More stories

  • in

    Changes in taxonomic and functional diversity of plants in a chronosequence of Eucalyptus grandis plantations

    1.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science (80- ) 287, 1770–1774 (2000).CAS 
    Article 

    Google Scholar 
    2.Wall, D. H. & Nielsen, U. N. Biodiversity and ecosystem services: is it the same below ground?. Nat. Educ. Knowl. 12, 3–8 (2012).
    Google Scholar 
    3.FAO. Global Forest Resources Assessment 2015: Desk Reference. http://www.fao.org/3/a-i4808e.pdf (2015).4.Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).ADS 
    Article 

    Google Scholar 
    5.Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. For. Ecol. Manag. 437, 304–313 (2019).Article 

    Google Scholar 
    6.Calviño-Cancela, M. Effectiveness of eucalypt plantations as a surrogate habitat for birds. For. Ecol. Manag. 310, 692–699 (2013).Article 

    Google Scholar 
    7.Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Taxonomic and functional β-diversity of ants along tree plantation chronosequences differ between contrasting biomes. Basic Appl. Ecol. 41, 1–12 (2019).Article 

    Google Scholar 
    8.Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: interactive effects with the biome and land use across taxa. PLoS ONE 10, 1–17 (2015).Article 
    CAS 

    Google Scholar 
    9.Phifer, C. C., Knowlton, J. L., Webster, C. R., Flaspohler, D. J. & Licata, J. A. Bird community responses to afforested eucalyptus plantations in the Argentine pampas. Biodivers. Conserv. https://doi.org/10.1007/s10531-016-1126-6 (2016).Article 

    Google Scholar 
    10.Tererai, F., Gaertner, M., Jacobs, S. M. & Richardson, D. M. Eucalyptus invasions in riparian forests: effects on native vegetation community diversity, stand structure and composition. For. Ecol. Manag. 297, 84–93 (2013).Article 

    Google Scholar 
    11.Brancalion, P. H. S. et al. Intensive silviculture enhances biomass accumulation and tree diversity recovery in tropical forest restoration. Ecol. Appl. 29, 1–12 (2019).Article 

    Google Scholar 
    12.Zhang, C., Liu, G., Xue, S. & Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 97, 40–49 (2016).CAS 
    Article 

    Google Scholar 
    13.Zhu, Y., Wang, Y. & Chen, L. Effects of non-native tree plantations on the diversity of understory plants and soil macroinvertebrates in the Loess Plateau of China. Plant Soil 446, 357–368 (2019).Article 
    CAS 

    Google Scholar 
    14.Zhang, W. et al. Plant functional composition and species diversity affect soil C, N, and P during secondary succession of abandoned farmland on the Loess Plateau. Ecol. Eng. 122, 91–99 (2018).Article 

    Google Scholar 
    15.Munévar, A., Rubio, G. D. & Andrés, G. Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic forest: the role of prey availability and abiotic conditions. For. Ecol. Manag. 424, 536–544 (2018).Article 

    Google Scholar 
    16.Vega, E., Baldi, G., Jobbágy, E. G. & Paruelo, J. Land use change patterns in the Río de la Plata grasslands: the influence of phytogeographic and political boundaries. Agric. Ecosyst. Environ. 134, 287–292 (2009).Article 

    Google Scholar 
    17.Ntshuxeko, V. E. & Ruwanza, S. Physical properties of soil in Pine elliottii and Eucalyptus cloeziana plantations in the Vhembe biosphere, Limpopo Province of South Africa. J. For. Res. https://doi.org/10.1007/s11676-018-0830-3 (2018).Article 

    Google Scholar 
    18.Kerr, T. F. & Ruwanza, S. Does Eucalyptus grandis invasion and removal affect soils and vegetation in the Eastern Cape Province, South Africa?. Austral. Ecol. 41, 328–338 (2016).Article 

    Google Scholar 
    19.Zhang, D. J., Zhang, J., Yang, W. Q. & Wu, F. Z. Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages. Ecol. Res. 25, 13–23 (2010).Article 

    Google Scholar 
    20.Díaz, S. & Cabido, M. Vive la difference: plant functional diversity matters to ecosystem processes: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    21.Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Luck, G. W., Lavorel, S., Mcintyre, S. & Lumb, K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J. Anim. Ecol. 81, 1065–1076 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lindenmayer, D. et al. Richness is not all: how changes in avian functional diversity reflect major landscape modification caused by pine plantations. Divers. Distrib. 21, 836–847 (2015).Article 

    Google Scholar 
    24.Whittaker, R. H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 280–338 (1960).Article 

    Google Scholar 
    25.Swenson, N. G. Functional and Phylogenetic Ecology in R. Use R! (2014). https://doi.org/10.1007/978-1-4614-9542-0.26.Vaccaro, A. S., Filloy, J. & Bellocq, M. I. What land use better preserves taxonomic and functional diversity of birds in a grassland biome?. Avian Conserv. Ecol. 14, 1 (2019).Article 

    Google Scholar 
    27.Blair, J., Nippert, J. & Briggs, J. Grassland Ecology. Ecology and the Environment vol. 8 (Springer, 2014).28.Nic Lughadha, E. et al. Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action. Philos. Trans. R. Soc. B Biol. Sci. 360, 359–372 (2005).CAS 
    Article 

    Google Scholar 
    29.Marteinsdóttir, B. & Eriksson, O. Trait-based filtering from the regional species pool into local grassland communities. J. Plant Ecol. 7, 347–355 (2014).Article 

    Google Scholar 
    30.Salgado Negret, B. La Ecología Funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (2015).31.Barbier, S., Gosselin, F. & Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For. Ecol. Manag. 254, 1–15 (2008).Article 

    Google Scholar 
    32.Zhang, D., Zhang, J., Yang, W., Wu, F. & Huang, Y. Plant and soil seed bank diversity across a range of ages of Eucalyptus grandis plantations afforested on arable lands. Plant Soil 376, 307–325 (2014).CAS 
    Article 

    Google Scholar 
    33.Zhang, C. & Fu, S. Allelopathic effects of eucalyptus and the establishment of mixed stands of eucalyptus and native species. For. Ecol. Manag. 258, 1391–1396 (2009).Article 

    Google Scholar 
    34.Florentine, S. K. & Fox, J. E. D. Allelopathic effects of Eucalyptus victrix L. on Eucalyptus species and grasses. Allelopath. J. 11, 77–83 (2003).
    Google Scholar 
    35.Jobbágy, E. et al. Forestación en pastizales: hacia una visión integral de sus oportunidades y costos ecológicos. Agrociencia X, 109–124 (2006).36.Ruwanza, S., Gaertner, M., Esler, K. J. & Richardson, D. M. Allelopathic effects of invasive Eucalyptus camaldulensis on germination and early growth of four native species in the Western Cape South Africa. South. For. 77, 91–105 (2015).Article 

    Google Scholar 
    37.Suggitt, A. J. et al. Habitat microclimates drive fi ne-scale variation in extreme temperatures. Oikos https://doi.org/10.1111/j.1600-0706.2010.18270.x (2011).Article 

    Google Scholar 
    38.Zellweger, F., Roth, T., Bugmann, H. & Bollmann, K. Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Glob. Ecol. Biogeogr. 26, 898–906 (2017).Article 

    Google Scholar 
    39.Silveira, L. & Alonso, J. Runoff modifications due to the conversion of natural grasslands to forests in a large basin in Uruguay. Hidrol. Process. 329, 320–329 (2009).ADS 
    Article 

    Google Scholar 
    40.Mendoza, C. A., Gallardo, J. F., Turrión, M. B., Pando, V. & Aceñolaza, P. G. Dry weight loss in leaves of dominant species in a successional sequence of the Mesopotamian Espinal (Argentina). For. Syst. 26, 1–10 (2017).
    Google Scholar 
    41.Rodriguez, E. E., Aceñolaza, P. G., Perea, E. L. & Galán de Mera, A. A phytosociological analysis of Butia yatay (Arecaceae) palm groves and gallery forests in Entre Rios, Argentina. Aust. J. Bot. https://doi.org/10.1071/BT16140 (2017).Article 

    Google Scholar 
    42.Piwczyński, M., Puchałka, R. & Ulrich, W. Influence of tree plantations on the phylogenetic structure of understorey plant communities. For. Ecol. Manag. 376, 231–237 (2016).Article 

    Google Scholar 
    43.Csecserits, A. et al. Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric. Ecosyst. Environ. 226, 88–98 (2016).Article 

    Google Scholar 
    44.Amazonas, N. T. et al. High diversity mixed plantations of Eucalyptus and native trees: an interface between production and restoration for the tropics. For. Ecol. Manag. 417, 247–256 (2018).Article 

    Google Scholar 
    45.Verstraeten, G. et al. Understorey vegetation shifts following the conversion of temperate deciduous forest to spruce plantation. For. Ecol. Manag. 289, 363–370 (2013).Article 

    Google Scholar 
    46.Grass, I., Brandl, R., Botzat, A., Neuschulz, E. L. & Farwig, N. Contrasting taxonomic and phylogenetic diversity responses to forest modifications: comparisons of taxa and successive plant life stages in south African scarp forest. PLoS ONE 10, 1–20 (2015).Article 
    CAS 

    Google Scholar 
    47.Wu, J. et al. Should exotic Eucalyptus be planted in subtropical China: insights from understory plant diversity in two contrasting Eucalyptus chronosequences. Environ. Manag. 56, 1244–1251 (2015).ADS 
    Article 

    Google Scholar 
    48.Jin, D. et al. High risk of plant invasion in the understory of eucalypt plantations in South China. Sci. Rep. 5, 18492 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    49.Haughian, S. R. & Frego, K. A. Short-term effects of three commercial thinning treatments on diversity of understory vascular plants in white spruce plantations of northern New Brunswick. For. Ecol. Manag. 370, 45–55 (2016).Article 

    Google Scholar 
    50.Smith, G. F., Iremonger, S., Kelly, D. L., O’Donoghue, S. & Mitchell, F. J. G. Enhancing vegetation diversity in glades, rides and roads in plantation forests. Biol. Conserv. 136, 283–294 (2007).Article 

    Google Scholar 
    51.Aceñolaza, P. G., Rodriguez, E. E. & Diaz, D. Efecto de prácticas de manejo silvícola sobre la diversidad vegetal bajo plantaciones de Eucalyptus grandis. In 4to Congreso Forestal Argentino y Latinoamericano (2013).52.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).Article 

    Google Scholar 
    53.Pedley, S. M. & Dolman, P. M. Multi-taxa trait and functional responses to physical disturbance. J. Anim. Ecol. 83, 1542–1552 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Birkhofer, K., Smith, H. G., Weisser, W. W., Wolters, V. & Gossner, M. M. Land-use effects on the functional distinctness of arthropod communities. Ecography (Cop.) https://doi.org/10.1111/ecog.01141 (2015).Article 

    Google Scholar 
    55.Mangels, J., Fiedler, K., Schneider, F. D. & Blu, N. Diversity and trait composition of moths respond to land-use intensification in grasslands : generalists replace specialists. Biodivers. Conserv. https://doi.org/10.1007/s10531-017-1411-z (2017).Article 

