced by native species richness in two contrasting ways. One way was a direct negative relationship between species richness and the abundance of invasive species, which is consistent with the stochastic niche hypothesis and with results of some previous studies14,15,16. This pattern was also observed in a direct regression between the two variables (Suppl. Figure 2). The other way was an indirect and positive effect of species richness that was mediated via phosphatase, suggesting that invasive plants may benefit from organic P released through phosphatase produced by soil microbes and/or plant roots.
    Figure 1

    Structural equation model (SEM) showing direct (blue arrow) and indirect (orange arrow) connections between plant species richness and the abundance of alien plants in the Cerrado. The possible connection between species richness and soil phosphatase activity (PME) follows results obtained in the Jena Biodiversity Experiment29. Also connections between the total soil P and soil extractable P (Mehlich) pools on soil phosphatase activity, as well as a direct connection between soil extractable P and abundance of alien plants are included in the SEM. Plant variables are recorded on 334-m2 plots using the Braun–Blanquet scale, soil parameters are from the top 10-cm soil. Numbers associated with paths between variables are path coefficients presented as standardized values (scaled by the standard deviations of the variables). Solid arrows show significant connections (*p  More

  • in

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
    Gilberto Pastorello, Danielle Christianson, You-Wei Cheah, Abdelrahman Elbashandy, Catharine van Ingen & Deb Agarwal

    DIBAF, University of Tuscia, Viterbo, 01100, Italy
    Carlo Trotta, Eleonora Canfora, Diego Polidori, Alessio Ribeca, Alessio Collalti, Claudia Consalvo, Giacomo Nicolini, Simone Sabbatini, Michele Tomassucci, Riccardo Valentini, Domenico Vitale & Dario Papale

    Euro-Mediterranean Centre on Climate Change Foundation (CMCC), Lecce, 73100, Italy
    Eleonora Canfora, Diego Polidori, Alessio Ribeca, Serena Marras, Giacomo Nicolini, Costantino Sirca, Donatella Spano, Riccardo Valentini, Domenico Vitale & Dario Papale

    Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
    Housen Chu, Thomas Powell, Naama Raz-Yaseef, Sebastien Biraud & Margaret Torn

    Department of Civil Engineering, California State University, Sacramento, CA, 95819, USA
    Cristina Poindexter

    Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, 48823, USA
    Jiquan Chen

    Department of Computer Science, University of Virginia, Charlottesville, VA, 22904, USA
    Marty Humphrey

    TERN Ecosystrem Processes, Menzies Creek, VIC3159, Australia
    Peter Isaac

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
    Leiming Zhang, Xiaoqin Dai, Yongtao He, Peili Shi & Huimin Wang

    Department of Soil Science, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
    Brian Amiro

    Department of Agroecology and Environment, Agroscope Research Institute, Zürich, 8046, Switzerland
    Christof Ammann

    School of Geography and Earth Sciences, McMaster University, L8S4K1, Hamilton, ON, Canada
    M. Altaf Arain, Eric Beamesderfer & Myroslava Khomik

    Department of Physical Geography and Ecosystem Science, Lund University, Lund, 22362, Sweden
    Jonas Ardö, Marcin Jackowicz-Korczynski, Frans-Jan Parmentier, Norbert Pirk & Torbern Tagesson

    Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
    Timothy Arkebauer

    School of Ecosystem and Forest Sciences, The University of Melbourne, Richmond, VIC3121, Australia
    Stefan K. Arndt, Anne Griebel & Ian McHugh

    Department of Biology, Research Group PLECO, University of Antwerp, Antwerp, 2610, Belgium
    Nicola Arriga, Bert Gielen & Marilyn Roland

    Joint Research Centre, European Commission, Ispra, 21027, Italy
    Nicola Arriga, Ignacio Goded, Carsten Gruening & Giovanni Manca

    TERRA Teaching and Research Center, University of Liege, Gembloux, B-5030, Belgium
    Marc Aubinet, Anne De Ligne, Bernard Heinesch & Christine Moureaux

    Finnish Meteorological Institute, Helsinki, 00560, Finland
    Mika Aurela, Juha Hatakka, Tuomas Laurila, Annalea Lohila & Juha-Pekka Tuovinen

    ESPM, University of California Berkeley, Berkeley, CA, 94720, USA
    Dennis Baldocchi, Allen H. Goldstein, Siyan Ma, Joseph Verfaillie & Robin Weber

    Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N3H5, Canada
    Alan Barr

    Climate Research Division, Environment and Climate Change Canada, Saskatoon, SK, S7N3H5, Canada
    Alan Barr

    Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All’adige, 38010, Italy
    Luca Belelli Marchesini, Mauro Cavagna, Isaac Chini, Damiano Gianelle, Barbara Marcolla & Roberto Zampedri

    Department of Landscape Design and Sustainable Ecosystems, Agrarian‐Technological Institute, RUDN University, Moscow, 117198, Russia
    Luca Belelli Marchesini

    Direction du marché du carbone, Ministère du Développement durable de l’Environnement et de la Lutte contre les changements climatiques, Québec, QC, G1R5V7, Canada
    Onil Bergeron

    School of Agriculture and Environment, University of Western Australia, Crawley, 6009, Australia
    Jason Beringer & Richard Silberstein

    Institute of Hydrology and Meteorology, Technische Universität Dresden, Tharandt, 01737, Germany
    Christian Bernhofer, Uwe Eichelmann, Thomas Grünwald, Markus Hehn, Uta Moderow & Heiko Prasse

    Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Orsay, 91405, France
    Daniel Berveiller, Nicolas Delpierre & Eric Dufrêne

    Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
    Dave Billesbach & Adam J. Liska

    Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
    Thomas Andrew Black, Rachhpal Jassal & Zoran Nesic

    Department of Geography, University of Colorado, Boulder, CO, 80309, USA
    Peter D. Blanken & Sean P. Burns

    Department of Civil, Environmental & Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA
    Gil Bohrer

    Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, 14482, Germany
    Julia Boike

    Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
    Julia Boike

    Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
    Paul V. Bolstad

    Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, 54000, France
    Damien Bonal

    ISPA, Bordeaux Sciences Agro, INRAE, Villenave d’Ornon, 33140, France
    Jean-Marc Bonnefond, Denis Loustau & Virginie Moreaux

    School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
    David R. Bowling

    School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
    Rosvel Bracho

    McMaster University Library, McMaster University, Hamilton, ON, L8S4L6, Canada
    Jason Brodeur

    Thünen Institute of Climate-Smart Agriculture, Federal Research Institute of Rural Areas, Forestry and Fisheries, Braunschweig, 38116, Germany
    Christian Brümmer, Antje Lucas-Moffat & Frederik Schrader

    Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland
    Nina Buchmann, Werner Eugster, Iris Feigenwinter, Mana Gharun, Lukas Hörtnagl, Regine Maier & Sebastian Wolf

    INRAE UMR ECOFOG, Kourou, 97387, French Guiana
    Benoit Burban

    Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, CO, 80301, USA
    Sean P. Burns

    Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Thiverval-Grignon, 78850, France
    Pauline Buysse, Pierre Cellier & Benjamin Loubet

    Australian Landscape Trust, Renmark, SA5341, Australia
    Peter Cale

    State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
    Shiping Chen & Xingguo Han

    Department of Bioscience, Arctic Research Center, Aarhus University, Roskilde, 4000, Denmark
    Torben R. Christensen, Marcin Jackowicz-Korczynski, Efrén López-Blanco & Mikhail Mastepanov

    School of Life Sciences, University of Technology Sydney, Sydney, 2007, Australia
    James Cleverly & Derek Eamus

    Terrestrial Ecosystem Research Network TERN, University of Technology, Sydney, 2007, Australia
    James Cleverly

    Institute for Agricultural and Forestry Systems in the Mediterranean, National Research Council of Italy, Ercolano, 80056, Italy
    Alessio Collalti, Ettore D’Andrea, Paul di Tommasi, Daniela Famulari & Vincenzo Magliulo

    Research Institute on Terrestrial Ecosystems, National Research Council of Italy, Porano, 05010, Italy
    Claudia Consalvo

    Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
    Bruce D. Cook

    Environmental Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
    David Cook & Roser Matamala

    Canadian Forest Service, Natural Resources Canada, Québec, QC, G1V4C7, Canada
    Carole Coursolle

    Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, Québec, QC, G1V0A6, Canada
    Carole Coursolle & Hank A. Margolis

    Climate Change Unit, Environmental Protection Agency of Aosta Valley, Saint Christophe, 11020, Italy
    Edoardo Cremonese, Gianluca Filippa & Marta Galvagno

    Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA
    Peter S. Curtis

    Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP, 01000-000, Brazil
    Humberto da Rocha

    Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, 16802, USA
    Kenneth J. Davis

    Institute of Research on Terrestrial Ecosystems, National Research Council of Italy, Montelibretti, 00010, Italy
    Bruno De Cinti

