More stories

  • in

    A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host

    1.Koch, E. & McFall-Ngai, M. Model systems for the study of how symbiotic associations between animals and extracellular bacterial partners are established and maintained. Drug Discov. Today Dis. Models 28, 3–12 (2018).PubMed 
    Article 

    Google Scholar 
    2.Lee, K. H. & Ruby, E. G. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60, 1565–1571 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Kremer, N. et al. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 14, 183–194 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Bongrand, C. & Ruby, E. G. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J. 13, 698–706 (2019).PubMed 
    Article 

    Google Scholar 
    5.McFall-Ngai, M. J. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 68, 177–194 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151–1155 (2004).Article 

    Google Scholar 
    7.Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.McFall-Ngai, M. J. & Ruby, E. G. Developmental biology in marine invertebrate symbioses. Curr. Opin. Microbiol. 3, 603–607 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Moriano-Gutierrez, S. et al. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18, e3000934 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Schwartzman, J. A. & Ruby, E. G. Stress as a normal cue in the symbiotic environment. Trends Microbiol. 24, 414–424 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).12.Schwartzman, J. A. et al. The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation. Proc. Natl Acad. Sci. USA 112, 566–571 (2015). In this study, the host’s delivery of chitin-derived N-acetylglucosamine is shown to develop 4 weeks after hatching, and this chitin is apparently delivered by haemocytes that lyse in the crypts only at night. A nocturnal acidification of the crypts results, and a model for how this outcome enhances bioluminescence is described.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Heath-Heckman, E. A. et al. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-vibrio symbiosis. mBio https://doi.org/10.1128/mBio.00167-13 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1187 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Ruby, E. G. Symbiotic conversations are revealed under genetic interrogation. Nat. Rev. Microbiol. 6, 752–762 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Bongrand, C. & Ruby, E. G. The impact of Vibrio fischeri strain variation on host colonization. Curr. Opin. Microbiol. 50, 15–19 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Colton, D. M. & Stabb, E. V. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr. Genet. 62, 39–45 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mandel, M. J. & Dunn, A. K. Impact and Influence of the natural Vibrio-squid symbiosis in understanding bacterial-animal interactions. Front. Microbiol. 7, 1982 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Aschtgen, M. S. et al. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 5, 32 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Stabb, E. V. & Visick, K. L. in The Prokaryotes (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. & Thompson, F.) 497–532 (Springer, 2013).23.Nawroth, J. C. et al. Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proc. Natl Acad. Sci. USA 114, 9510–9516 (2017). This work provides the first glimpse into the cilium-driven fluid mechanics that position V. fischeri cells to reach and settle in ‘quiet zones’ on the light organ surface, permitting a selective ‘recruitment’ of this microorganism from the planktonic environment.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Altura, M. A. et al. The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells. Environ. Microbiol. 15, 2937–2950 (2013). Aggregations of only a few V. fischeri cells are observed to initiate normal host responses, and reveal that aggregation is a two-part process that begins with bacterial attachment to the cilia.PubMed 
    PubMed Central 