    Google Scholar 
    56.Morello, J., Matteucci, S. D., Rodriguez, A. F. & Silva, M. Ecorregiones y complejos ecosistemicos argentino. (2012).57.Cabrera, Á. Fitogeografía de la República Argentina. Bol. Soc. Argent. Bot. 14, 1–42 (1971).
    Google Scholar 
    58.Rodriguez, E. E., Aceñolaza, P. G., Picasso, G. & Gago, J. Plantas del bajo Rio Uruguay: árboles, arbustos, herbáceas, lianas y epifitas. (2018).59.Bilenca, D. & Miñarro, F. Identificación de Áreas Valiosas de Pastizal (AVPs) en las Pampas y Campos de Argentina Uruguay y sur de Brasil. Vasa https://doi.org/10.1007/s13398-014-0173-7.2 (2004).Article 

    Google Scholar 
    60.Inta. Plan de Tecnologia Regional 2009–2011. INTA Cent. Reg. Entre Rios (2011).61.Aguerre, M. et al. Manual para productores de Eucaliptos de la Mesopotamia Argentina. (1995).62.Aparicio, J. L., Larocca, F. & Dalla Tea, F. Silvicultura de establecimiento de Eucalyptus grandis. IDIA XXI, Revista de Información sobre Investigación y Desarrollo Agropecuario 66–69 (2005).63.Vilela, E., Leite, H. G. & Jaffe, K. Level of economic damage for leaf-cutting ants (Hymenoptera: Formicidae) in Eucalyptus plantations in Brazil. Sociobiology 42, 1–10 (2015).
    Google Scholar 
    64.Larroca, F., Dalla Tea, F. & Aparicio, J. L. Técnicas de implantación y manejo de eucaliptus para pequeños y medianos forestadores en Entre Ríos y Corrientes. in XIX Jornadas Forestales de Entre Ríos. (2004).65.Burkart, A. Flora ilustrada de la provincia de Entre Ríos. (INTA, 1969).66.Burkart, A. Flora ilustrada de Entre Ríos (Argentina). Parte 2 Gramíneas. Colección Científica del INTA (1969).67.Peyras, M., Vespa, N. I., Bellocq, M. I. & Zurita, G. A. Quantifying edge effects : the role of habitat contrast and species specialization. J. Insect Conserv. 17, 807–820 (2013).Article 

    Google Scholar 
    68.Werenkraut, V., Fergnani, P. N. & Ruggiero, A. Ants at the edge: a sharp forest-steppe boundary influences the taxonomic and functional organization of ant species assemblages along elevational gradients in northwestern Patagonia (Argentina). Biodivers. Conserv. 24, 287–308 (2015).Article 

    Google Scholar 
    69.Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).Article 

    Google Scholar 
    70.Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).Article 

    Google Scholar 
    71.Carreño-Rocabado, G. et al. Land-use intensification effects on functional properties in tropical plant communities. Ecol. Appl. https://doi.org/10.1007/s11548-012-0737-y (2015).Article 

    Google Scholar 
    72.Pérez-Harguindeguy, N. et al. New Handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    73.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Legendre, P. & Legendre, L. F. J. Numerical Ecology. (Elsevier, 2012).75.Kembel, S. W. et al. Package ‘ picante ’: Integrating Phylogenies and Ecology. Cran-R 1–55 (2018). https://doi.org/10.1093/bioinformatics/btq166 >.License.76.Swenson, N. G., Anglada-Cordero, P. & Barone, J. A. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc. R. Soc. B Biol. Sci. 278, 877–884 (2011).Article 

    Google Scholar 
    77.Cribari-Neto, F. & Zeileis, A. Journal of Statistical Software. J. Stat. Softw. 34, 1–24 (2010).Article 

    Google Scholar 
    78.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    79.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    80.Grace, J. B. Structural Equation Modeling and Natural Systems. (Cambridge University Press, 2006).81.Fan, Y. et al. Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecol. Process. 5, 19 (2016).ADS 
    Article 

    Google Scholar 
    82.Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    83.Lefcheck, J., Byrnes, J. & Grace, J. Package ‘ piecewiseSEM ’. R (2019).84.Brown, A. M. et al. The fourth-corner solution – using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).Article 

    Google Scholar 
    85.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction. (2009).86.Barton, K. Package ‘MuMIn’.Multi-Model Inference. (2018).87.Dawson, S. K. et al. Plant traits of propagule banks and standing vegetation reveal flooding alleviates impacts of agriculture on wetland restoration. J. Appl. Ecol. 54, 1907–1918 (2017).Article 

    Google Scholar 
    88.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2019). http://qgis.osgeo.org More

  • in

    Impacts of sheep versus cattle livestock systems on birds of Mediterranean grasslands

    Study area and parcel selectionThe study was conducted in Castro Verde Special Protection Area (SPA), located in southern Portugal (Fig. 1). The climate is Mediterranean, with hot summers (30–35 °C on average in July) and mild winters (averaging 5–8 °C in January), and over 75% of annual rainfall (500–600 mm) concentrated in October–March. The landscape is flat or gently undulating (100–300 m), mainly dominated by open areas used for rainfed pastures (ca. 60%) and annual crops (ca. 25%), and to a less extent by open woodlands (ca. 7%)15.Figure 1(a) Location of the study area within the Castro Verde Special Protected Area (SPA), southern Portugal. (b) Distribution of the 27 sheep (dark grey polygons) and 23 cattle (light grey polygons) grazing parcels and (c) Sampling scheme applied to each parcel surveyed. Bird counts were done at the centroid of the parcel (white dot) whereas vegetation sampling was performed at the indicated 10 points (black dots). The area covered with pastures and annual crops (derived from CORINE land cover 2018—https://land.copernicus.eu/pan-european/corine-land-cover/clc2018) is shown in yellow. The map was done using the version 3.10.0 of QGIS—https://qgis.org/en/site/index.html.Full size imageSince 1995, part of the study area has benefited from a CAP agri-environment aiming to protect the traditional farming system16. This scheme provides financial support to farmers for agricultural practices considered favourable to conservation, including the traditional rotation of cereals and fallows, the maintenance of low stocking rates (usually related with sheep grazing systems), and sowing of crops benefiting grassland birds16. However, in recent years the traditional farming system has been declining, with many farmers converting to specialized livestock systems, mainly, cattle grazing systems, with an increase of stocking rates7,15.Parcel selection started by identifying grasslands grazed by either sheep or cattle, based on parcel-level statistical information from 2010 provided by the Portuguese Ministry of Agriculture7. To minimize potentially confounding effects of adjacent land uses (edge effects) and other non-crop elements within parcels on bird assemblages, we excluded parcels less than 100 m from shrubland or forested areas, with shrub and tree cover  > 5% and with a minimum size of 10 ha. In January 2019 we visited 100 pre-selected parcels which were grazed by either sheep or cattle in 2010 in order to confirm the parcel land use in the agricultural year of 2018/2019, aiming to sample a balanced proportion of 50 sheep and cattle grazed parcels. Additional livestock information for the agricultural year of 2018/2019 was obtained during systematic visits to targeted parcels (see “Grazing Regime” section from Methods). We ended up with 23 cattle parcels and 27 sheep parcels (Fig. 1).Bird and vegetation dataBreeding birds were sampled twice in each parcel during 7–16 April and 1–15 May 2019 respectively, always by the same observer (R.F.R). This was done to take into account species-specific breeding phenology in the area (early and late breeders)17 and minimize bias due to other factors (like weather or disturbance). Sampling was conducted using standardized 10 min point counts18 carried out at the central point of the parcel (Fig. 1). As the open terrain allowed for high visibility, a large detection radius was used, and all birds detected within 100 m of the central point were identified and counted. This radius is roughly similar to the one previously used for characterizing bird populations in the region19. All counts were carried out in the first four hours after sunrise and in the last two hours before sunset, with none in heavy or persistent rain, or in strong wind conditions. To estimate bird species richness and occurrences in each parcel, we pooled the data from the two counts. Species-level analyses focused on the six most common species, which occurred in  > 30% of the parcels (see Supplementary Table S1). In addition to presence/absence, we also estimated population densities, using the count which yielded the highest estimate of density for each species (assuming this is the best indicator of population density, given the potential phenology and detectability biases above mentioned). Bird densities were based on the number of males simultaneously detected and expressed as breeding pairs/10 ha or males/10 ha (in the case of Little Bustard Tetrax tetrax and Common Quail Coturnix coturnix). Categorization to the genus level was made for the Crested and Thekla larks (Galerida cristata and G. theklae) due to difficulties in correctly identifying all individuals of these two very similar species in the field.Vegetation height and cover were measured once in each parcel, between April 22 and May 6. Vegetation height was estimated in a set of ten 3 m radius plots defined inside the 100 m buffer (Fig. 1). In each plot, ten measurements of vegetation height were taken at random locations, for a total of 100 measurements per parcel. Vegetation height was measured using a 50 cm ruler and was defined as the highest point of vegetation projection within 3 cm of the ruler20. All values were estimated to the nearest half centimeter. When no vegetation was present (bare soil, soil litter, rocks or animal dung) the height was set to zero (0) but these measurements were not considered to estimate the mean height of the sward. Vegetation cover was measured inside a 50 × 50 cm quadrat placed at each of the ten grid points, by visual estimation to the nearest 5% of the percentage of the quadrat area covered by vegetation21 (Fig. 1). Vegetation height and cover measurements were averaged within each parcel.Grazing regimeThe number and type of livestock in each parcel as well as the extent of the grazing period since the start of the year (2019) were gathered from interviews (Supplementary Information S1) to land managers during 1–15 May 2019. This information was further validated, and corrected in a few cases, through field checks during regular visits (made at two-week intervals) to the parcels (see “Bird and vegetation data” section from Methods). Three grazing regime indicators were estimated for the whole period (January–May 2019): livestock type (either sheep or cattle), animal density, and grazing pressure. The animal density in each parcel was calculated as the average density (animals per hectare) of any species (regardless of being sheep or cattle) that grazed the parcel during the 5-months period. Stocking Rate translated animal density into livestock unit (LU) per hectare (LU/ha), between January and May, according to the following criteria: one adult bovine = 1 LU; bovine aged  More

  • in

    Infection with Borrelia afzelii and manipulation of the egg surface microbiota have no effect on the fitness of immature Ixodes ricinus ticks

    1.Randolph, S. E. Ticks are not insects: Consequences of contrasting vector biology for transmission potential.. Parasitol Today 14, 186–192 (1998).CAS 
    Article 

    Google Scholar 
    2.Hartemink, N. A., Randolph, S. E., Davis, S. A. & Heesterbeek, J. A. P. The basic reproduction number for complex disease systems: Defining R-0 for tick-borne infections. Am. Nat. 171, 743–754 (2008).CAS 
    Article 

    Google Scholar 
    3.Tsao, J. Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet. Res. 40, 1 (2009).Article 

    Google Scholar 
    4.Niebylski, M. L., Peacock, M. G. & Schwan, T. G. Lethal effect of Rickettsia rickettsii on its tick vector (Dermacentor andersoni). Appl. Environ. Microbiol. 65, 773–778 (1999).CAS 
    Article 

    Google Scholar 
    5.Ross, D. E. & Levin, M. L. Effects of Anaplasma phagocytophilum infection on the molting success of Ixodes scapularis (Acari: Ixodidae) larvae. J. Med. Entomol. 41, 476–483. https://doi.org/10.1603/0022-2585-41.3.476 (2004).Article 
    PubMed 