    UMR Eco&Sols, CIRAD, Montpellier, 34060, France
    Agnes de Grandcourt & Yann Nouvellon

    Pedology, Embrapa Amazonia Oriental, Belém, PA, 68020640, Brazil
    Raimundo C. De Oliveira

    Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
    Ankur R. Desai

    Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, UBA, Buenos Aires, 1417, Argentina
    Carlos Marcelo Di Bella

    Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
    Han Dolman & Ko van Huissteden

    Desertification and Geoecology Department, Experimental Station of Arid Zones, CSIC, Almería, 04120, Spain
    Francisco Domingo

    School of Life Science, Shanxi University, Taiyuan, 030006, China
    Gang Dong

    HydroFocus, Davis, CA, 95618, USA
    Sabina Dore

    Institute of BioEconomy, National Research Council of Italy, Sassari, 07100, Italy
    Pierpaolo Duce

    Department of Earth, Environment, and Physics, Worcester State University, Worcester, MA, 01602, USA
    Allison Dunn

    Department of Matter and Energy Fluxes, Global Change Research Institute of the Czech Academy of Sciences, Brno, 60300, Czech Republic
    Jiří Dušek, Dalibor Janouš, Marian Pavelka, Pavel Sedlák & Ladislav Šigut

    ElObeid Research Station, Agricultural Research Corporation, ElObeid, 51111, Sudan
    Hatim Abdalla M. ElKhidir

    Airborne Research Australia, TERN Ecosystem Processes Central Node, Parafield, 5106, Australia
    Cacilia M. Ewenz

    Department of Botany, Program in Ecology, University of Wyoming, 1000 E. Univ. Ave, Laramie, WY, 82071, USA
    Brent Ewers

    Institute of BioEconomy, National Research Council of Italy, Rome, 00100, Italy
    Silvano Fares

    Research Centre for Forestry and Wood, Council for Agricultural Research and Economics, Rome, 00166, Italy
    Silvano Fares

    Geoscience Australia, Canberra, 2601, Australia
    Andrew Feitz

    Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, 1350, Denmark
    Rasmus Fensholt, Birger Ulf Hansen & Torbern Tagesson

    Energy Analysis & Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
    Marc Fischer

    USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 80526, USA
    John Frank & William Massman

    Institute of BioEconomy, National Research Council of Italy, Firenze, 50145, Italy
    Beniamino Gioli

    School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
    Anatoly Gitelson, Andy Suyker & Elizabeth Walter-Shea

    Max Planck Institute for Biogeochemistry, Jena, 03641, Germany
    Mathias Goeckede & Olaf Kolle

    Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
    Christopher M. Gough

    Department of Earth System Science, University of California, Irvine, CA, 92697, USA
    Michael L. Goulden

    Agrosphere (IBG3), Forschungszentrum Jülich, Jülich, 52428, Germany
    Alexander Graf & Marius Schmidt

    Department of Ecology, University of Innsbruck, Innsbruck, 6020, Austria
    Albin Hammerle & Georg Wohlfahrt

    International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, 450000, China
    Shijie Han

    Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
    Shijie Han & Junhui Zhang

    Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97333, USA
    Chad Hanson, Hyojung Kwon & Bev Law

    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
    Yongtao He

    School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC3363, Australia
    Nina Hinko-Najera

    Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, 0909, Australia
    Lindsay Hutley

    Department of Environmental Engineering, Technical University of Denmark (DTU), Kongens Lyngby, 2800, Denmark
    Andreas Ibrom & Kim Pilegaard

    Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8604, Japan
    Hiroki Ikawa

    Wageningen Environmental Research, Wageningen University and Research, Wageningen, 6708PB, The Netherlands
    Wilma Jans

    Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
    Shicheng Jiang

    Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
    Tomomichi Kato

    GI-Core, Hokkaido University, Sapporo, 060-0808, Japan
    Tomomichi Kato

    Geography and Environmental Management, Waterloo, ON, N2L3G1, Canada
    Myroslava Khomik

    Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, 82467, Germany
    Janina Klatt, Hans Peter Schmid & Rainer Steinbrecher

    Bioclimatology, University of Goettingen, Goettingen, 37077, Germany
    Alexander Knohl, Lukas Siebicke & Frank Tiedemann

    Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, 37077, Germany
    Alexander Knohl

    Department of Geography, The University of British Columbia, Vancouver, BC, V6T1Z2, Canada
    Sara Knox

    Research Institute for Global Change, Institute of Arctic Climate and Environment Research, Japan Agency for Marine-Earth Science and Technology, Yokoama, 236-0001, Japan
    Hideki Kobayashi

    Biological Sciences, University of Adelaide, Adelaide, SA5064, Australia
    Georgia Koerber & Wayne Meyer

    Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
    Yoshiko Kosugi

    Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 4648601, Japan
    Ayumi Kotani

    Department of Applied Physics, University of Granada, Granada, 18071, Spain
    Andrew Kowalski & Enrique P. Sánchez-Cañete

    Water systems and Global Change group, Wageningen University, Wageningen, 6500, The Netherlands
    Bart Kruijt

    A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
    Julia Kurbatova, Ivan Shironya, Andrej Varlagin & Natalia Vygodskaya

    Head Office, Integrated Carbon Observation System (ICOS ERIC), Helsinki, 00560, Finland
    Werner L. Kutsch

    Natural Resources Institute Finland, Helsinki, 00790, Finland
    Samuli Launiainen

    Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
    Yingnian Li

    Centre for Tropical Environmental Sustainability Studies, James Cook University, Cairns, 4878, Australia
    Michael Liddell

    CEFE, CNRS, Univ Montpellier, Montpellier, 34293, France
    Jean-Marc Limousin, Jean-Marc Ourcival & Serge Rambal

    Forestry and Environment Division, Forest Research Institute Malaysia (FRIM), Kepong, 52109, Malaysia
    Marryanna Lion

    Institute for Atmosphere and Earth System Research/Physics, University of Helsinki, Helsinki, 00560, Finland
    Annalea Lohila, Ivan Mammarella, Üllar Rannik & Timo Vesala

    Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, D02PN40, Ireland
    Ana López-Ballesteros

    German Meteorological Service (DWD), Centre for Agrometeorological Research, Braunschweig, 38116, Germany
    Antje Lucas-Moffat

    Micrometeorology, University of Bayreuth, Bayreuth, 95440, Germany
    Johannes Lüers

    Bayreuth Center of Ecology and Environmental Research, 95448, Bayreuth, Germany
    Johannes Lüers

    CSIRO Land and Water, Floreat, 6014, Australia
    Craig Macfarlane

    Department of Agriculture, University of Sassari, Sassari, 07100, Italy
    Serena Marras, Costantino Sirca & Donatella Spano

    Oulanka research station, University of Oulu, Kuusamo, 93900, Finland
    Mikhail Mastepanov

    Dept. Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
    Jaclyn Hatala Matthes

    Research Institute on Terrestrial Ecosystems, National Research Council of Italy, Monterotondo Scalo, 00015, Italy
    Francesco Mazzenga

    Department of Geography and Planning, Queen’s University, Kingston, ON, K7L3N6, Canada
    Harry McCaughey

    Environmental Analytics NZ, Ltd. Raumati South, Paraparaumu, 5032, New Zealand
    Andrew M. S. McMillan

    Mazingira Centre, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya
    Lutz Merbold

    NOAA/OAR/Air Resources Laboratory, 325 Broadway, Boulder, CO, 80303, USA
    Tilden Meyers

    Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY, 12203, USA
    Scott D. Miller

    Forest Department of South Tyrol, Bolzano, 39100, Italy
    Stefano Minerbi & Leonardo Montagnani

    Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
    Russell K. Monson, Natalia Restrepo-Coupe & Scott R. Saleska

    Faculty of Science and Technology, Free University of Bolzano, Bolzano, 39100, Italy
    Leonardo Montagnani

    Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
    Caitlin E. Moore

    IHE Delft, Delft, 2611, The Netherlands
    Eddy Moors

    Faculty of Science, VU Amsterdam, Amsterdam, 1081, The Netherlands
    Eddy Moors

    University Grenoble Alpes, IRD, CNRS, IGE, Grenoble, 38000, France
    Virginie Moreaux

    School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
    J. William Munger & Steven Wofsy

    Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
    J. William Munger & Steven Wofsy

    School of Forestry and Resource Conservation, National Taiwan University, Taipei, 0617, Taiwan
    Taro Nakai

    International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
    Taro Nakai

    Environment and Climate, Research Institute for Nature and Forest, Geraardsbergen, 9500, Belgium
    Johan Neirynck

    Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843, USA
    Asko Noormets

    Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, 0810, Australia
    Matthew Northwood

    Grupo de Estudios Ambientales, Instituto de Matemática Aplicada San Luis (UNSL & CONICET), San Luis, D5700HHW, Argentina
    Marcelo Nosetto