    Google Scholar 
    25.Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231–10235 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Yip, E. S., Geszvain, K., DeLoney-Marino, C. R. & Visick, K. L. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 62, 1586–1600 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Koehler, S. et al. The model squid-vibrio symbiosis provides a window into the impact of strain- and species-level differences during the initial stages of symbiont engagement. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14392 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Morris, A. R. & Visick, K. L. Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching? Environ. Microbiol. 12, 2051–2059 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Norsworthy, A. N. & Visick, K. L. Gimme shelter: how Vibrio fischeri successfully navigates an animal’s multiple environments. Front. Microbiol. 4, 356 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Shibata, S., Yip, E. S., Quirke, K. P., Ondrey, J. M. & Visick, K. L. Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri. J. Bacteriol. 194, 6736–6747 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Yip, E. S., Grublesky, B. T., Hussa, E. A. & Visick, K. L. A novel, conserved cluster of genes promotes symbiotic colonization and sigma-dependent biofilm formation by Vibrio fischeri. Mol. Microbiol. 57, 1485–1498 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Bassis, C. M. & Visick, K. L. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J. Bacteriol. 192, 1269–1278 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Chavez-Dozal, A., Hogan, D., Gorman, C., Quintanal-Villalonga, A. & Nishiguchi, M. K. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol. Ecol. 81, 562–573 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Tischler, A. H., Lie, L., Thompson, C. M. & Visick, K. L. Discovery of calcium as a biofilm-promoting signal for Vibrio fischeri reveals new phenotypes and underlying regulatory complexity. J. Bacteriol. 200, e00016–e00018 (2018). This article expands our understanding of the regulatory controls and signals leading to biofilm formation by identifying calcium as a signal that induces a coordinate upregulation of Syp- and cellulose-dependent biofilm formation and revealing the sensor kinase HahK as a new biofilm regulator.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ziemba, C., Shabtai, Y., Piatkovsky, M. & Herzberg, M. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms. NPJ Biofilms Microbiomes 2, 1 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Ray, V. A., Driks, A. & Visick, K. L. Identification of a novel matrix protein that promotes biofilm maturation in Vibrio fischeri. J. Bacteriol. 197, 518–528 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Shibata, S. & Visick, K. L. Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles That depend on the symbiosis polysaccharide locus in Vibrio fischeri. J. Bacteriol. 194, 185–194 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Hussa, E. A., Darnell, C. L. & Visick, K. L. RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri. J. Bacteriol. 190, 4576–4583 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Mandel, M. J., Wollenberg, M. S., Stabb, E. V., Visick, K. L. & Ruby, E. G. A single regulatory gene is sufficient to alter bacterial host range. Nature 458, 215–218 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Ray, V. A., Eddy, J. L., Hussa, E. A., Misale, M. & Visick, K. L. The syp enhancer sequence plays a key role in transcriptional activation by the sigma54-dependent response regulator SypG and in biofilm formation and host colonization by Vibrio fischeri. J. Bacteriol. 195, 5402–5412 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Visick, K. L. & Skoufos, L. M. Two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J. Bacteriol. 183, 835–842 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Norsworthy, A. N. & Visick, K. L. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol. Microbiol. 96, 233–248 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Thompson, C. M., Marsden, A. E., Tischler, A. H., Koo, J. & Visick, K. L. Vibrio fischeri biofilm formation prevented by a trio of regulators. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01257-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Brooks, J. F. II & Mandel, M. J. The histidine kinase BinK Is a negative regulator of biofilm formation and squid colonization. J. Bacteriol. 198, 2596–2607 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Pankey, M. S. et al. Host-selected mutations converging on a global regulator drive an adaptive leap by bacteria to symbiosis. eLife https://doi.org/10.7554/eLife.24414 (2017). Evolutionary pathways that can lead to symbiotic colonization are revealed in this elegant study that follows the serial passage of a non-colonizing strain through many E. scolopes juveniles, resulting in altered, symbiosis-competent strains.Article 