    Google Scholar 
    6.Ferguson, H. M. & Read, A. F. Why is the effect of malaria parasites on mosquito survival still unresolved?. Trends Parasitol. 18, 256–261 (2002).Article 

    Google Scholar 
    7.Hurd, H., Hogg, J. C. & Renshaw, M. Interactions between bloodfeeding, fecundity and infection in mosquitos. Parasitol Today 11, 411–416. https://doi.org/10.1016/0169-4758(95)80021-2 (1995).Article 

    Google Scholar 
    8.Lefevre, T. & Thomas, F. Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infect. Genet. Evol. 8, 504–519. https://doi.org/10.1016/j.meegid.2007.05.008 (2008).Article 
    PubMed 

    Google Scholar 
    9.Hurd, H. Manipulation of medically important insect vectors by their parasites. Annu. Rev. Entomol. 48, 141–161. https://doi.org/10.1146/annurev.ento.48.091801.112722 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Lefèvre, T. et al. New prospects for research on manipulation of insect vectors by pathogens. PLoS Pathog. 2, e72. https://doi.org/10.1371/journal.ppat.0020072 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Benelli, G. Pathogens manipulating tick behavior-through a glass. Darkly. Pathogens https://doi.org/10.3390/pathogens9080664 (2020).Article 
    PubMed 

    Google Scholar 
    12.Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190. https://doi.org/10.1146/annurev.genet.41.110306.130119 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Bonnet, S. I., Binetruy, F., Hernandez-Jarguin, A. M. & Duron, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell Infect. Microbiol. https://doi.org/10.3389/fcimb.2017.00236 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Duron, O. & Gottlieb, Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol. 36, 816–825. https://doi.org/10.1016/j.pt.2020.07.007 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Li, L. H., Zhang, Y. & Zhu, D. Effects of antibiotic treatment on the fecundity of Rhipicephalus haemaphysaloides ticks. Parasit. Vectors 11, 7. https://doi.org/10.1186/s13071-018-2807-7 (2018).CAS 
    Article 

    Google Scholar 
    16.Zhang, C. M. et al. Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis. Exp. Appl. Acarol. 73, 429–438. https://doi.org/10.1007/s10493-017-0194-y (2017).Article 
    PubMed 

    Google Scholar 
    17.Zhong, J., Jasinskas, A. & Barbour, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE https://doi.org/10.1371/journal.pone.0000405 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Ben-Yosef, M. et al. Coxiella-like endosymbiont of Rhipicephalus sanguineus is required for physiological processes during ontogeny. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00493 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Duron, O. et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr. Biol. 28, 1896. https://doi.org/10.1016/j.cub.2018.04.038 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Guizzo, M. G. et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci. Rep. https://doi.org/10.1038/s41598-017-17309-x (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Abraham, N. M. et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. USA 114, E781–E790. https://doi.org/10.1073/pnas.1613422114 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Cirimotich, C. M. et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332, 855–858. https://doi.org/10.1126/science.1201618 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Dong, Y., Manfredini, F. & Dimopoulos, G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000423 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Gall, C. A. et al. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 10, 1846–1855. https://doi.org/10.1038/ismej.2015.266 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Narasimhan, S. et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe 15, 58–71. https://doi.org/10.1016/j.chom.2013.12.001 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Kurtenbach, K. et al. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660–669 (2006).CAS 
    Article 

    Google Scholar 
    27.Schotthoefer, A. M. & Frost, H. M. Ecology and epidemiology of Lyme borreliosis. Clin. Lab. Med. 35, 723–743. https://doi.org/10.1016/j.cll.2015.08.003 (2015).Article 
    PubMed 

    Google Scholar 
    28.Herrmann, C. & Gern, L. Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus. Parasit. Vectors https://doi.org/10.1186/s13071-014-0526-2 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Berret, J. & Voordouw, M. J. Lyme disease bacterium does not affect attraction to rodent odour in the tick vector. Parasit. Vectors https://doi.org/10.1186/s13071-015-0856-8 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Herrmann, C. & Gern, L. Do the level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks?. Parasitology 139, 330–337. https://doi.org/10.1017/s0031182011002095 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Lefcort, H. & Durden, L. A. The effect of infection with Lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitology 113, 97–103 (1996).Article 

    Google Scholar 
    32.Herrmann, C. & Gern, L. Survival of Ixodes ricinus (Acari: Ixodidae) under challenging conditions of temperature and humidity is influenced by Borrelia burgdorferi sensu lato infection. J. Med. Entomol. 47, 1196–1204. https://doi.org/10.1603/me10111 (2010).Article 
    PubMed 

    Google Scholar 
    33.Herrmann, C. & Gern, L. Survival of Ixodes ricinus (Acari: Ixodidae) nymphs under cold conditions is negatively influenced by frequent temperature variations. Ticks Tick Borne Dis 4, 445–451. https://doi.org/10.1016/j.ttbdis.2013.05.002 (2013).Article 
    PubMed 

    Google Scholar 
    34.Herrmann, C., Voordouw, M. J. & Gern, L. Ixodes ricinus ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, have higher energy reserves. Int. J. Parasitol. 43, 477–483. https://doi.org/10.1016/j.ijpara.2012.12.010 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.van Duijvendijk, G. et al. A Borrelia afzelii infection increases larval tick burden on Myodes glareolus (Rodentia: Cricetidae) and nymphal body weight of Ixodes ricinus (Acari: Ixodidae). J. Med. Entomol. 54, 422–428. https://doi.org/10.1093/jme/tjw157 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Carpi, G. et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE 6, e25604. https://doi.org/10.1371/journal.pone.0025604 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.van Overbeek, L. et al. Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. FEMS Microbiol. Ecol. 66, 72–84. https://doi.org/10.1111/j.1574-6941.2008.00468.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Cheng, D., Vigil, K., Schanes, P., Brown, R. N. & Zhong, J. Prevalence and burden of two rickettsial phylotypes (G021 and G022) in Ixodes pacificus from California by real-time quantitative PCR. Ticks Tick Borne Dis. 4, 280–287. https://doi.org/10.1016/j.ttbdis.2012.12.005 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Ninio, C. et al. Antibiotic treatment of the hard tick Ixodes ricinus: Influence on Midichloria mitochondrii load following blood meal. Ticks Tick Borne Dis. 6, 653–657. https://doi.org/10.1016/j.ttbdis.2015.05.011 (2015).Article 
    PubMed 

    Google Scholar 
    40.Diuk-Wasser, M. A. et al. Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in Eastern United States. Am. J. Trop. Med. Hyg. 86, 320–327. https://doi.org/10.4269/ajtmh.2012.11-0395 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Telford, S. R., Mather, T. N., Moore, S. I., Wilson, M. L. & Spielman, A. Incompetence of deer as reservoirs of the Lyme-disease spirochete. Am. J. Trop. Med. Hyg. 39, 105–109 (1988).Article 

    Google Scholar 
    42.Jaenson, T. G. T. & Talleklint, L. Incompetence of roe deer as reservoirs of the Lyme borreliosis spirochete. J. Med. Entomol. 29, 813–817 (1992).CAS 
    Article 

    Google Scholar 
    43.van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasit. Vectors 8, 1–11. https://doi.org/10.1186/s13071-015-1257-8 (2015).CAS 
    Article 

    Google Scholar 
    44.Gomez-Chamorro, A. et al. Susceptibility to infection with Borrelia afzelii and TLR2 polymorphism in a wild reservoir host. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-43160-3 (2019).CAS 
    Article 

    Google Scholar 
    45.Gomez-Chamorro, A. et al. Maternal antibodies provide bank voles with strain-specific protection against infection by the Lyme disease pathogen. Appl. Environ. Microbiol. 85, e01887-e11819. https://doi.org/10.1128/aem.01887-19 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Genné, D. et al. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc. R. Soc. B Biol. Sci. 285, 1–10. https://doi.org/10.1098/rspb.2018.1804 (2018).CAS 
    Article 

    Google Scholar 
    47.Genné, D. et al. Competition between strains of Borrelia afzelii in the host tissues and consequences for transmission to ticks. ISME J. https://doi.org/10.1038/s41396-021-00939-5 (2021).Article 
    PubMed 

    Google Scholar 
    48.Jacquet, M., Durand, J., Rais, O. & Voordouw, M. J. Cross-reactive acquired immunity influences transmission success of the Lyme disease pathogen, Borrelia afzelii. Infect. Genet. Evol. 36, 131–140. https://doi.org/10.1016/j.meegid.2015.09.012 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Jacquet, M., Margos, G., Fingerle, V. & Voordouw, M. J. Comparison of the lifetime host-to-tick transmission between two strains of the Lyme disease pathogen Borrelia afzelii. Parasit. Vectors 9, 1–8. https://doi.org/10.1186/s13071-016-1929-z (2016).Article 

    Google Scholar 
    50.Belli, A., Sarr, A., Rais, O., Rego, R. O. M. & Voordouw, M. J. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts. Sci. Rep. 7, 1–13. https://doi.org/10.1038/s41598-017-05231-1 (2017).CAS 
    Article 

    Google Scholar 
    51.Hamilton, P. T. et al. Borrelia infection in rodent host has dramatic effects on the microbiome of ticks. bioRxiv preprint (2021).52.Tonetti, N., Voordouw, M. J., Durand, J., Monnier, S. & Gern, L. Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii. Ticks Tick Borne Dis. 6, 334–343. https://doi.org/10.1016/j.ttbdis.2015.02.007 (2015).Article 
    PubMed 

    Google Scholar 
    53.Lo, N. et al. Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus. Environ. Microbiol. 8, 1280–1287. https://doi.org/10.1111/j.1462-2920.2006.01024.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Prado, S. S. & Almeida, R. P. P. Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica. Entomol. Exp. Appl. 132, 21–29. https://doi.org/10.1111/j.1570-7458.2009.00863.x (2009).Article 

    Google Scholar 
    55.Bistolas, K. S. I., Sakamoto, R. I., Fernandes, J. A. M. & Goffredi, S. K. Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00349 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Taylor, C. M., Coffey, P. L., DeLay, B. D. & Dively, G. P. The importance of gut symbionts in the development of the brown marmorated stink bug, Halyomorpha halys (Stal). PLoS ONE https://doi.org/10.1371/journal.pone.0090312 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Prado, S. S., Rubinoff, D. & Almeida, R. P. P. Vertical transmission of a pentatomid caeca-associated symbiont. Ann. Entomol. Soc. Am. 99, 577–585. https://doi.org/10.1603/0013-8746(2006)99[577:Vtoapc]2.0.Co;2 (2006).Article 

    Google Scholar 
    58.Salem, H., Kreutzer, E., Sudakaran, S. & Kaltenpoth, M. Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ. Microbiol. 15, 1956–1968. https://doi.org/10.1111/1462-2920.12001 (2013).Article 
    PubMed 

    Google Scholar 
    59.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical
    Computing, 2020).60.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    61.Harrell, F. E., Dupont, C. Hmisc: Harrell Miscellaneous v. R package version 4.4-2 (2020).62.Wei, T., Simko, V. R package “corrplot”: Visualization of a Correlation Matrix v. (Version 0.84) (2017).63.Couret, J. et al. Acquisition of Borrelia burgdorferi infection by larval Ixodes scapularis (Acari: Ixodidae) associated with engorgement measures. J. Med. Entomol. 54, 1055–1060. https://doi.org/10.1093/jme/tjx053 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Hanincova, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20. https://doi.org/10.1017/s0031182002002548 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Hanincova, K. et al. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 69, 2825–2830. https://doi.org/10.1128/aem.69.5.2825-2830.2003 (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: Effects of host diversity and
    community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 100, 567–571 (2003).67.Talleklint, L. & Jaenson, T. G. T. Transmission of Borrelia burgdorferi s.l. from mammal reservoirs to the primary vector of Lyme borreliosis, Ixodes ricinus (Acari, Ixodidae), in Sweden. J. Med. Entomol. 31, 880–886 (1994).CAS 
    Article 