    Facultad de Ciencias Agropecuarias (UNER), Oro Verde, 3100, Argentina
    Marcelo Nosetto

    Eco&Sols, Univ Montpellier-CIRAD-INRA-IRD-Montpellier SupAgro, Montpellier, 34060, France
    Yann Nouvellon

    O’Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, 47405, USA
    Kimberly Novick

    Global Change Research Group, Dept. Biology, San Diego State University, San Diego, CA, 92182, USA
    Walter Oechel & Donatella Zona

    Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, EX44RJ, United Kingdom
    Walter Oechel

    Department of Agroecology, Aarhus University, Tjele, 8830, Denmark
    Jørgen Eivind Olesen

    iCLIMATE, Aarhus University, Tjele, 8830, Denmark
    Jørgen Eivind Olesen

    Department of Geology, Wayne State University, Detroit, MI, 48202, USA
    Shirley A. Papuga

    Department of Geosciences, University of Oslo, Oslo, 0315, Norway
    Frans-Jan Parmentier

    Department of Geography, University of Zurich, Zurich, 8057, Switzerland
    Eugenie Paul-Limoges

    Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
    Matthias Peichl

    Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, Australia
    Elise Pendall & Victor Resco de Dios

    Department of Biology, Indiana University Bloomington, Bloomington, IN, 47401, USA
    Richard P. Phillips

    Instituto de Clima y Agua, Instituto Nacional de Tecnologia Agropecuaria (INTA), Buenos Aires, 1686, Argentina
    Gabriela Posse & Sebastian Westermann

    CSIRO Land and Water, Wembley, 6913, Australia
    Norbert Pirk & Suzanne M. Prober

    Center for Global Change & Earth Observations, Michigan State University, East Lansing, MI, 48823, USA
    David Reed

    School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
    Victor Resco de Dios

    Departamento de Química e Física, Universidade Federal da Paraiba, Areia, PB, 58397-000, Brazil
    Borja R. Reverter

    Remote Sensing and Geoinformatics, GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
    Torsten Sachs & Christian Wille

    Andalusian Institute for Earth System Research (CEAMA-IISTA), Granada, 18006, Spain
    Enrique P. Sánchez-Cañete & Penélope Serrano-Ortíz

    Ciencias del Agua y Medioambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, 85000, Mexico
    Zulia M. Sanchez-Mejia

    Geographical Institute, University of Cologne, Cologne, 50923, Germany
    Karl Schneider

    Department of Industry, Innovation and Science, Geoscience Australia, Canberra, 2609, Australia
    Ivan Schroder

    Southwest Watershed Research Center, USDA-ARS, Tucson, AZ, 85719, USA
    Russell L. Scott

    Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, 14100, Czech Republic
    Pavel Sedlák

    Department of Ecology, University of Granada, Granada, 18071, Spain
    Penélope Serrano-Ortíz

    National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
    Changliang Shao

    School of Science, Edith Cowan University, Joondalup, 6027, Australia
    Richard Silberstein

    Sentek Pty Ltd, Stepney, SA5069, Australia
    Robert M. Stevens

    National Ecological Observatory Network Program, Boulder, CO, 80301, USA
    Cove Sturtevant

    Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto, 612-0855, Japan
    Satoru Takanashi

    College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
    Yanhong Tang

    School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800, Australia
    Nigel Tapper

    Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
    Jonathan Thom

    Terrasystem srl, Viterbo, 01100, Italy
    Michele Tomassucci

    USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, 59808, USA
    Shawn Urbanski

    Meteorology and Air Quality group, Wageningen University, 6500, Wageningen, The Netherlands
    Michiel van der Molen

    Fenner School of Environment and Society, Australian National University Canberra, Canberra, ACT 2600, Australia
    Eva van Gorsel

    Department of Civil Engineering, Monash University, Clayton, 3800, Australia
    Jeffrey P. Walker

    CSIRO Land and Water, Canberra, 2601, Australia
    William Woodgate

    South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
    Caroline Vincke & Yuelin Li

    College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
    Guoyi Zhou

    Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom
    Donatella Zona

    Dario Papale, Gilberto Pastorello, Margaret Torn, and Deb Agarwal conceived of and organized the FLUXNET2015 dataset. Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Housen Chu, Dario Papale, Gilberto Pastorello, Diego Polidori, Cristina Poindexter, and Carlo Trotta were responsible for quality checking, post-processing, and creating data products. You-Wei Cheah, Danielle Christianson, Abdelrahman Elbashandy, Marty Humphrey, Gilberto Pastorello, Diego Polidori, Alessio Ribeca, Carlo Trotta, and Catharine van Ingen were responsible for code and software preparation and implementation (processing pipeline and data distribution platform). Eleonora Canfora, You-Wei Cheah, Jiquan Chen, Danielle Christianson, Housen Chu, Peter Isaac, Dario Papale and Leiming Zhang managed the flux data and metadata collections. Gilberto Pastorello, Dario Papale, Deb Agarwal, Sebastien Biraud, You-Wei Cheah, Danielle Christianson, Housen Chu, and Margaret Torn conceived of the paper and prepared the first draft that was reviewed and commented on by all the coauthors. All the coauthors collected, processed and contributed the data, also participated in the quality assessment and correction of errors. The link between sites and coauthors is provided in Supplementary Table SM9. More

  • in

    IDEAL, the Infectious Diseases of East African Livestock project open access database and biobank