    Google Scholar 
    68.Brunner, J. et al. Molting success of Ixodes scapularis varies among individual blood meal hosts and species. J. Med. Entomol. 48, 860–866 (2011).69.Gray, J. S., Kahl, O., Lane, R. S., Levin, M. L. & Tsao, J. I. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis. 7, 992–1003. https://doi.org/10.1016/j.ttbdis.2016.05.006 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Gray, J. S. The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev. Med. Vet.
    Entomol. 79, 323–333 (1991).71.Jouda, F., Perret, J. L. & Gern, L. Ixodes ricinus density, and distribution and prevalence of Borrelia burgdorferi sensu lato infection along an altitudinal gradient. J. Med. Entomol. 41, 162–169. https://doi.org/10.1603/0022-2585-41.2.162 (2004).72.Korenberg, E. I. Seasonal population dynamics of Ixodes ticks and tick-borne encephalitis virus. Exp. Appl. Acarol. 24, 665–681. https://doi.org/10.1023/a:1010798518261 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Investig. 120, 3179–3190. https://doi.org/10.1172/JCI42868 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Anderson, R. A., Koella, J. C. & Hurd, H. The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc. R. Soc. B Biol. Sci. 266, 1729–1733 (1999).CAS 
    Article 

    Google Scholar 
    75.Koella, J. C. An evolutionary view of the interactions between anopheline mosquitoes and malaria parasites. Microbes Infect 1, 303–308. https://doi.org/10.1016/s1286-4579(99)80026-4 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Koella, J. C., Sorensen, F. L. & Anderson, R. A. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc. R. Soc. B Biol. Sci. 265, 763–768 (1998).CAS 
    Article 

    Google Scholar 
    77.Hurd, H. Host fecundity reduction: a strategy for damage limitation?. Trends Parasitol. 17, 363–368 (2001)..78.Hurd, H., Warr, E. & Polwart, A. A parasite that increases host lifespan. Proc. R. Soc. B Biol. Sci. 268, 1749–1753 (2001).CAS 
    Article 

    Google Scholar 
    79.Rollend, L., Fish, D. & Childs, J. E. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: A summary of the literature and recent observations. Ticks Tick Borne Dis. 4, 46–51. https://doi.org/10.1016/j.ttbdis.2012.06.008 (2013).Article 
    PubMed 

    Google Scholar 
    80.Richter, D., Debski, A., Hubalek, Z. & Matuschka, F. R. Absence of Lyme disease spirochetes in larval Ixodes ricinus ticks. Vector-Borne Zoonot. 12, 21–27. https://doi.org/10.1089/vbz.2011.0668 (2012).Article 

    Google Scholar 
    81.Matuschka, F. R., Schinkel, T. W., Klug, B., Spielman, A. & Richter, D. Failure of Ixodes ticks to inherit Borrelia afzelii infection. Appl. Environ. Microbiol. 64, 3089–3091 (1998).CAS 
    Article 

    Google Scholar 
    82.Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the
    transmission of mutualistic bacteria in insects. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2014.2957 (2015).83.Buysse, M., Plantard, O., McCoy, K. D., Duron, O. & Menard, C. Tissue localization of Coxiella-like endosymbionts in three European tick species through fluorescence in situ hybridization. Ticks Tick Borne Dis. 10, 798–804. https://doi.org/10.1016/j.ttbdis.2019.03.014 (2019).Article 
    PubMed 

    Google Scholar 
    84.Lalzar, I., Friedmann, Y. & Gottlieb, Y. Tissue tropism and vertical transmission of Coxiella in Rhipicephalus sanguineus and Rhipicephalus turanicus ticks. Environ. Microbiol. 16, 3657–3668. https://doi.org/10.1111/1462-2920.12455 (2014).Article 
    PubMed 

    Google Scholar 
    85.Levin, M. L. & Fish, D. Density-dependent factors regulating feeding success of Ixodes scapularis larvae (Acari: Ixodidae). J. Parasitol. 84, 36–43. https://doi.org/10.2307/3284526 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.Randolph, S. E. Population regulation in ticks—Role of acquired-resistance in natural and unnatural hosts. Parasitology 79, 141–156 (1979).CAS 
    Article 

    Google Scholar 
    87.Randolph, S. E. The effect of Babesia microti on feeding and survival in its tick vector, Ixodes trianguliceps. Parasitology 102, 9–16 (1991).Article 

    Google Scholar 
    88.Dizij, A. & Kurtenbach, K. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol. 17, 177–183 (1995).CAS 
    Article 

    Google Scholar 
    89.Dobson, A. D. M., Finnie, T. J. R. & Randolph, S. E. A modified matrix model to describe the seasonal population ecology of the European tick Ixodes ricinus. J. Appl. Ecol. 48, 1017–1028. https://doi.org/10.1111/j.1365-2664.2011.02003.x (2011).Article 

    Google Scholar 
    90.Ogden, N. H. et al. Vector seasonality, host infection dynamics and fitness of pathogens transmitted by the tick Ixodes scapularis. Parasitology 134, 209–227 (2007).CAS 
    Article 

    Google Scholar 
    91.Kilpatrick, A. M. et al. Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2016.0117 (2017).Article 

    Google Scholar  More

  • in

    Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities

    1.Cho, B. C. & Azam, F. major role of bacteria in biogeochemical fluxes in the ocean´s interior. Nature 332, 441–443 (1988).CAS 
    Article 

    Google Scholar 
    2.Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).3.Aristegui, J., Gasol, J. M., Duarte, C. M. & Herndl, G. J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).CAS 
    Article 

    Google Scholar 
    4.Baltar, F., Arístegui, J., Gasol, J. M., Lekunberri, I. & Herndl, G. J. Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean. ISME J. 4, 975–988 (2010).PubMed 
    Article 

    Google Scholar 
    5.Del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Arístegui, J. et al. Oceanography: dissolved organic carbon support of respiration in the dark ocean. Science 298, 1967 (2002).PubMed 
    Article 

    Google Scholar 
    7.Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Baltar, F. et al. Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic. Geophys. Res. Lett. 37, L09602 (2010).Article 
    CAS 

    Google Scholar 
    9.Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Stukel, M. R., Song, H., Goericke, R. & Miller, A. J. The role of subduction and gravitational sinking in particle export, carbon sequestration, and the remineralization length scale in the California Current Ecosystem. Limnol. Oceanogr. 63, 363–383 (2018).CAS 
    Article 

    Google Scholar 
    11.Omand, M. M. et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348, 222–225 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA 112, 12122–12126 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    13.Dall’Olmo, G., Dingle, J., Polimene, L., Brewin, R. J. W. & Claustre, H. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9, 820–823 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Herndl, G. J. et al. Contribution of archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Wuchter, C. et al. Archaeal nitrification in the ocean. Proc. Natl Acad. Sci. USA 103, 12317–12322 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Reinthaler, T., van Aken, H. M. & Herndl, G. J. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior. Deep Res. Part II Top. Stud. Oceanogr. 57, 1572–1580 (2010).CAS 
    Article 

    Google Scholar 
    17.Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Hügler, M. & Sievert, S. M. Beyond the Calvin Cycle: autotrophic carbon fixation in the ocean. Ann. Rev. Mar. Sci. 3, 261–289 (2011).PubMed 
    Article 

    Google Scholar 
    20.Sorokin, D. Y. Oxidation of inorganic sulfur compounds by obligately organotrophic bacteria. Microbiology 72, 641–653 (2003).CAS 
    Article 

    Google Scholar 
    21.Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C. & Bertilsson, S. High bicarbonate assimilation in the dark by Arctic bacteria. ISME J. 4, 1581–1590 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    22.Turner, J. T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol. 27, 57–102 (2002).Article 

    Google Scholar 
    23.Ploug, H., Iversen, M. H. & Fischer, G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 1878–1886 (2008).Article 

    Google Scholar 
    24.Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M. & Kahru, M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc. Natl Acad. Sci. USA 115, 12235–12240 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Salazar, G. et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 10, 596–608 (2016).PubMed 
    Article 

    Google Scholar 
    27.Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Salazar, G. et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol. Ecol. 24, 5692–5706 (2015).PubMed 
    Article 

    Google Scholar 
    29.DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Martín-Cuadrado, A.-B. et al. Metagenomics of the deep mediterranean, a warm bathypelagic habitat. PLoS ONE 2, e914 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).CAS 
    PubMed 

    Google Scholar 
    32.Ganesh, S. et al. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 9, 2682–2696 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Rusch, D. B. et al. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical pacific. PLoS Biol. 5, e77 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    35.Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Duarte, C. M. Seafaring in the 21St Century: the Malaspina 2010 circumnavigation expedition. Limnol. Oceanogr. Bull. 24, 11–14 (2015).Article 

    Google Scholar 
    37.Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Baltar, F. et al. Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ. Microbiol 11, 1998–2014 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Bergauer, K. et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc. Natl Acad. Sci. USA 115, E400–E408 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, 1–11 (2020).CAS 

    Google Scholar 
    41.Ruiz‐González, C. et al. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Mol. Ecol. 29, 1820–1838 (2020).42.Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).PubMed 
    Article 

    Google Scholar 
    43.Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded Microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Allen, L. Z. et al. Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME J. 6, 1403–1414 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.López-Pérez, M., Kimes, N. E., Haro-Moreno, J. M. & Rodríguez-Valera, F. Not all particles are equal: the selective enrichment of particle-associated bacteria from the mediterranean sea. Front. Microbiol. 7, 996 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Smith, M. W., Zeigler Allen, L., Allen, A. E., Herfort, L. & Simon, H. M. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. Front. Microbiol. 4, 120 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Alonso-Saez, L. et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl Acad. Sci. USA 109, 17989–17994 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Cordero, P. R. F. et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 13, 2868–2881 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl Acad. Sci. USA 110, 330–335 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Brazelton, W. J., Nelson, B. & Schrenk, M. O. Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front. Microbiol. 2, 268 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Ragsdale, S. W. Life with carbon monoxide. Crit. Rev. Biochem. Mol. Biol. 39, 165–195 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Weber, C. F. & King, G. M. Physiological, ecological, and phylogenetic characterization of Stappia, a marine CO-oxidizing bacterial genus. Appl. Environ. Microbiol. 73, 1266–1276 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Martín-Cuadrado, A. B., Ghai, R., Gonzaga, A. & Rodríguez-Valera, F. CO dehydrogenase genes found in metagenomic fosmid clones from the deep Mediterranean Sea. Appl. Environ. Microbiol. 75, 7436–7444 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Einsle, O. et al. Structure of cytochrome c nitrite reductase. Nature 400, 476–480 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Harborne, N. R., Griffiths, L., Busby, S. J. W. & Cole, J. A. Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon. Mol. Microbiol. 6, 2805–2813 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).CAS 
    Article 

    Google Scholar 
    61.Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Tully, B. J., Sachdeva, R., Graham, E. D. & Heidelberg, J. F. 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ 5, e3558 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Sharma, G., Khatri, I. & Subramanian, S. Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol. Evol. 8, 2520–2529 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Mohr, K. Diversity of myxobacteria—we only see the tip of the iceberg. Microorganisms 6, 84 (2018).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    68.Farnelid, H. et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS ONE 6, e19223 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Moisander, P. H. et al. Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments. Front. Microbiol. 8, 1736 (2017).70.Zehr, J. P., Weitz, J. S. & Joint, I. How microbes survive in the open ocean. Science 357, 646–647 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Hewson, I. et al. Characteristics of diazotrophs in surface to abyssopelagic waters of the Sargasso Sea. Aquat. Microb. Ecol. 46, 15–30 (2007).Article 

    Google Scholar 
    73.Hamersley, M. R. et al. Nitrogen fixation within the water column associated with two hypoxic basins in the Southern California Bight. Aquat. Microb. Ecol. 63, 193–205 (2011).Article 

    Google Scholar 
    74.Farnelid, H. et al. Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre. ISME J. 13, 170–182 (2019).PubMed 
    Article 

    Google Scholar 
    75.Sorokin, D. Y., Tourova, T. P. & Muyzer, G. Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst. Appl. Microbiol. 28, 679–687 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Tiirola, M. A., Männistö, M. K., Puhakka, J. A. & Kulomaa, M. S. Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl. Environ. Microbiol. 68, 173–180 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Yuan, J., Lai, Q., Zheng, T. & Shao, Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int. J. Syst. Evol. Microbiol. 59, 2084–2088 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Addison, S. L., Foote, S. M., Reid, N. M. & Lloyd-Jones, G. Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int. J. Syst. Evol. Microbiol 57, 2467–2471 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Kim, S. H. et al. Ketobacter alkanivorans gen. nov., sp. nov., an n-alkane-degrading bacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 68, 2258–2264 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Teira, E., Lebaron, P., Van Aken, H. & Herndl, G. J. Distribution and activity of bacteria and archaea in the deep water masses of the North Atlantic. Limnol. Oceanogr. 51, 2131–2144 (2006).CAS 
    Article 

    Google Scholar 
    82.Yakimov, M. M. et al. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J. 5, 945–961 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.La Cono, V. et al. Contribution of bicarbonate assimilation to carbon pool dynamics in the deep Mediterranean Sea and cultivation of actively nitrifying and CO2-fixing bathypelagic prokaryotic consortia. Front. Microbiol. 9, 3 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Zarzycki, J., Brecht, V., Müller, M. & Fuchs, G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl Acad. Sci. USA 106, 21317–21322 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. mBio 8, 1e00413-17–19e00413-17 (2017).Article 

    Google Scholar 
    86.Mehrshad, M., Rodríguez-Valera, F., Amoozegar, M. A., López-García, P. & Ghai, R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 12, 655–668 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E. & Scott, S. S. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59, 1515–1524 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Carter, M. S. et al. Functional assignment of multiple catabolic pathways for D-apiose. Nat. Chem. Biol. 14, 696–705 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Yelton, A. P. et al. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 10, 2946–2957 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Buesseler, K. O. et al. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res. 65, 345–416 (2007).CAS 
    Article 

    Google Scholar 
    91.Crump, B. C., Armbrust, E. V. & Baross, J. A. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, Its Estuary, and the Adjacent Coastal Ocean. Appl. Environ. Microbiol. 65, 3192–3204 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Ghiglione, J. F., Conan, P. & Pujo-Pay, M. Diversity of total and active free-living vs. particle-attached bacteria in the euphotic zone of the NW Mediterranean Sea. FEMS Microbiol. Lett. 299, 9–21 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    94.Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4). Stand. Genom. Sci. 11, 1–5 (2016).Article 
    CAS 

    Google Scholar 
    95.Oksanen, J. et al. vegan: community ecology package. https://cran.r-project.org/package=vegan (2019).96.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).97.Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    Article 

    Google Scholar 
    98.Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    100.Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 40, 136–143 (2012).Article 
    CAS 

    Google Scholar 
    101.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, 597–604 (2013).Article 
    CAS 

    Google Scholar 
    103.Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 6, 223 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    104.Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    106.Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2008).Article 

    Google Scholar 
    108.Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    109.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    111.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    112.Huang, X. & Madan, A. CAP3: a DNA sequence assembly program resource 868 genome research. Genome Res. 9, 868–877 (1999).113.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 
    PubMed 

    Google Scholar 
    115.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    117.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).118.Bushnell, B.BBMap. 1. Bushnell, B. BBMap. https://sourceforge.net/projects/bbmap/ (2018).119.Caro-Quintero, A. & Konstantinidis, K. T. Bacterial species may exist, metagenomics reveal. Environ. Microbiol. 14, 347–355 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    120.Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).121.Jaffe, A. L., Castelle, C. J., Dupont, C. L. & Banfield, J. F. Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN archaea. Mol. Biol. Evol. 36, 435–446 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    122.Aylward, F. O. & Santoro, A. E. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5, e00415-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    124.Alves, R. J. E., Minh, B. Q., Urich, T., Von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, 1–17 (2018).CAS 
    Article 

    Google Scholar 
    125.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Global earthworm distribution and activity windows based on soil hydromechanical constraints

    1.Young, I. M. et al. The interaction of soil biota and soil structure under global change. Glob. Change Biol. 4, 703–712 (1998).Article 

    Google Scholar 
    2.Lavelle, P. et al. Earthworms as key actors in self-organized soil systems. Theor. Ecol. Ser. 4, 77–106 (2007).Article 

    Google Scholar 
    3.Blakemore, R. & Hochkirch, A. Soil: restore earthworms to rebuild topsoil. Nature 545, 30–30 (2017).CAS 
    Article 

    Google Scholar 
    4.Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 
    Article 

    Google Scholar 
    5.Brown, G. G., Barois, I. & Lavelle, P. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. Eur. J. Soil Biol. 36, 177–198 (2000).Article 

    Google Scholar 
    6.Denef, K. et al. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611 (2001).CAS 
    Article 

    Google Scholar 
    7.Van Groenigen, J. W. et al. Earthworms increase plant production: a meta-analysis. Sci. Rep. 4, 1–7 (2014).8.Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).Article 

    Google Scholar 
    9.Capowiez, Y. et al. Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biol. Biochem. 41, 711–717 (2009).CAS 
    Article 

    Google Scholar 
    10.Wu, X. D., Guo, J. L., Han, M. & Chen, G. An overview of arable land use for the world economy: From source to sink via the global supply chain. Land Use Policy 76, 201–214 (2018).Article 

    Google Scholar 
    11.Ruiz, S., Schymanski, S. & Or, D. Mechanics and energetics of soil penetration by earthworms and plant roots—higher burrowing rates cost more. Vadose Zone J. https://doi.org/10.2136/vzj2017.01.0021 (2017).12.Quillin, K. J. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. J. Exp. Biol. 202, 661–674 (1999).Article 

    Google Scholar 
    13.Ruiz, S., Or, D. & Schymanski, S. Soil penetration by earthworms and plant roots—mechanical energetics of bioturbation of compacted soils. PLoS ONE https://doi.org/10.1371/journal.pone.0128914 (2015).14.Phillips, H. R. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).CAS 
    Article 

    Google Scholar 
    15.Abbott, I. Distribution of the native earthworm fauna of Australia—a continent-wide perspective. Soil Res. 32, 117–126 (1994).Article 

    Google Scholar 
    16.Hendrix, P. F. & Bohlen, P. J. Exotic earthworm invasions in North America: ecological and policy implications. Bioscience 52, 801–811 (2002).Article 

    Google Scholar 
    17.Nakamura, Y. Studies on the ecology of terrestrial oligochaeta: I. Sesonal variation in the population density of earthworms in alluvial soil grassland in Sapporo, Hokkaido. Appl. Entomol. Zool. 3, 89–95 (1968).Article 

    Google Scholar 
    18.Edwards, C. A. & Bohlen, P. J. Biology and Ecology of Earthworms. Vol. 3 (Springer Science & Business Media, 1996).19.Kretzschmar, A. Burrowing ability of the earthworm Aporrectodea longa limited by soil compaction and water potential. Biol. Fertil. Soils 11, 48–51 (1991).Article 

    Google Scholar 
    20.Johnston, A. S. Land management modulates the environmental controls on global earthworm communities. Glob. Ecol. Biogeogr. 28, 1787–1795 (2019).Article 

    Google Scholar 
    21.Rao, K. P. Physiology of low temperature acclimation in tropical poikilotherms. I. Ionic changes in the blood of the freshwater mussel, Lamellidens marginalis, and the earthworm, Lampito mauritii. Proc. Indian Acad. Sci. 57, 290–295 (1963).CAS 

    Google Scholar 
    22.Baker, G. H. & Whitby, W. A. Soil pH preferences and the influences of soil type and temperature on the survival and growth of Aporrectodea longa (Lumbricidae): the 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia 47, 745–753 (2003).
    Google Scholar 
    23.El-Duweini, A. K. & Ghabbour, S. I. Population density and biomass of earthworms in different types of Egyptian soils. J. Appl. Ecol. 2, 271–287 (1965).24.Ghezzehei, T. A. & Or, D. Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Sci. Soc. Am. J. 65, 624–637 (2001).CAS 
    Article 

    Google Scholar 
    25.Ghezzehei, T. A. & Or, D. Dynamics of soil aggregate coalescence governed by capillary and rheological processes. Water Resour. Res. 36, 367–379 (2000).Article 

    Google Scholar 
    26.Gerard, C. The influence of soil moisture, soil texture, drying conditions, and exchangeable cations on soil strength. Soil Sci. Soc. Am. J. 29, 641–645 (1965).CAS 
    Article 

    Google Scholar 
    27.Quillin, K. J. Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris. J. Exp. Biol. 203, 2757–2770 (2000).CAS 
    Article 

    Google Scholar 
    28.Ruiz, S. A. & Or, D. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. J. R. Soc. Interface 15, 20180127 (2018).Article 

    Google Scholar 
    29.McKenzie, B. M. & Dexter, A. R. Radial pressures generated by the earthworm Aporrectodea rosea. Biol. Fertil. Soils 5, 328–332 (1988).
    Google Scholar 
    30.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    31.Burges, A. Soil Biology. (Elsevier, 2012).32.Ruiz, S. A. Mechanics and Energetics of Soil Bioturbation by Earthworms and Growing Plant Roots. https://doi.org/10.3929/ethz-b-000280625 (2018).33.Kretzschmar, A. & Bruchou, C. Weight response to the soil water potential of the earthworm Aporrectodea longa. Biol. Fertil. Soils 12, 209–212 (1991).Article 

    Google Scholar 
    34.Eggleton, P., Inward, K., Smith, J., Jones, D. T. & Sherlock, E. A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol. Biochem. 41, 1857–1865 (2009).CAS 
    Article 

    Google Scholar 
    35.Beer, C., Reichstein, M., Ciais, P., Farquhar, G. & Papale, D. Mean annual GPP of Europe derived from its water balance. Geophysical Research Letters 34 (2007).36.Keudel, M. & Schrader, S. Axial and radial pressure exerted by earthworms of different ecological groups. Biol. Fertil. Soils 29, 262–269 (1999).Article 