    The design and basic descriptive epidemiology of the IDEAL project is fully described in Bronsvoort et al.3. To give the IDEAL database a context, we briefly describe the study in relation to the samples taken.
    The study population
    Between 2007–2009, 548 free-grazing indigenous East African Shorthorn Zebu calves in Western Kenya were recruited. The project was based in Busia, a town in the west of Kenya on the border with Uganda. The town had a veterinary lab that was able to be used and developed by the project.
    Calves were recruited using a stratified two-stage random cluster study design (Fig. 1). In the first stage, a weighted random sample of 20 sublocations was selected from across the four agro-ecological zones represented in the project area. This area was roughly 45 × 90 km2. This area was chosen because each area would be drivable from Busia and back to the lab and all visits completed within a day.
    In the second stage, approximately 28 3–7 day-old calves were randomly recruited from each sublocation. The sublocations were visited on a rolling 5-week cycle to ensure there was an even distribution of calves recruited across space and season over the study period. Only one calf per dam was recruited and a farmer could only have one calf at a time in the study. Recruited calves were followed for their first year (51 weeks) of life. A calf was selected at random from all those available and eligible on the day of the recruitment visit.
    As described in Bronsvoort et al.3, each calf had to meet the following inclusion criteria to be enrolled in the study: (1) it was between 3 and 7 days old at recruitment; (2) it was not born as a result of artificial insemination of the dam; (3) the dam was not managed under zero-grazing conditions (as this is likely to reflect cattle associated with dairy production and potential exotic genetics and thus not be representative of the traditional small holder farming system); (4) it did not have any congenital deformities (the project was interested in infectious causes of disease and the association with host genetics, rather than direct genetic disease). Recruitment was conditional on the farmer allowing access to the calf, willingness to report clinical episodes to the project team, and agreeing not to self-treat their calves. Farmers were compensated at a rate agreed with the staff of the District Veterinary Office; this comprised the estimated cost of raising the calf for one year as calves were nominally owned by the project for that year. Owners were free to refuse to participate3 and consent was obtained in a language in which the participant was confident.
    There were two periods during the IDEAL project when sampling and recruitment was suspended. In the first, field work was suspended for 6 weeks in 2008 due to political unrest. This resulted in a small number of calves missing one or two 5 weekly visits. The second was due to an extended holiday period that resulted in staffing problems in 2009/2010.
    Data collection
    Below, we briefly describe how the IDEAL data was collected. See Bronsvoort et al.3 for more details.
    Routine clinical examination of calves
    At the recruitment visit, a household questionnaire was completed by interview with the calf owner or head of the household. This questionnaire collected information about the farmer and the farm, such as the type of livestock kept, and animal management practices. Calves were raised according to the farmer’s practices.
    Calves received a routine systematic physical examination from a veterinary surgeon at the recruitment visit and these examinations where repeated every 5 weeks until the calf was 51 weeks old. Some routine measurements were taken during the exam (body weight and lymph node width). All abnormalities were noted and all areas were noted as checked. Ectoparasites found were identified. During each visit a standard set of biological samples were taken for further laboratory analysis. In addition, a questionnaire was carried out at each visit to update the IDEAL project about other activities on the farm such as illness or treatment of the other livestock and animal movements. At the final visit, physical phenotype was recorded following a standardised format. The study design, sampling procedure, clinical examinations and sample collection are summarised in Figs. 2 and 3, and can also be read in detail in the supporting documentation online (http://data.ctlgh.org/ideal/).
    Clinical episodes and post-mortem examinations of calves
    If a calf became unwell, the farmer was asked to contact the IDEAL project veterinary surgeon. The calf was visited and a full clinical examination and history was taken. Both routine and additional appropriate specific samples were collected based on the syndrome observed3. If a calf was deemed to be suffering and if that suffering would be alleviated with treatment, that treatment was given and the calf was no longer visited and was censored from the study from that point. If calves were suffering and that could only be alleviated by euthanasia, this was carried out and the calf was examined post-mortem following the standard protocol. Following the death or euthanasia of a calf, a full gross post-mortem examination was carried out using standard veterinary procedures and clinically appropriate samples collected for further analysis. Cause of death was attributed using a panel of experts with access to all available diagnostic results and the necropsy report. This was carried out for all calves that died at a single timepoint after the close of the project.
    Examination of the dams
    A limited clinical examination of the dam was performed at recruitment and in subsequent routine visits until the calf was weaned. At these visits the girth was measured and body condition was scored and the udder was examined for evidence of lesion or mastitis that could affect calf nutritional intake. Phenotypic measurements of coat colour and pattern, horn length and shape, ear shape, size of hump and dewlap was recorded at recruitment3.
    Laboratory analysis
    Blood samples collected into EDTA tubes were used for differential blood cell counts, performed using the pocH-100iV Diff (Sysmex®, Europe GMBH). The haematological parameters investigated are listed in Online-only Table 1. In addition to the automated blood analysis, EDTA unclotted samples were used to make thin blood smears for manual differential cell counts. These smears were transported to the University of Pretoria, South Africa, where blood smears were stained with Diff Quick (Kyron, South Africa) for differential counts. Packed cell volume (PCV) was measured manually using a Hawksley micro-hematocrit reader4. Total serum protein (TSP) was measured from 100 μL serum using a refractometer (model RHC-200ATC, Westover Scientific).
    Peripheral ear vein blood smears were collected and examined for haemoparasites by microscopy. Thin smears were fixed using methanol and stained using Giemsa. Thick smears were directly stained. One hundred fields were examined under an oil immersion lens. Haemoparasites present were identified to genus level.
    Reverse line blot (RLB) hybridization assay was performed as previously described5 to detect tick-borne haemoparasites in the blood (Theileria, Anaplasma, Ehrlichia, and Babesia (Online-only Table 1))5.
    The p104 nested PCR was carried out on calves where ECF was suspected on clinical grounds to specifically identify T. parva6.
    Whole blood collected in EDTA was mixed in sodium EDTA tubes in a 1:1 ratio with ‘magic buffer’ (which acted as an anti-coagulant, anti-fungus, anti-bacterial and preservative; Biogen Diagnostica, Villaviciosa De Odon, Spain) at the recruitment visit in readiness for genomic analysis. DNA was extracted from these samples using the Nucleon Genomic DNA extraction kit (TepnelnLife Sciences, Manchester, UK). The Illumina® BovineSNP50 v. 1 BeadChip (Illumina Inc., San Diego, CA, USA) used to genotype the cattle. Genotyping of the 548 calves was carried out at the USDA-ARS bovine functional (Beltsville, MD, USA) and GeneSeek (https://genomics.neogen.com) laboratories using the genome assembly v3.0. In addition, due to the cost of sequencing at the time, a subset of 114 cattle were genotyped using the Illumina® BovineHD Genotyping BeadChip.
    Faecal samples were also collected during the study and these where routinely screened using the standard Baermann and McMasters protocols7. The number of strongyle eggs per gram of faeces was evaluated using the McMasters counting technique. These could be read to the nearest 50 eggs per gram. Sedimentation was carried out for detection of fluke eggs and larval cultures were used to speciate strongyle eggs7. Species where reported at the highest level; strongyle eggs/strongyloides/coccidia/nematodirus. See Online-only Table 1 for more details on the parasites detected.
    Serum samples were collected from blood collected into plain vacutainer tubes. These were stored in duplicate for serological analyses. Species-specific antibody response enzyme-linked immunosorbent assays (ELISAs) were performed and analysed according to the manufacturer’s instructions.
    The full list of pathogens and viruses for which the cattle have so far been screened can be found in Online-only Table 1. The prevalence of pathogens currently identified across the whole study period and at each visit is presented in Figs. 4 and 5.
    Since the database is linked to a biobank, the list of pathogens tested and screened for is continuously updated as new tests are performed or new tools are developed. More

  • in

    Disturbance history can increase functional stability in the face of both repeated disturbances of the same type and novel disturbances

    1.
    Nazaries, L. et al. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl. Environ. Microbiol. 79, 4031–4040. https://doi.org/10.1128/aem.00095-13 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67(67), 437–457. https://doi.org/10.1146/annurev-micro-092412-155614 (2013).
    CAS  Article  PubMed  Google Scholar 

    3.
    Rousk, J. & Bengtson, P. Microbial regulation of global biogeochemical cycles. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00103 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    IPCC. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge, United Kingdom and New York, NY, USA, 2013).

    5.
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00417 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519. https://doi.org/10.1073/pnas.0801925105 (2008).
    ADS  Article  PubMed  Google Scholar 

    7.
    Griffiths, B. S. & Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37, 112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x (2013).
    CAS  Article  PubMed  Google Scholar 

    8.
    Lindh, M. V. & Pinhassi, J. Sensitivity of bacterioplankton to environmental disturbance: a review of Baltic Sea field studies and experiments. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00361 (2018).
    Article  Google Scholar 

    9.
    Free, A., McDonald, M. A. & Pagaling, E. Diversity-function relationships in natural, applied, and engineered microbial ecosystems. Adv. Appl. Microbiol. 105(105), 131–189. https://doi.org/10.1016/bs.aambs.2018.07.002 (2018).
    CAS  Article  PubMed  Google Scholar 

    10.
    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30. https://doi.org/10.1111/ele.12867 (2018).
    Article  PubMed  Google Scholar 

    11.
    Griffiths, B. S. et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90, 279–294. https://doi.org/10.1034/j.1600-0706.2000.900208.x (2000).
    Article  Google Scholar 

    12.
    Baho, D. L., Peter, H. & Tranvik, L. J. Resistance and resilience of microbial communities-temporal and spatial insurance against perturbations. Environ. Microbiol. 14, 2283–2292. https://doi.org/10.1111/j.1462-2920.2012.02754.x (2012).
    Article  PubMed  Google Scholar 

    13.
    Berga, M., Székely, A. J. & Langenheder, S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE 7, e36959 (2012).
    ADS  CAS  Article  Google Scholar 

    14.
    Ager, D., Evans, S., Li, H., Lilley, A. K. & van der Gast, C. J. Anthropogenic disturbance affects the structure of bacterial communities. Environ. Microbiol. 12, 670–678. https://doi.org/10.1111/j.1462-2920.2009.02107.x (2010).
    Article  PubMed  Google Scholar 

    15.
    Sjöstedt, J. et al. Reduced diversity and changed bacterioplankton community composition do not affect utilization of dissolved organic matter in the Adriatic Sea. Aquat. Microb. Ecol. 71, 15–24 (2013).
    Article  Google Scholar 

    16.
    Vaquer-Sunyer, R. et al. Dissolved organic nitrogen inputs from wastewater treatment plant effluents increase responses of planktonic metabolic rates to warming. Environ. Sci. Technol. 49, 11411–11420. https://doi.org/10.1021/acs.est.5b00674 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    17.
    Bergen, B. et al. Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms. Environ. Microbiol. 18, 4579–4595. https://doi.org/10.1111/1462-2920.13549 (2016).
    CAS  Article  PubMed  Google Scholar 

    18.
    Salis, R. K., Bruder, A., Piggott, J. J., Summerfield, T. C. & Matthaei, C. D. High-throughput amplicon sequencing and stream benthic bacteria: identifying the best taxonomic level for multiplestressor research. Sci. Rep. 7, 12. https://doi.org/10.1038/srep44657 (2017).
    CAS  Article  Google Scholar 

    19.
    Sjöstedt, J., Langenheder, S., Kritzberg, E., Karlsson, C. M. G. & Lindstrom, E. S. Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community. Environ. Microbiol. Rep. 10, 493–500. https://doi.org/10.1111/1758-2229.12656 (2018).
    CAS  Article  PubMed  Google Scholar 

    20.
    Odum, E. P. in Stress effects on natural ecosystems (eds G. W. Barrett & R. Rosenberg) 43–47 (Wiley, London 1981).

    21.
    Herren, C. M., Webert, K. C. & McMahon, K. D. Environmental disturbances decrease the variability of microbial populations within periphyton. mSystems 1, 14. https://doi.org/10.1128/mSystems.00013-16 (2016).
    Article  Google Scholar 

    22.
    Tobor-Kaplon, M. A., Bloem, J. & de Ruiter, P. C. Functional stability of microbial communites from long-term stressed soils to additional disturbances. Environ. Toxicol. Chem. 25, 1993–1999 (2006).
    CAS  Article  Google Scholar 

    23.
    Tolkkinen, M. et al. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology 96, 672–683. https://doi.org/10.1890/14-0743.1 (2015).
    CAS  Article  PubMed  Google Scholar 

    24.
    Müller, A. K., Westergaard, K., Christensen, S. & Sørensen, S. J. The diversity and function of soil microbial communities exposed to different disturbances. Microb. Ecol. 44, 49–58 (2002).
    Article  Google Scholar 

    25.
    Leyer, G. J. & Johnson, E. A. Acid adaptation induces cross-protection against environmental stresses in salmonella-typhimurium. Appl. Environ. Microbiol. 59, 1842–1847. https://doi.org/10.1128/aem.59.6.1842-1847.1993 (1993).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Rillig, M. C., Rolff, J., Tietjen, B., Wehner, J. & Andrade-Linares, D. R. Community priming-effects of sequential stressors on microbial assemblages. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv040 (2015).
    Article  PubMed  Google Scholar 

    27.
    Andrade-Linares, D. R., Lehmann, A. & Rillig, M. C. Microbial stress priming—a meta-analysis. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13223 (2016).
    Article  PubMed  Google Scholar 

    28.
    Cebrian, G., Sagarzazu, N., Pagan, R., Condon, S. & Manas, P. Development of stress resistance in Staphylococcus aureus after exposure to sublethal environmental conditions. Int. J. Food Microbiol. 140, 26–33. https://doi.org/10.1016/j.ijfoodmicro.2010.02.017 (2010).
    CAS  Article  PubMed  Google Scholar 

    29.
    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).
    Article  Google Scholar 

    30.
    Mills, A. L. & Mallory, L. M. The community structure of sessile heterotrophic bacteria stressed by acid mine drainage. Microb. Ecol. 14, 219–232 (1987).
    CAS  Article  Google Scholar 

    31.
    Atlas, R. M., Horowitz, A., Krichevsky, M. & Bej, A. K. Response of microbial populations to environmental disturbance. Microb. Ecol. 22, 249–256 (1991).
    CAS  Article  Google Scholar 

    32.
    Berga, M., Zha, Y. H., Szekely, A. J. & Langenheder, S. Functional and compositional stability of bacterial metacommunities in response to salinity changes. Front. Microbiol. 8, 11. https://doi.org/10.3389/fmicb.2017.00948 (2017).
    Article  Google Scholar 

    33.
    Allison, G. The influence of species diversity and stress intensity on community resistance and resilience. Ecol. Monogr. 74, 117–134. https://doi.org/10.1890/02-0681 (2004).
    Article  Google Scholar 

    34.
    Downing, A. L. & Leibold, M. A. Species richness facilitates ecosystem resilience in aquatic food webs. Freshwat. Biol. 55, 2123–2137. https://doi.org/10.1111/j.1365-2427.2010.02472.x (2010).
    Article  Google Scholar 

    35.
    Kim, M., Heo, E., Kang, H. & Adams, J. Changes in soil bacterial community structure with increasing disturbance frequency. Microb. Ecol. 66, 171–181. https://doi.org/10.1007/s00248-013-0237-9 (2013).
    Article  PubMed  Google Scholar 

    36.
    Gibbons, S. M. et al. Disturbance regimes predictably alter diversity in an ecologically complex bacterial system. mBio https://doi.org/10.1128/mBio.01372-16 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514. https://doi.org/10.1111/j.2008.0030-1299.16215.x (2008).
    Article  Google Scholar 

    38.
    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233. https://doi.org/10.1146/annurev.es.19.110188.001231 (1988).
    Article  Google Scholar 

    39.
    Pandit, S. N., Kolasa, J. & Cottenie, K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262. https://doi.org/10.1890/08-0851.1 (2009).
    Article  PubMed  Google Scholar 

    40.
    Blanck, H. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum. Ecol. Risk Assess. 8, 1003–1034. https://doi.org/10.1080/1080-700291905792 (2002).
    Article  Google Scholar 

    41.
    Li, J. et al. Initial copper stress strengthens the resistance of soil microorganisms to a subsequent copper stress. Microb. Ecol. 67, 931–941. https://doi.org/10.1007/s00248-014-0391-8 (2014).
    CAS  Article  PubMed  Google Scholar 

    42.
    Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I. & Glover, L. A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313 (2005).
    CAS  Article  Google Scholar 

    43.
    Azarbad, H. et al. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing “stress-on-stress” responses. Int. J. Mol. Sci. 17, 1–21 (2016).
    Article  Google Scholar 

    44.
    Calow, P. Physiological costs of combating chemical toxicants: ecological implications. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 100, 3–6 (1991).
    CAS  Article  Google Scholar 

    45.
    Kuperman, R. G. & Carreiro, M. M. Soil heavy metal concentrations, microbial biomass and enzyme activities in contaminated grassland ecosytem. Soil Biol. Biochem. 29, 179–190 (1997).
    CAS  Article  Google Scholar 

    46.
    Mulder, C. P. H., Uliassi, D. D. & Doak, D. F. Physical stress and diversity-productivity relationships: the role of positive interactions. Proc. Natl. Acad. Sci. USA 98, 6704–6708. https://doi.org/10.1073/pnas.111055298 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    47.
    Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410. https://doi.org/10.1111/j.1461-0248.2010.01533.x (2010).
    Article  PubMed  Google Scholar 

    48.
    Philippot, L. et al. Effect of primary mild stress on resilience and resistance of the nitrate reducer community to a subsequent severe stress. FEMS Microbiol. Lett. 285, 51–57 (2008).
    CAS  Article  Google Scholar 

    49.
    Kassen, B. & Bell, G. Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity 80, 732–741 (1998).
    Article  Google Scholar 

    50.
    Venail, P. A., Kaltz, O., Olivieri, I., Pommier, T. & Mouquet, N. Diversification in temporally heterogeneous environments: effect of the grain in experimental bacterial populations. J. Evol. Biol. 24, 2485–2495. https://doi.org/10.1111/j.1420-9101.2011.02376.x (2011).
    CAS  Article  PubMed  Google Scholar 

    51.
    Nezhad, M. H., Hussain, M. A. & Britz, M. L. Stress responses in probiotic Lactobacillus casei. Crit. Rev. Food Sci. Nutr. 55, 740–749. https://doi.org/10.1080/10408398.2012.675601 (2015).
    CAS  Article  Google Scholar 

    52.
    Zhai, Z. Y. et al. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp bulgaricusCAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environ. Microbiol. 16, 1524–1537. https://doi.org/10.1111/1462-2920.12280 (2014).
    CAS  Article  PubMed  Google Scholar 

    53.
    Morita, R. Y. Psychrophilic bacteria. Bacteriol. Rev. 39, 144–167 (1975).
    CAS  Article  Google Scholar 

    54.
    Persson, I., Pirard, J., Larsson, A., Holm, C. & Lousa-Alvin, A. Kväveafskiljningens effekt på Ekoln. Report No. 2012-12, 72 (Svenskt Vatten Utveckling, 2012).

    55.
    Baath, E. & Kritzberg, E. pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation. Appl. Environ. Microbiol. 81, 7411–7419. https://doi.org/10.1128/aem.02236-15 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Sinclair, L., Osman, O. A., Bertilsson, S. & Eiler, A. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE https://doi.org/10.1371/journal.pone.0116955 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Edgar, R. C. UPARSE highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996+ (2013).
    CAS  Article  Google Scholar 

    58.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  Article  Google Scholar 

    59.
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137. https://doi.org/10.3354/ame01753 (2015).
    Article  Google Scholar 

    60.
    Oksanen, J. et al. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan (2015).

    61.
    del Giorgio, P., Bird, D. F., Prairie, Y. T. & Planas, D. Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol. Oceanogr. 41, 783–789 (1996).
    ADS  Article  Google Scholar 

    62.
    Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-Leucine. Mar. Microbial. Food Webs 6, 107–114 (1992).
    Google Scholar 

    63.
    Kirchman, D. L. in Handbook of methods in aquatic microbial ecology (eds P. F. Kemp, E. B. Sherr, B. F. Sherr, & J. J. Cole) (Lewis Publishers, London, 1993).