    Google Scholar 
    37.Heaney, L. R., Balete, D. S., Rickart, E. A. & Niedzielski, A. The Mammals of Luzon Island: Biogeography and natural history of a Philippine fauna. (Johns Hopkins University Press, 2016).38.Keller, T. et al. Long-term soil structure observatory for monitoring post-compaction evolution of soil structure. Vadose Zone J. 16, 1–16 (2017).39.Lacoste, M., Ruiz, S. & Or, D. Listening to earthworms burrowing and roots growing-acoustic signatures of soil biological activity. Sci. Rep. 8, 10236 (2018).Article 

    Google Scholar 
    40.Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 

    Google Scholar 
    41.IPCC. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley). 1535 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).42.Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    43.Bengough, A. G. et al. Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot. 57, 437–447 (2005).Article 

    Google Scholar 
    44.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    Article 

    Google Scholar 
    45.Paoletti, M. G. The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ. 74, 137–155 (1999).Article 

    Google Scholar 
    46.Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221 (2012).Article 

    Google Scholar 
    47.Muñoz Sabater, J. (ed Copernicus Climate Change Service (C3S) Climate Data Store (CDS)) (2019).48.Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).Article 

    Google Scholar 
    49.Chamberlain, E. J. & Butt, K. R. Distribution of earthworms and influence of soil properties across a successional sand dune ecosystem in NW England. Eur. J. Soil Biol. 44, 554–558 (2008).Article 

    Google Scholar 
    50.Booth, L. H., Heppelthwaite, V. & McGlinchy, A. The effect of environmental parameters on growth, cholinesterase activity and glutathione S-transferase activity in the earthworm (Apporectodea caliginosa). Biomarkers 5, 46–55 (2000).CAS 
    Article 

    Google Scholar 
    51.GBIF.org. GBIF Occurrence Download (Almidae). https://doi.org/10.15468/dl.xstqow (2020).52.GBIF.org. GBIF Occurrence Download (Eudrilidae). https://doi.org/10.15468/dl.wghggg (2020).53.GBIF.org. GBIF Occurrence Download (Glossoscolecidae). https://doi.org/10.15468/dl.3yj8pk (2020).54.GBIF.org. GBIF Occurrence Download (Hormogastridae). https://doi.org/10.15468/dl.lzuwlg (2020).55.GBIF.org. GBIF Occurrence Download (Lumbricidae). https://doi.org/10.15468/dl.vwqtsk (2020).56.GBIF.org. GBIF Occurrence Download (Microchaetidae). https://doi.org/10.15468/dl.brqmht (2020).57.GBIF.org. GBIF Occurrence Download (Moniligastridae). https://doi.org/10.15468/dl.ghccto (2020).58.GBIF.org. GBIF Occurrence Download (Ocnerodrilidae). https://doi.org/10.15468/dl.dk97gk (2020).59.GBIF.org. GBIF Occurrence Download (Octochaetidae). https://doi.org/10.15468/dl.xjw6kc (2020).60.GBIF.org. GBIF Occurrence Download (Sparganophilidae). https://doi.org/10.15468/dl.9a4ojx (2020).61.Ruiz, S. B., S; Or, D. Dataset for: Global Earthworm Distribution and Activity Windows Based on Soil Hydromechanical Constraints. https://doi.org/10.3929/ethz-b-000476615 (2021). More

  • in

    Current extinction rate in European freshwater gastropods greatly exceeds that of the late Cretaceous mass extinction

    1.Darwall, W. et al. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquat. Conserv. 28, 1015–1022 (2018).Article 

    Google Scholar 
    2.Green, P. A. et al. Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Global Environ. Chang. 34, 108–118 (2015).Article 

    Google Scholar 
    3.EEA (European Environment Agency). The European environment — state and outlook 2020. Knowledge for transition to a sustainable Europe (Publications Office of the European Union, Luxembourg, 2019).4.Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).Article 

    Google Scholar 
    5.Régnier, C., Fontaine, B. & Bouchet, P. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv. Biol. 23, 1214–1221 (2009).Article 

    Google Scholar 
    6.Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    7.Burkhead, N. M. Extinction rates in North American freshwater fishes, 1900–2010. BioScience 62, 798–808 (2012).Article 

    Google Scholar 
    8.Poff, N. L., Olden, J. D. & Strayer, D. L. Climate change and freshwater fauna extinction risk. 309–336. In: Hannah, L. (ed.) Saving a million species (Island Press/Center for Resource Economics, Washington, 2012).9.De Grave, S. et al. Dead shrimp blues: a global assessment of extinction risk in freshwater shrimps (Crustacea: Decapoda: Caridea). PLoS ONE 10, e0120198 (2015).Article 
    CAS 

    Google Scholar 
    10.Böhm, M. et al. The conservation status of the world’s freshwater molluscs. Hydrobiologia (2020) https://doi.org/10.1007/s10750-020-04385-w.11.Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021).Article 

    Google Scholar 
    12.Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020).Article 

    Google Scholar 
    13.Dudgeon, D. Freshwater biodiversity: status, threats and conservation (Cambridge University Press, Cambridge, 2020).14.WWF (World Wildlife Fund). Living Planet Report – 2020: Bending the curve of biodiversity loss (WWF, Gland, 2020).15.Döll, P. & Zhang, J. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci 14, 783–799 (2010).Article 

    Google Scholar 
    16.Janse, J. H. et al. GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environ. Sci. Policy 48, 99–114 (2015).Article 

    Google Scholar 
    17.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    Article 

    Google Scholar 
    18.Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 

    Google Scholar 
    19.Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).CAS 
    Article 

    Google Scholar 
    20.Wang, J.-G., Wu, F.-Y., Tan, X.-C. & Liu, C.-Z. Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 612–613, 97–105 (2014).Article 
    CAS 

    Google Scholar 
    21.Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019).CAS 
    Article 

    Google Scholar 
    22.Shukla, P. R. et al. (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (IPCC, Geneva, 2019).23.Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).CAS 
    Article 

    Google Scholar 
    24.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).CAS 
    Article 

    Google Scholar 
    25.Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K-Pg extinction patterns in marine and freshwater environments: the impact winter model. J. Geophys. Res. Biogeosci. 118, 1006–1014 (2013).Article 

    Google Scholar 
    26.Balian, E. V., Segers, H., Lévêque, C. & Martens, K. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595, 627–637 (2008).Article 

    Google Scholar 
    27.Darwall, W., Seddon, M., Clausnitzer, V. & Cumberlidge, N. Freshwater invertebrate life. 26–32. In: Collen, B., Böhm, M., Kemp, R. & Baillie, J. E. M. (eds). Spineless: status and trends of the world’s invertebrates (Zoological Society of London, London, 2012).28.Strong, E. E., Gargominy, O., Ponder, W. F. & Bouchet, P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595, 149–166 (2008).Article 

    Google Scholar 
    29.Neubauer, T. A., Harzhauser, M., Georgopoulou, E., Kroh, A. & Mandic, O. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots. Proc. Natl. Acad. Sci. USA 112, 11478–11483 (2015).CAS 
    Article 

    Google Scholar 
    30.Cuttelod, A., Seddon, M. & Neubert, E. European red list of non-marine molluscs (Publications Office of the European Union, Luxembourg, 2011).31.Cordellier, M., Pfenninger, A., Streit, B. & Pfenninger, M. Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar. Biol. 159, 2519–2531 (2012).Article 

    Google Scholar 
    32.Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).Article 

    Google Scholar 
    33.Georgopoulou, E., Neubauer, T. A., Harzhauser, M., Kroh, A. & Mandic, O. Distribution patterns of European lacustrine gastropods: a result of environmental factors and deglaciation history. Hydrobiologia 775, 69–82 (2016).Article 

    Google Scholar 
    34.IUCN (International Union for Conservation of Nature). The IUCN red list of threatened species. Version 2020-1. https://www.iucnredlist.org (2020).35.Andermann, T., Faurby, S., Cooke, R., Silvestro, D. & Antonelli, A. iucn_sim: a new program to simulate future extinctions based on IUCN threat status. Ecography 44, 162–176 (2021).Article 

    Google Scholar 
    36.Neubauer, T. A., Harzhauser, M., Kroh, A., Georgopoulou, E. & Mandic, O. A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Sci. Rev. 143, 98–116 (2015).Article 

    Google Scholar 
    37.Sheehan, P. M., Coorough, P. J. & Fastovsky, D. E. Biotic selectivity during the K/T and Late Ordovician extinction events. Geol. Soc. Spec. Pap. 307, 477–489 (1996).
    Google Scholar 
    38.MacLeod, N. et al. The Cretaceous-Tertiary biotic transition. J. Geol. Soc. 154, 265–292 (1997).Article 

    Google Scholar 
    39.Vajda, V. & Bercovici, A. The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: a template for other extinction events. Global Planet. Change 122, 29–49 (2014).Article 

    Google Scholar 
    40.Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. 207, 425–436 (2015).Article 

    Google Scholar 
    41.Henderson, J. Fossil non-marine Mollusca of North America. Geol. Soc. Spec. Pap. 3, 1–313 (1935).
    Google Scholar 
    42.Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 115, 8252–8259 (2018).CAS 
    Article 

    Google Scholar 
    43.Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton evolution and diversity through time. 481–508. In: Thierstein, H. R. & Young, J. R. (eds). Coccolithophores (Springer, Berlin, 2004).44.Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).CAS 
    Article 

    Google Scholar 
    45.Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).CAS 
    Article 

    Google Scholar 
    46.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    Article 

    Google Scholar 
    47.Cowie, R. H., Régnier, C., Fontaine, B. & Bouchet, P. Measuring the sixth extinction: what do mollusks tell us? Nautilus 131, 3–41 (2017).
    Google Scholar 
    48.Georgopoulou, E. et al. Beginning of a new age: How did freshwater gastropods respond to the Quaternary climate change in Europe? Quat. Sci. Rev. 149, 269–278 (2016).Article 

    Google Scholar 
    49.Csapó, H. et al. Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot. Sci. Rep. 10, 18695 (2020).Article 
    CAS 

    Google Scholar 
    50.Davis, M., Faurby, S. & Svenning, J.-C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. USA 115, 11262–11267 (2018).CAS 
    Article 

    Google Scholar 
    51.Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).Article 

    Google Scholar 
    52.Cardinale, B. J., Palmer, M. A. & Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).CAS 
    Article 

    Google Scholar 
    53.Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).Article 

    Google Scholar 
    54.Pimiento, C. et al. Selective extinction against redundant species buffers functional diversity. Proc. R. Soc. B 287, 20201162 (2020).Article 

    Google Scholar 
    55.Cao, W. et al. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14, 5425–5439 (2017).Article 

    Google Scholar 
    56.Martinson, G. G. Mezozoiskie i Kainozoiskie Molliuski kontinentalnykh otlozhenii Sibirskoi Platformy Zabaikalia i Mongolii. Trudy Baikal’skoy Limnologicheskoy Stantzii Akademii Nauk SSSR 19, 1–332 (1961).
    Google Scholar 
    57.Pan, H. Mesozoic and Cenozoic fossil Gastropoda from Yunnan. 83-152. In: Nanjing Institute of Geology and Palaeontology (Ed.). Mesozoic Fossils from Yunnan. 2 (Science Press, Beijing, 1977).58.Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauly, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353, 1284–1286 (2016).CAS 
    Article 