    64.
    Ylla, I., Peter, H., Romani, A. M. & Tranvik, L. J. Different diversity-functioning relationship in lake and stream bacterial communities. FEMS Microbiol. Ecol. 85, 95–103. https://doi.org/10.1111/1574-6941.12101 (2013).
    Article  PubMed  Google Scholar 

    65.
    Maxwell, S. E., Delaney, H. D. & Kelly, K. Designing Experiments and Analyzing Data: A Model Comparison Perspective (3, Routledge, London, 2018).
    Google Scholar  More

  • in

    Coupling feeding activity, growth rates and molecular data shows dietetic needs of Ciona robusta (Ascidiacea, Phlebobranchia) in automatic culture plants

    1.
    Brunetti, R. et al. Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J. Zool. Syst. Evol. Res. 53, 186–193. https://doi.org/10.1111/jzs.12101 (2015).
    Article  Google Scholar 
    2.
    Lambert, C. C. Historical introduction, overview, and reproductive biology of the protochordates. Can. J. Zool. 83, 1–7. https://doi.org/10.1139/z04-160 (2005).
    Article  Google Scholar 

    3.
    Dybern, B. I. The distribution and salinity tolerance of Ciona intestinalis (L.) F. typica with special reference to the waters around Southern Scandinavia. Ophelia 4, 207–226. https://doi.org/10.1080/00785326.1967.10409621 (1967).
    Article  Google Scholar 

    4.
    Lambert, C. C. & Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Mar. Ecol. Progr. Ser. https://doi.org/10.3354/meps259145 (2003).
    Article  Google Scholar 

    5.
    Lambert, C. C. & Lambert, G. Non-indigenous ascidians in southern California harbors and marinas. Mar. Biol. 130, 675–688. https://doi.org/10.1007/s002270050289 (1998).
    Article  Google Scholar 

    6.
    Lundälv, T. & Christie, H. Comparative trends and ecological patterns of rocky subtidal communities in the Swedish and Norwegian Skagerrak area. Hydrobiologia 142, 71–80. https://doi.org/10.1007/BF00026748 (1987).
    Article  Google Scholar 

    7.
    Hoshino, Z. & Nishikawa, T. Taxonomic studies of Ciona intestinalis (L.) and its allies. Seto Mar. Biol. Lab. Pubbl. 30, 61–79 (1985).
    Article  Google Scholar 

    8.
    Mazzola, A. & Riggio, S. Fouling of Palermo harbour. 2nd contribution. Mem. Biol. Mar. Oceanogr. 6, 41–43 (1977).
    Google Scholar 

    9.
    Havenhand, J. N. & Svane, I. Roles of hydrodynamics and larval behaviour in determining spatial aggregation in the tunicate Ciona intestinalis. Mar. Ecol. Progr. Ser. 68, 271–276. https://doi.org/10.3354/meps068271 (1991).
    ADS  Article  Google Scholar 

    10.
    Koechlin, N. Settlement of epifauna of Spirographis spallanzani, Sycon ciliatum and Ciona intestinalis in the harbor of Lezardrieux. Cah. Biol. Mar. 18, 325–337 (1977).
    Google Scholar 

    11.
    Zupo, V., Buia, M. C., Gambi, M. C., Lorenti, M. & Procaccini, G. Temporal variations in the spatial distribution of shoot density in a Posidonia oceanica meadow and patterns of genetic diversity. Mar. Ecol. 27, 328–338. https://doi.org/10.1111/j.1439-0485.2006.00133.x (2006).
    ADS  Article  Google Scholar 

    12.
    Keough, M. J. Patterns of recruitment of sessile invertebrates in two subtidal habitats. J. Exp. Mar. Biol. Ecol. 66, 213–245. https://doi.org/10.1016/0022-0981(83)90162-4 (1983).
    Article  Google Scholar 

    13.
    Cayer, D., MacNeil, M. & Bagnall, A. G. Tunicate fouling in Nova Scotia aquaculture: a new development. J. Shellfish Res. 18, 327 (1999).
    Google Scholar 

    14.
    de Oliveira Marins, F., da Silva Oliveira, C., Maciel, N. M. V. & Skinner, L. F. Reinclusion of Ciona intestinalis (Ascidiacea: Cionidae) in Brazil—a methodological view. Mar. Biodivers. Rec. https://doi.org/10.1017/S175526720900116X (2009).
    Article  Google Scholar 

    15.
    Svane, I. & Lundälv, T. Reproductive patterns and population dynamics of Ascidia mentula O.F. Müller on the Swedish west coast. J. Exp. Mar. Biol. Ecol. 50, 163–182. https://doi.org/10.1016/0022-0981(81)90048-4 (1981).
    Article  Google Scholar 

    16.
    Svane, I. & Lundalv, T. Persistence stability in ascidian populations: long-term population dynamics and reproductive pattern of Pyura tessellata (forbes) in gullmarfjorden on the swedish west coast. Sarsia 67, 249–257. https://doi.org/10.1016/0022-0981(81)90048-4 (1982).
    Article  Google Scholar 

    17.
    Svane, I. Ascidian reproductive patterns related to long-term population dynamics. Sarsia 68, 249–255. https://doi.org/10.1080/00364827.1982.10421339 (1983).
    Article  Google Scholar 

    18.
    Lambert, G. The general ecology and growth of a solitary ascidian, Corella willmeriana. Biol. Bull. 135, 296–307. https://doi.org/10.2307/1539783 (1968).
    Article  PubMed  Google Scholar 

    19.
    Goodbody, I. The biology of Ascidia nigra (Savigny). 11. The development and survival of young ascidians. Biol. Bull. 124, 31–44. https://doi.org/10.2307/1539566 (1963).
    Article  Google Scholar 

    20.
    Goodbody, I. The Biology of Ascidia nigra (Savigny). I. Survival and mortality in an adult population. Biol. Bull. 122, 40–51. https://doi.org/10.2307/1539320 (1962).
    Article  Google Scholar 

    21.
    Sato, A., Satoh, N. & Bishop, J. D. D. Field identification of ‘types’ A and B of the ascidian Ciona intestinalis in a region of sympatry. Mar. Biol. 159, 1611–1619. https://doi.org/10.1007/s00227-012-1898-5 (2012).
    Article  Google Scholar 

    22.
    Harada, Y. et al. Mechanism of self-sterility in a hermaphroditic chordate. Science 320, 548–550. https://doi.org/10.1126/science.1152488 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    23.
    Sawada, H., Morita, M. & Iwano, M. Self/non-self recognition mechanisms in sexual reproduction: New insight into the self-incompatibility system shared by flowering plants and hermaphroditic animals. Biochem. Biophys. Res. Commun. 450, 1142–1148. https://doi.org/10.1016/j.bbrc.2014.05.099 (2014).
    CAS  Article  PubMed  Google Scholar 

    24.
    Dehal, P. et al. The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298, 2157–2167. https://doi.org/10.1126/science.1080049 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    25.
    Sasaki, A., Miyamoto, Y., Satou, Y., Satoh, N. & Ogasawara, M. Novel endostyle-specific genes in the ascidian Ciona intestinalis. Zool. Sci. 20, 1025–1030. https://doi.org/10.2108/zsj.20.1025 (2003).
    CAS  Article  PubMed  Google Scholar 

    26.
    Joly, J. S. et al. Culture of Ciona intestinalis in closed systems. Dev. Dyn. 236, 1832–1840. https://doi.org/10.1002/dvdy.21124 (2007).
    Article  PubMed  Google Scholar 

    27.
    Gallo, A. & Tosti, E. Adverse effect of antifouling compounds on the reproductive mechanisms of the ascidian Ciona intestinalis. Mar. Drugs 11, 3554–3568. https://doi.org/10.3390/md11093554 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Corbo, J. C., Di Gregorio, A. & Levine, M. The Ascidian as a model organism in developmental and evolutionary biology. Cell 106, 535–538. https://doi.org/10.1016/s0092-8674(01)00481-0 (2001).
    CAS  Article  PubMed  Google Scholar 

    29.
    Stolfi, A. & Christiaen, L. Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192(1), 55–66. https://doi.org/10.1534/genetics.112.140590 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Dahlberg, C. et al. Refining the Ciona intestinalis model of central nervous system regeneration. PLoS ONE 4(2), e4458. https://doi.org/10.1371/journal.pone.0004458 (2009).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Bollner, T., Beesley, P. W. & Thorndyke, M. C. Distribution of GABA-like immunoreactivity during post-metamorphic development and regeneration of the central nervous system in the ascidian Ciona intestinalis. Cell Tissue Res. 272, 553–561. https://doi.org/10.1007/BF00318562 (1993).
    CAS  Article  Google Scholar 

    32.
    Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656. https://doi.org/10.1073/pnas.202320599 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    33.
    Carver, C. E., Mallet, A. L. & Vercaemer, B. Biological synopsis of the solitary tunicate Ciona intestinalis. Can. Man. Rep. Fish. Aquat. Sci. 2746 (2006).

    34.
    Fiala-Médioni, A. Filter-feeding ethology of benthic invertebrates (ascidians). IV. Pumping rate, filtration rate, filtration efficiency. Mar. Biol. 48, 243–249. https://doi.org/10.1007/BF00397151 (1978).
    Article  Google Scholar 

    35.
    Hoxha, T. et al. Comparative feeding rates of native and invasive ascidians. Mar. Pollut. Bull. 135, 1067–1071. https://doi.org/10.1016/j.marpolbul.2018.08.039 (2018).
    CAS  Article  PubMed  Google Scholar 

    36.
    Petersen, J. K., Mayer, S. & Knudsen, M. Å. Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. Mar. Biol. 133, 185–192. https://doi.org/10.1007/s002270050457 (1999).
    Article  Google Scholar 

    37.
    Millar, R. H. The biology of ascidians. Adv. Mar. Biol. 9, 1–100 (1971).
    ADS  Article  Google Scholar 

    38.
    Thomas, N. W. Mucus-secreting cells from the alimentary canal of Ciona intestinalis. J. Mar. Biol. Assoc. U. K. 50, 429–438. https://doi.org/10.1017/S0025315400004628 (1970).
    Article  Google Scholar 

    39.
    Flood, P. R. & Fiala-Medioni, A. Ultrastructure and histochemistry of the food trapping mucous film in benthic filter-feeders (Ascidians). Acta Zool. 62, 53–65. https://doi.org/10.1111/j.1463-6395.1981.tb00616.x (1981).
    Article  Google Scholar 

    40.
    Randløv, A. & Riisgard, H. U. Efficiency of particle retention and filtration rate in four species of ascidians. Mar. Ecol. Progr. Ser. 11, 89–103 (1979).
    Google Scholar 

    41.
    Petersen, J. K. & Riisgard, H. U. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser. 88, 9–17 (1992).
    ADS  Article  Google Scholar 

    42.
    Lumare, F., Di Muro, P., Tenderini, L. & Zupo, V. Experimental intensive culture of Penaeus monodon in the cold-temperate climate of the North-East coast of Italy (a fishery ‘valle’ of the River Po Delta). Aquaculture 113, 231–241. https://doi.org/10.1016/0044-8486(93)90476-F (1993).
    Article  Google Scholar 

    43.
    Mutalipassi, M., Di Natale, M., Mazzella, V. & Zupo, V. Automated culture of aquatic model organisms: shrimp larvae husbandry for the needs of research and aquaculture. Animal 12, 155–163. https://doi.org/10.1017/S1751731117000908 (2018).
    CAS  Article  PubMed  Google Scholar 

    44.
    Armsworthy, S. L., MacDonald, B. A. & Ward, J. E. Feeding activity, absorption efficiency and suspension feeding processes in the ascidian, Halocynthia pyriformis (Stolidobranchia: Ascidiacea): responses to variations in diet quantity and quality. J. Exp. Mar. Biol. Ecol. 260, 41–69. https://doi.org/10.1016/S0022-0981(01)00238-6 (2001).
    Article  PubMed  Google Scholar 

    45.
    Coughlan, J. The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 2, 356–358. https://doi.org/10.1007/BF00355716 (1969).
    Article  Google Scholar 

    46.
    Pascoe, P. L., Parry, H. E. & Hawkins, A. J. S. Dynamic filter-feeding responses in fouling organisms. Aquat. Biol. 1, 177–185. https://doi.org/10.3354/ab00022 (2007).
    CAS  Article  Google Scholar 

    47.
    Petersen, J. K. Ascidian suspension feeding. J. Exp. Mar. Biol. Ecol. 342, 127–137. https://doi.org/10.1016/j.jembe.2006.10.023 (2007).
    Article  Google Scholar 

    48.
    Robbins, I. J. The effects of body size, temperature, and suspension density on the filtration and ingestion of inorganic particulate suspensions by ascidians. J. Exp. Mar. Biol. Ecol. 70, 65–78. https://doi.org/10.1016/0022-0981(83)90149-1 (1983).
    Article  Google Scholar 

    49.
    Varrella, S. et al. Toxic diatom aldehydes affect defence gene networks in sea urchins. PLoS ONE 11, e0149734. https://doi.org/10.1371/journal.pone.0149734 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Varrella, S. et al. First morphological and molecular evidence of the negative impact of diatom-derived hydroxyacids on the sea urchin Paracentrotus lividus. Toxicol. Sci. 151, 419–433. https://doi.org/10.1093/toxsci/kfw053 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Jacobi, Y., Yahel, G. & Shenkar, N. Efficient filtration of micron and submicron particles by ascidians from oligotrophic waters. Limnol. Oceanogr. 63, S267–S279. https://doi.org/10.1002/lno.10736 (2018).
    ADS  CAS  Article  Google Scholar 

    52.
    Robbins, I. J. The regulation of ingestion rate, at high suspended particulate concentrations, by some phleobranchiate ascidians. J. Exp. Mar. Biol. Ecol. 82, 1–10. https://doi.org/10.1016/0022-0981(84)90135-7 (1984).
    Article  Google Scholar 

    53.
    Ogasawara, M. et al. Gene expression profiles in young adult Ciona intestinalis. Dev. Genes Evol. 212, 173–185. https://doi.org/10.1007/s00427-002-0230-7 (2002).
    Article  PubMed  Google Scholar 

    54.
    Hendrickson, C. et al. Culture of adult ascidians and ascidian genetics. Methods Cell Biol. 143–170, 2004. https://doi.org/10.1016/S0091-679X(04)74007-8 (2004).
    Article  Google Scholar 

    55.
    Petersen, S. Feeding response to fish feed diets in Ciona intestinalis: implications for IMTA. IMTA. MSc thesis. University of Bergen (2016).

    56.
    Knuckey, R. M., Brown, M. R., Robert, R. & Frampton, D. M. F. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult. Eng. 35, 300–313. https://doi.org/10.1016/j.aquaeng.2006.04.001 (2006).
    Article  Google Scholar 

    57.
    Raniello, R., Iannicelli, M. M., Nappo, M., Avila, C. & Zupo, V. Production of Cocconeis neothumensis (Bacillariophyceae) biomass in batch cultures and bioreactors for biotechnological applications: light and nutrient requirements. J. Appl. Phycol. 19, 383–391. https://doi.org/10.1007/s10811-006-9145-4 (2007).
    CAS  Article  Google Scholar 

    58.
    Nappo, M. et al. Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. J. Appl. Phycol. 21, 295–306. https://doi.org/10.1007/s10811-008-9367-8 (2009).
    CAS  Article  Google Scholar 

    59.
    Ruocco, N. et al. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7. Aquat. Toxicol. 176, 128–140 (2016).
    CAS  Article  Google Scholar 

    60.
    Ruocco, N., Costantini, M. & Santella, L. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos. Sci. Rep. 6, 1–12. https://doi.org/10.1038/srep32157 (2016).
    CAS  Article  Google Scholar 

    61.
    Sigsgaard, S. J., Petersen, J. K. & Iversen, J. J. L. Relationship between specific dynamic action and food quality in the solitary ascidian Ciona intestinalis. Mar. Biol. 143, 1143–1149. https://doi.org/10.1007/s00227-003-1164-y (2003).
    Article  Google Scholar 

    62.
    Liu, L. et al. Ciona intestinalis as an emerging model organism: its regeneration under controlled conditions and methodology for egg dechorionation. J. Zhejiang Univ. Sci. B 7, 467–474. https://doi.org/10.1631/jzus.2006.B0467 (2006).
    Article  PubMed  PubMed Central  Google Scholar 

    63.
    Costantini, S. et al. Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18102112 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Costantini, S. et al. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflamm. https://doi.org/10.1155/2015/204975 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    Ruocco, N. et al. High-quality RNA extraction from the sea urchin Paracentrotus lividus embryos. PLoS ONE 12, e0172171. https://doi.org/10.1371/journal.pone.0172171 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Fujikawa, T., Munakata, T., Kondo, S. I., Satoh, N. & Wada, S. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress. Cell Stress Chaperones 15, 193–204. https://doi.org/10.1007/s12192-009-0133-x (2010).
    CAS  Article  PubMed  Google Scholar 

    67.
    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45e–445. https://doi.org/10.1093/nar/29.9.e45 (2001).
    Article  Google Scholar 

    68.
    Pfaffl, M. W. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, 36e–336. https://doi.org/10.1093/nar/30.9.e36 (2002).
    Article  Google Scholar 

    69.
    Ginzburg, L. R. The theory of population dynamics: I. Back to first principles. J. Theor. Biol. 122, 385–399. https://doi.org/10.1016/S0022-5193(86)80180-1 (1986).
    MathSciNet  Article  Google Scholar 

    70.
    Turchin, P. Does population ecology have general laws?. Oikos 94, 17–26. https://doi.org/10.1034/j.1600-0706.2001.11310.x (2001).
    Article  Google Scholar  More