    Google Scholar 
    59.Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J. & Allmon, W. D. The generification of the fossil record. Paleobiology 40, 511–528 (2014).Article 

    Google Scholar 
    60.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).Article 

    Google Scholar 
    61.Plummer, M. et al. coda: Output analysis and diagnostics for MCMC. R package version 0.19-3. https://cran.r-project.org/web/packages/coda/index.html (2019).62.R Core Team. R: A language and environment for statistical computing. Version 3.6.3. R Foundation for Statistical Computing, Vienna. http://www.R-project.org (2020).63.Chamberlain, S. rredlist: ‘IUCN’ red list client. R package version 0.6.0. http://CRAN.R-project.org/package=rredlist (2020)64.Bandel, K. & Riedel, F. The late Cretaceous gastropod fauna from Ajka (Bakony Mountains, Hungary): a revision. Ann. Naturhist. Mus. Wien Ser. A 96, 1–65 (1994).
    Google Scholar  More

  • in

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, GermanyHelen R. P. Phillips, Joanne M. Bennett, Rémy Beugnon, Olga Ferlian, Carlos A. Guerra, Birgitta König-Ries, Julia J. Krebs, Ulrich Brose & Nico EisenhauerInstitute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, GermanyHelen R. P. Phillips, Rémy Beugnon, Olga Ferlian, Julia J. Krebs & Nico EisenhauerDepartment of Environmental Science, Saint Mary’s University, Halifax, Nova Scotia, CanadaHelen R. P. Phillips & Erin K. CameronGlobal Soil Biodiversity Initiative and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, 80523, USAElizabeth M. Bach & Diana H. WallDepartment of Biology, Colorado State University, Fort Collins, CO, 80523, USAElizabeth M. Bach & Diana H. WallUniversidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR, 81280-330, BrazilMarie L. C. BartzCenter of Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, PortugalMarie L. C. BartzInstitute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), GermanyJoanne M. Bennett & Carlos A. GuerraCentre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, AustraliaJoanne M. BennettDepartamento de Ecología y Biología Animal, Universidad de Vigo, 36310, Vigo, SpainMaria J. I. BrionesEmbrapa Forestry, Estrada da Ribeira, km. 111, C.P. 231, Colombo, PR, 83411-000, BrazilGeorge G. BrownA.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr., 33, Moscow, 119071, RussiaKonstantin B. Gongalsky & Iurii M. LebedevM.V. Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, RussiaKonstantin B. Gongalsky & Iurii M. LebedevInstitute of Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, GermanyBirgitta König-RiesEuropean Commission, Joint Research Centre (JRC), Ispra, ItalyAlberto OrgiazziDepartment of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700, Wageningen, AB, The NetherlandsKelly S. Ramirez, Wim H. van der Putten & Madhav P. ThakurSenckenberg Museum for Natural History Görlitz, Department of Soil Zoology, 02826, Görlitz, GermanyDavid J. RussellBiometry and Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, GermanyBenjamin SchwarzInstitute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, GermanyUlrich BroseCEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, FranceThibaud DecaënsSorbonne Université, Institut d’Ecologie et des Sciences de l’Environnement, 75005, Paris, FrancePatrick LavelleCentre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 09200, Moulis, FranceMichel LoreauSorbonne Université, Institute of Ecology and Environmental Sciences of Paris (UMR 7618 IEES-Paris, CNRS, INRA, UPMC, IRD, UPEC), 4 place Jussieu, 75000, Paris, FranceJérôme MathieuINRA, IRD, Institut d’Ecologie et des Sciences de l’Environnement de Paris, F-75005, Paris, FranceJérôme MathieuDepartment of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, ItalyChristian MulderLaboratory of Nematology, Wageningen University, PO Box 8123, 6700, Wageningen, ES, The NetherlandsWim H. van der PuttenInstitute of Biology, Freie Universität Berlin, 14195, Berlin, GermanyMatthias C. Rillig & Daniel R. LammelInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The NetherlandsFranciska T. de VriesAsian School of the Environment, Nanyang Technological University, Singapore, 639798, SingaporeDavid A. WardleCentre of Biodiversity and Sustainable Landuse, University of Göttingen, Büsgenweg 1, Göttingen, GermanyChristian AmmerSilviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, Göttingen, GermanyChristian AmmerForest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 1, Göttingen, GermanySabine AmmerInstitute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kan-nondai, Tsukuba, Ibaraki, JapanMiwa AraiLand Resource Management and Agricultural Technology, University of Nairobi, Kapenguria Road, Off Naivasha Road, P.O Box 29053, Nairobi, KenyaFredrick O. AyukeRwanda Institute for Conservation Agriculture, KG 541, Kigali, RwandaFredrick O. AyukeHealth & Biosecurity, CSIRO, PO Box 1700, Canberra, AustraliaGeoff H. BakerDepartment of Animal Science, Santa Catarina State University, Chapecó, SC, 89815-630, BrazilDilmar BarettaExperimental Infrastructure Platform (EIP), Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, Müncheberg, GermanyDietmar Barkusky & Monika JoschkoDépartment de biologie, Université de Sherbrooke, Sherbrooke, Québec, CanadaRobin Beauséjour & Robert L. BradleyGeology Department, FCEFQyN, ICBIA-CONICET (National Scientific and Technical Research Council), National University of Rio Cuarto, Ruta 36 Km, 601, Río Cuarto, ArgentinaJose C. Bedano & Anahí DomínguezDepartment of Ecology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 6, Cottbus, GermanyKlaus BirkhoferEco&Sols, Univ Montpellier, IRD, INRAE, CIRAD, Institut Agro, Montpellier, FranceEric Blanchart & Michel BrossardNatural Resources, Cornell University, Ithaca, NY, USABernd BlosseyEarth Institute, University College Dublin, Belfield, Dublin, 4, IrelandThomas BolgerSchool of Biology and Environmental Science, University College Dublin, Belfield, Dublin, IrelandThomas BolgerDepartment of Entomology, Cornell University, 3132, Comstock Hall, Ithaca, NY, USAJames C. BurtisEMMAH, UMR 1114, INRA, Site Agroparc, Avignon, FranceYvan CapowiezThe School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, AustraliaTimothy R. CavagnaroFaculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, CanadaAmy Choi & Sandy M. SmithLaboratoire Écologie et Biologie des Interactions, équipe EES, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, Poitiers, FranceJulia ClauseUMR ECOBIO (Ecosystems, Biodiversity, Evolution) CNRS-Université de Rennes, Station Biologique, 35380, Paimpont, FranceDaniel Cluzeau & Guénola PérèsECT Oekotoxikologie GmbH, Boettgerstr. 2-14, Floersheim, GermanyAnja CoorsInstitute of Biological, Environmental and Rural Sciences, Aberystwyth Universtiy, Plas Gogerddan, Aberystwyth, SY24 3EE, United KingdomFelicity V. CrottySchool for Agriculture, Food and the Environment, Royal Agricultural University, Stroud Road, Cirencester, GL7 6JS, United KingdomFelicity V. CrottyOdum School of Ecology, University of Georgia, 140 E Green Street, Athens, USAJasmine M. CrumseyDepartment of Biological Sciencies, SUNY Cortland, 1215 Bowers Hall, Cortland, USAAndrea DávalosBiodiversity, Ecology and Evolution, Faculty of Biology, University Complutense of Madrid, José Antonio Novais, 12, Madrid, SpainDarío J. Díaz Cosín, Mónica Gutiérrez López, Juan B. Jesús, Marta Novo & Dolores TrigoYale School of the Environment, Yale University, 370 Prospect St, New Haven, CT, USAAnnise M. DobsonDepartamento de Ciencias Básicas, Universidad Nacional de Luján, Argentina – INEDES (Universidad Nacional de Luján – CONICET), Luján, ArgentinaAndrés Esteban DuhourLouis Bolk Institute, Kosterijland 3-5, Bunnik, The NetherlandsNick van EekerenDepartment of Soil Science, University of Trier, Campus II, Behringstraße 21, Trier, GermanyChristoph EmmerlingDepartamento de Ciencias Básicas, Instituto de Ecología y Desarrollo Sustentable, Universidad Nacional de Luján, Av. Constitución y Ruta 5, Luján, ArgentinaLiliana B. FalcoAnimal Biodiversity and Evolution, Institute of Evolutionary Biology, Passeig Marítim de la Barceloneta 37, Barcelona, SpainRosa FernándezDepartment of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO, USASteven J. Fonte & Tunsisa T. HurissoBiodiversity and Systematic Network, Institute of Ecology A.C., El Haya, Xalapa, Veracruz, 91070, MexicoCarlos FragosoDepartment of Biology, Colorado State University, 200 West Lake Street, Fort Collins, CO, USAAndré L. C. FrancoDepartment of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Tugbok District, Davao, PhilippinesAbegail FusileroLaboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit – GhEnToxLab, Ghent University, Campus Coupure, Coupure Links 653, Ghent, BelgiumAbegail FusileroCenter for Forest Ecology and Productivity RAS, Profsoyuznaya st. 84/32 bldg. 14, Moscow, RussiaAnna P. GeraskinaRazi University, Kermanshah, IranShaieste Gholami & Ehsan SayadUnited States Department of Agriculture, Forest Service, International Institute of Tropical Forestry, 1201 Ceiba Street, San Juan, Puerto RicoGrizelle GonzálezDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgrand 17, 901 83, Umeå, SwedenMichael J. GundaleDepartment of Biology, University of Osijek, Cara Hadrijana 8 A, Osijek, CroatiaBranimir K. Hackenberger & Davorka K. HackenbergerAgriculture engineering, Agroecology Postgraduate Program, Maranhão State University, Avenida Lourenço Vieira da Silva 1000, São Luis, BrazilLuis M. Hernández & Guillaume X. RousseauDepartment of Jobs, Precincts and Regions, Agriculture Victoria, Chiltern Valley Road, Rutherglen, AustraliaJeff R. HirthFaculty of Agriculture, Kyushu University, 394 Tsubakuro, Sasaguri, Fukuoka, 811-2415, JapanTakuo HishiMinnesota Pollution Control Agency, 520 Lafayette Road, St Paul, MN, USAAndrew R. HoldsworthDepartment of Bioscience, Aarhus University, Vejlsøvej 25, Aarhus, DenmarkMartin HolmstrupDepartment of Biological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, USAKristine N. HopfenspergerAgricultura Sociedad y Ambiente, El Colegio de la Frontera Sur, Av. Polígono s/n Cd. Industrial Lerma, Campeche, Campeche, MexicoEsperanza Huerta LwangaSoil Physics and Land Management Group, Wageningen University & Research, Droevendaalsteeg 4, Wageningen, The NetherlandsEsperanza Huerta Lwanga & Loes van SchaikDept. of Biological and Environmental Sciences, University of Jyväskylä, Box 35, Jyväskylä, FinlandVeikko HuhtaCollege of Agriculture, Environmental and Human Sciences, Lincoln University of Missouri, Jefferson City, MO, 65101, USATunsisa T. HurissoSchool of Forest Resources and Conservation, University of Florida, Gainesville, USABasil V. Iannone IIISustainable Development and Environmental Engineering, University of Agricultural Sciences and Veterinary Medicine of Banat “King Michael the 1st of Romania” from Timisoara, Calea Aradului 119, Timisoara, RomaniaMadalina IordacheInstitute for Ecosystem Research, University of Kiel, Olshausenstrasse 40, 24098, Kiel, GermanyUlrich IrmlerTartu College, Tallinn University of Technology, Puiestee 78, Tartu, EstoniaMari IvaskDepartment of Soil and Water Systems, University of Idaho, 875 Perimeter Drive MS, 2340, Moscow, USAJodi L. Johnson-MaynardFaculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima, JapanNobuhiro KanekoDepartment of Environment, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica, SlovakiaRadoslava KanianskaUK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster, United KingdomAidan M. KeithLand Use and Governance, Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, Müncheberg, GermanyMaria L. KerneckerUFR Sciences de la Nature, UR Gestion Durable des Sols, Université Nangui Abrogoua, Abidjan, Côte d’IvoireArmand W. KonéFaculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489, Noor, Mazandaran, IranYahya KoochProduction Systems, Natural Resources Institute Finland, Survontie 9 A, Jyväskylä, FinlandSanna T. KukkonenDepartment of Zoology, Pachhunga University College, Aizawl, Mizoram, IndiaH. LalthanzaraSkolkovo Institute of Science and Technology, 30-1 Bolshoy Boulevard, Moscow, 121205, RussiaIurii M. LebedevSAS, INRAE, Institut Agro, 35042, Rennes, FranceEdith Le CadreTropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai’i at Manoa, 3190 Maile Way, St. John 102, Honolulu, USANoa K. LincolnEcologia Aplicada, Instituto de Zoologia y Ecologia Tropical, Universidad Central de Venezuela, Los Chaguaramos, Ciudad Universitaria, Caracas, VenezuelaDanilo López-HernándezDepartment of Natural Resource Ecology and Management, Oklahoma State University, 008C, Ag Hall, Stillwater, USAScott R. Loss & Shishir PaudelUPR Systèmes de Pérennes, CIRAD, Univ Montpellier, TA B-34/02 Avenue Agropolis, Montpellier, FranceRaphael MarichalDepartment of Forest Ecology, Faculty of Forestry and Wood Technology, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech RepublicRadim MatulaTochigi Prefectural Museum, 2-2 Mutsumi-cho, Utsunomiya, JapanYukio MinamiyaThuenen-Institute of Biodiversity, Bundesallee 65, Braunschweig, GermanyJan Hendrik MoosThuenen-Institute of Organic Farming, Trenthorst 32, Westerau, GermanyJan Hendrik MoosPlant Biology, Ecology and Earth Science, INDEHESA, University of Extremadura, Plasencia, SpainGerardo MorenoConservación de la Biodiversidad, El Colegio de la Frontera Sur, Av. Rancho, poligono 2 A, Cd. Industrial de Lerma, Campeche, MexicoAlejandro Morón-RíosDepartment of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto, 602-8580, JapanHasegawa MotohiroDepartment of Earth & Environmental Sciences, Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E Box, 2411, Leuven, BelgiumBart MuysResearch Institute for Nature and Forest, Gaverstraat 35, 9500, Geraardsbergen, BelgiumJohan NeirynckSchool of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Länggasse 85, Zollikofen, SwitzerlandLindsey NorgroveSoil Ecosystems, Natural Resources Institute Finland (Luke), Tietotie 4, Jokioinen, FinlandVisa NuutinenNatural Area Consultants, 1 West Hill School Road, Richford, NY, USAVictoria NuzzoDepartment of Zoology, PSMO College, Tirurangadi, Malappuram, Kerala, India, Malappuram, IndiaP. Mujeeb RahmanCSIRO Ocean and Atmosphere, CSIRO, New Illawarra Road, Lucas Heights, NSW, AustraliaJohan PansuUMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, Roscoff, FranceJohan PansuPhipps Conservatory and Botanical Gardens, Pittsburgh, PA, 15213, USAShishir PaudelUMR SAS, INRAE, Institut Agro Agrocampus Ouest, 35000, Rennes, FranceGuénola PérèsForest Ecology and Restoration Group, Department of Life Sciences, University of Alcalá, 28805, Alcalá De Henares, SpainLorenzo Pérez-Camacho & Salvador RebolloAdaptations du Vivant, CNRS UMR 7179, Muséum National d’Histoire Naturelle, 4 Avenue du Petit Château, Brunoy, FranceJean-François PongeDepartment of Ecology and Ecosystem Management, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, GermanyJörg PrietzelTembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, I. Armand, 37a, Nalchik, RussiaIrina B. RapoportCenter of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah, 21589, Saudi ArabiaMuhammad Imtiaz RashidGlobal Change Ecology and Evolution Research Group (GloCEE), Department of Life Sciences, University of Alcalá, 28805, Alcalá De Henares, SpainMiguel Á. RodríguezDepartment of Forest Resources, University of Minnesota, 1530, Cleveland Ave. N, St. Paul, USAAlexander M. RothFriends of the Mississippi River, 101 E 5th St. Suite 2000, St Paul, USAAlexander M. RothBiology, Biodiversity and Conservation Postgraduate Program, Federal University of Maranhão, Avenida dos Portugueses 1966, São Luis, BrazilGuillaume X. RousseauInstitute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, PolandAnna RozenCollege of Natural Resources, University of Wisconsin, Stevens Point, WI, 54481, USABryant ScharenbrochThe Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USABryant ScharenbrochDepartment Engineering for Crop Production, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, Potsdam, GermanyMichael SchirrmannSchool of Agriculture and Food Science, University College Dublin, Agriculture and Food Science Centre, Dublin, IrelandOlaf SchmidtUCD Earth Institute, University College Dublin, Dublin, IrelandOlaf SchmidtLandscape Ecology and Environmental Systems Analysis, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, Braunschweig, GermanyBoris SchröderDepartment of Ecology, University of Innsbruck, Technikerstrasse 25, Innsbruck, AustriaJulia SeeberInstitute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, ItalyJulia Seeber & Michael SteinwandterLaboratory of Ecosystem Modelling, Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences, Institutskaya str., 2, Pushchino, RussiaMaxim P. ShashkovLaboratory of Computational Ecology, Institute of Mathematical Problems of Biology RAS – the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Vitkevicha str., 1, Pushchino, RussiaMaxim P. ShashkovDepartment of Zoology, Khalsa College Amritsar, Amritsar, Punjab, IndiaJaswinder SinghDepartment of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, USAKatalin SzlaveczDepartment of animal biology, edaphology and geology, Faculty of Sciences (Biology), University of La Laguna, La Laguna, Santa Cruz De Tenerife, SpainJosé Antonio TalaveraForest Science, Kochi University, Monobe Otsu 200, Nankoku, JapanJiro TsukamotoJuárez Autonomous University of Tabasco, Nanotechnology Engineering, Multidisciplinary Academic Division of Jalpa de Méndez, Carr. Estatal libre Villahermosa-Comalcalco, Km 27 S/N, C.P. 86205 Jalpa de Méndez, Tabasco, MexicoSheila Uribe-LópezUnit Food & Agriculture, WWF-Netherlands, Driebergseweg 10, Zeist, The NetherlandsAnne W. de ValençaDpto. Ciencias, IS-FOOD, Universidad Pública de Navarra, Edificio Olivos – Campus Arrosadia, Pamplona, SpainIñigo VirtoDepartment of Soil, Water and Climate, University of Minnesota, 1991 Upper Buford Circle, St Paul, USAAdrian A. WackettEarth Innovation Institute, 98 Battery Street Suite 250, San Francisco, USAMatthew W. WarrenUniversity of California Davis, 1 Shields Avenue, Davis, USAEmily R. WebsterNatural Resources & Environmental Management, University of Hawaii at Manoa, 1910 East West Rd, Honolulu, USANathaniel H. WehrNatural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, CanadaJoann K. WhalenThe Nature Conservancy, 4245 Fairfax Drive, Arlington, USAMichael B. WironenAnimal Ecology, Justus Liebig University, Heinrich-Buff-Ring 26, Giessen, GermanyVolkmar WoltersInstitute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, ChinaPengfei WuLaboratory of terrestrial ecosystems, Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, Institute of North Industrial Ecology Problems (INEP KSC RAS), Akademgorodok, 14a, Apatity, Murmansk, Province, RussiaIrina V. ZenkovaKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, College of Environment and Planning, Henan University, Kaifeng, ChinaWeixin ZhangFaculty of Biological and Environmental Sciences, Post Office Box 65, FI 00014, University of Helsinki, Helsinki, FinlandErin K. CameronThe sWorm workshops were organised by N.E., E.K.C. and H.R.P.P., with funding acquired by N.E., E.K.C. and M.P.T. Data collation and formatting was led by H.R.P.P., with assistance from J.K., M.J.I.B., G.B., K.B.G. and B.S. Harmonisation of earthworm species names was completed by G.B., M.J.I.B., M.L.C.B. and P.L. Advice and feedback on data collation protocols was provided by E.M.B., M.J.I.B., G.B., O.F., C.A.G., B.K.R., A.O., D.R., and D.H.W. Writing of the manuscript was led by H.R.P.P. All authors provided input and comments on the manuscript. The majority of authors provided data to the database. More