  • in

    The behaviour of sea snakes (Emydocephalus annulatus) shifts with the tides

    1.
    Wikelski, M. Evolution of body size in Galapagos marine iguanas. Proc. R. Soc. B 272, 1985–1993 (2005).
    PubMed  Google Scholar 
    2.
    Reidenberg, J. S. Anatomical adaptations of aquatic mammals. Anat. Rec. 290, 507–513 (2007).
    Google Scholar 

    3.
    Aubret, F., Bonnet, X. & Shine, R. The role of adaptive plasticity in a major evolutionary transition: early aquatic experience affects locomotor performance of terrestrial snakes. Funct. Ecol. 21, 1154–1161 (2007).
    Google Scholar 

    4.
    Palmer, J. D. The biological rhythms and clocks of intertidal animals (Oxford University Press, Oxford, 1995).
    Google Scholar 

    5.
    Hindle, A. G., Rosen, D. A. & Trites, A. W. Swimming depth and ocean currents affect transit costs in Steller sea lions Eumetopias jubatus. Aquat. Biol. 10, 139–148 (2010).
    Google Scholar 

    6.
    Frazer, N. B. Effect of tidal cycles on loggerhead sea turtles (Caretta caretta) emerging from the sea. Copeia 1983, 516–519 (1983).
    Google Scholar 

    7.
    Hay, D. E. Tidal influence on spawning time of Pacific Herring (Clupea harengus pallasi). Can. J. Fish. Aquat. Sci. 47, 2390–2401 (1990).
    Google Scholar 

    8.
    Gibson, R. N. Tidally-synchronised behaviour in marine fishes. In Rhythms in fishes (ed. Ali, M. A.) 63–81 (Springer, Berlin, 1992).
    Google Scholar 

    9.
    Bernard, I. et al. In situ spawning in a marine broadcast spawner, the Pacific oyster Crassostrea gigas: timing and environmental triggers. Limnol. Oceanogr. 61, 635–647 (2016).
    ADS  Google Scholar 

    10.
    Leite-Castro, L. V. et al. Reproductive biology of the sea cucumber Holothuria grisea in Brazil: importance of social and environmental factors in breeding coordination. Mar. Biol. 163, 67 (2016).
    Google Scholar 

    11.
    Collin, R., Kerr, K., Contolini, G. & Ochoa, I. Reproductive cycles in tropical intertidal gastropods are timed around tidal amplitude cycles. Ecol. Evol. 7, 5977–5991 (2017).
    PubMed  PubMed Central  Google Scholar 

    12.
    Reinert, H. K. Habitat variation within sympatric snake populations. Ecology 65, 1673–1682 (1984).
    Google Scholar 

    13.
    Reinert, H. K. & Zappalorti, R. T. Timber rattlesnakes (Crotalus horridus) of the Pine Barrens: their movement patterns and habitat preference. Copeia 1988, 964–978 (1988).
    Google Scholar 

    14.
    Bauder, J. M. et al. Multi-level, multi-scale habitat selection by a wide-ranging, federally threatened snake. Landsc. Ecol. 33, 743–763 (2018).
    Google Scholar 

    15.
    Cook, T. R., Bonnet, X., Fauvel, T., Shine, R. & Brischoux, F. Foraging behaviour and energy budgets of sea snakes from New Caledonia: insights from implanted data-loggers. J. Zool. 298, 82–93 (2016).
    Google Scholar 

    16.
    Udyawer, V., Read, M., Hamann, M., Simpfendorfer, C. A. & Heupel, M. R. Effects of environmental variables on the movement and space use of coastal sea snakes over multiple temporal scales. J. Exp. Mar. Biol. Ecol. 473, 26–34 (2015).
    Google Scholar 

    17.
    Udyawer, V., Simpfendorfer, C. A. & Heupel, M. R. Diel patterns in three-dimensional use of space by sea snakes. Anim. Biotelemetry 3, 29 (2015).
    Google Scholar 

    18.
    Udyawer, V., Simpfendorfer, C. A., Read, M., Hamann, M. & Heupel, M. R. Exploring habitat selection in sea snakes using passive acoustic monitoring and Bayesian hierarchical models. Mar. Ecol. Prog. Ser. 546, 249–262 (2016).
    ADS  Google Scholar 

    19.
    Udyawer, V., Read, M., Hamann, M., Heupel, M. R. & Simpfendorfer, C. A. Importance of shallow tidal habitats as refugia from trawl fishing for sea snakes. J. Herpetol. 50, 527–533 (2016).
    Google Scholar 

    20.
    Udyawer, V., Simpfendorfer, C. A., Heupel, M. R. & Clark, T. D. Temporal and spatial activity-associated energy partitioning in free-swimming sea snakes. Funct. Ecol. 31, 1739–1749 (2017).
    Google Scholar 

    21.
    Kerford, M. R., Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Danger on the rise: diurnal tidal state mediates an exchange of food for safety by the bar-bellied sea snake Hydrophis elegans. Mar. Ecol. Prog. Ser. 358, 289–294 (2008).
    ADS  Google Scholar 

    22.
    Wirsing, A. J. & Heithaus, M. R. Olive-headed sea snakes Disteria major shift seagrass microhabitats to avoid shark predation. Mar. Ecol. Prog. Ser. 387, 287–293 (2009).
    ADS  Google Scholar 

    23.
    Shetty, S. & Shine, R. Activity patterns of yellow-lipped sea kraits (Laticauda colubrina) on a Fijian island. Copeia 2002, 77–85 (2002).
    Google Scholar 

    24.
    Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).
    ADS  Google Scholar 

    25.
    Shine, R. All at sea: aquatic life modifies mate-recognition modalities in sea snakes (Emydocephalus annulatus, Hydrophiidae). Behav. Ecol. Sociobiol. 57, 591–598 (2005).
    Google Scholar 

    26.
    Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): the effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).
    Google Scholar 

    27.
    Rezaie-Atagholipour, M., Riyahi-Bakhtiari, A. & Sajjadi, M. Feeding habits of the annulated sea snake, Hydrophis cyanocinctus, in the Persian Gulf. J. Herpetol. 47, 328–330 (2013).
    Google Scholar 

    28.
    Shine, R., Brischoux, F. & Pile, A. A seasnake’s colour affects its susceptibility to algal fouling. Proc. R. Soc. B 277, 2459–2464 (2010).
    CAS  PubMed  Google Scholar 

    29.
    Shine, R., Goiran, C., Shine, T., Fauvel, T. & Brischoux, F. Phenotypic divergence between seasnake (Emydocephalus annulatus) populations from adjacent bays of the New Caledonian Lagoon. Biol. J. Linn. Soc. 107, 824–832 (2012).
    Google Scholar 

    30.
    Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).
    PubMed  PubMed Central  Google Scholar 

    31.
    Heatwole, H. Sea snakes. Australian natural history series 2nd edn. (University of New South Wales Press, Randwick, 1999).
    Google Scholar 

    32.
    Lukoschek, V., Beger, M., Ceccarelli, D., Richards, Z. & Pratchett, M. Enigmatic declines of Australia’s sea snakes from a biodiversity hotspot. Biol. Conserv. 166, 191–202 (2013).
    Google Scholar 

    33.
    Goiran, C. & Shine, R. Decline in sea snake abundance on a protected coral reef system in the New Caledonian Lagoon. Coral Reefs 32, 281–284 (2013).
    ADS  Google Scholar 

    34.
    Udyawer, V. et al. Future directions in marine snake research and management. Front. Mar. Sci. 5, 399 (2018).
    Google Scholar 

    35.
    Harrison, H. B. et al. Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs 38, 713–719 (2019).
    ADS  Google Scholar 

    36.
    Richardson, L. E., Graham, N. A., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).
    ADS  Google Scholar 

    37.
    Mitrovich, M. J., Diffendorfer, J. E., Brehme, C. S. & Fisher, R. N. Effects of urbanization and habitat composition on site occupancy of two snake species using regional monitoring data from southern California. Glob. Ecol. Conserv. 15, e00427 (2018).
    Google Scholar 

    38.
    Ineich, I. The sea snakes of New Caledonia (Elapidae, Hydrophiinae). In Compendium of marine species from New Caledonia (eds Payri, C. & Richer de Forges, B.) 403–410 (Institut de Recherche pour le Développement, Marseille, 2007).
    Google Scholar 

    39.
    Goiran, C., Bustamante, P. & Shine, R. Industrial melanism in the seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).
    CAS  PubMed  Google Scholar 

    40.
    Shine, R., Bonnet, X., Elphick, M. & Barrott, E. A novel foraging mode in snakes: browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct. Ecol. 18, 16–24 (2004).
    Google Scholar 

    41.
    Avolio, C., Shine, R. & Pile, A. J. The adaptive significance of sexually dimorphic scale rugosity in sea snakes. Am. Nat. 167, 728–738 (2006).
    PubMed  Google Scholar 

    42.
    Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of seasnakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).
    Article  Google Scholar  More