  • in

    Balancing carbon storage under elevated CO2

    RESEARCH SUMMARY

    21 May 2021

    Balancing carbon storage under elevated CO2

    A global synthesis of experiments reveals that increases in plant biomass under conditions of elevated CO2 mean that plants need to mine the soil for nutrients, which decreases soil’s ability to store carbon. In forests, elevated CO2 generally seems to greatly increase plant biomass, but not soil carbon. In grasslands, by contrast, it causes small changes in biomass and large increases in soil carbon.

    César Terrer

     ORCID: http://orcid.org/0000-0002-5479-3486

    0

    César Terrer

    Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA; and the Department of Earth System Science, Stanford University, Stanford, CA, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    This is a summary of Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature https://doi.org/10.1038/s41586-021-03306-8 (2021).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-01117-5

    References1.van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Science 344, 508–509 (2014PubMedArticle
    Google Scholar2.Jastrow, J. D. et al. Glob. Change Biol. 11, 2057–2064 (2005).Article
    Google Scholar3.Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).Article
    Google Scholar4.Todd-Brown, K. E. O. et al. Biogeoscience 11, 2341–2356 (2014).Article
    Google Scholar5.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Science 353, 72–74 (2016).PubMedArticle
    Google ScholarDownload references

    Competing Interests
    The author declares no competing interests.

    Latest on:

    Climate sciences

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Climate change

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Ecology

    Our radical changes to Earth’s greenery began long ago — with farms, not factories
    Research Highlight 20 MAY 21

    Controversial forestry experiment will be largest-ever in United States
    News 20 MAY 21

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Jobs from Nature Careers

    All jobs

    Post-Doc – Numerical and microfabrication development of 4D metamaterials for mechanical, acoustic and photonics applications
    Université Bourgogne Franche-Comté (UBFC)
    BESANCON, France

    JOB POST

    Postdoctoral Position – Ecological Modeler
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Postdoctoral Fellow | Zandstra Stem Cell Bioengineering Lab
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Masterthesis / internship (m/f/x)
    Helmholtz Centre for Environmental Research (UFZ)
    Leipzig, Germany

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up

    Access through your institution

    Change institution

    Buy or subscribe

    Related Articles

    Effects of rising CO2 levels on carbon sequestration are coordinated above and below ground

    Subjects

    Climate sciences

    Climate change

    Ecology

    Sign up to Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More