    Google Scholar 
    46.Morris, A. R., Darnell, C. L. & Visick, K. L. Inactivation of a novel response regulator is necessary for biofilm formation and host colonization by Vibrio fischeri. Mol. Microbiol. 82, 114–130 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Morris, A. R. & Visick, K. L. The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri. Mol. Microbiol. 87, 509–525 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Brooks, J. F. II et al. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc. Natl Acad. Sci. USA 111, 17284–17289 (2014). This large-scale investigation of colonization factors provides important information on genetic requirements for symbiosis and provides a wealth of data for hypothesis generation that will foster many subsequent studies.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Thompson, C. M. & Visick, K. L. Assessing the function of STAS domain protein SypA in Vibrio fischeri using a comparative analysis. Front. Microbiol. 6, 760 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rotman, E. R. et al. Natural strain variation reveals diverse biofilm regulation in squid-colonizing Vibrio fischeri. J. Bacteriol. https://doi.org/10.1128/JB.00033-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Bongrand, C. et al. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J. 10, 2907–2917 (2016). This study of the genomes and behaviours of a collection of a number of squid symbionts propelled the field from the near-exclusive study of a single isolate, ES114, into new and exciting directions with the genomic sequencing of dominant strains that contain numerous additional genetic sequences and factors.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Newell, P. D., Boyd, C. D., Sondermann, H. & O’Toole, G. A. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 9, e1000587 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Christensen, D. G., Marsden, A. E., Hodge-Hanson, K., Essock-Burns, T. & Visick, K. L. LapG mediates biofilm dispersal in Vibrio fischeri by controlling maintenance of the VCBS-containing adhesin LapV. Mol. Microbiol. 114, 742–761 (2020). This article addresses a major long-standing question concerning the initiation of the light organ association; specifically, how do aggregated V. fischeri cells release themselves and migrate into host tissue? One factor may be an adhesin-cleaving protease, which is kept in check by a c-di-GMP-responsive protein, and can promote symbiont dispersal from biofilms.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Fidopiastis, P. M. et al. Characterization of a Vibrio fischeri aminopeptidase and evidence for its influence on an early stage of squid colonization. J. Bacteriol. 194, 3995–4002 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Davidson, S. K., Koropatnick, T. A., Kossmehl, R., Sycuro, L. & McFall-Ngai, M. J. No means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cellul. Microbiol. 6, 1139–1151 (2004).CAS 
    Article 

    Google Scholar 
    56.Wang, Y. et al. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis. Mol. Microbiol. 78, 903–915 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Stabb, E. V. Should they stay or should they go? Nitric oxide and the clash of regulators governing Vibrio fischeri biofilm formation. Mol. Microbiol. 111, 1–5 (2019).CAS 
    PubMed 

    Google Scholar 
    58.Thompson, C. M., Tischler, A. H., Tarnowski, D. A., Mandel, M. J. & Visick, K. L. Nitric oxide inhibits biofilm formation by Vibrio fischeri via the nitric oxide sensor HnoX. Mol. Microbiol. 111, 187–203 (2019). This publication provides insight into the complex role in symbiosis of the squid-produced defence molecule NO by uncovering its ability to inhibit biofilm formation via the NO sensor HnoX, a finding that suggests that NO may influence the location or timing of biofilm formation and/or promote dispersal during symbiotic initiation.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Singh, P., Brooks, J. F. II., Ray, V. A., Mandel, M. J. & Visick, K. L. CysK plays a role in Biofilm formation and colonization by Vibrio fischeri. Appl. Environ. Microbiol. 81, 5223–5234 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Raina, J. B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Brennan, C. A., DeLoney-Marino, C. R. & Mandel, M. J. Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri. Appl. Environ. Microbiol. 79, 1889–1896 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Graf, J., Dunlap, P. V. & Ruby, E. G. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176, 6986–6991 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Millikan, D. S. & Ruby, E. G. FlrA, a sigma54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185, 3547–3557 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Millikan, D. S. & Ruby, E. G. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J. Bacteriol. 186, 4315–4325 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Wolfe, A. J., Millikan, D. S., Campbell, J. M. & Visick, K. L. Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization. Appl. Environ. Microbiol. 70, 2520–2524 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.O’Shea, T. M. et al. Magnesium promotes flagellation of Vibrio fischeri. J. Bacteriol. 187, 2058–2065 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Ruby, E. G. & Asato, L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160–167 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Beeby, M. et al. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl Acad. Sci. USA 113, E1917–E1926 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Deloney-Marino, C. R. & Visick, K. L. Role for cheR of Vibrio fischeri in the Vibrio-squid symbiosis. Can. J. Microbiol. 58, 29–38 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl Acad. Sci. USA 102, 3004–3009 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Nikolakakis, K., Monfils, K., Moriano-Gutierrez, S., Brennan, C. A. & Ruby, E. G. Characterization of the Vibrio fischeri fatty acid chemoreceptors, VfcB and VfcB2. Appl. Environ. Microbiol. 82, 696–704 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    72.Mandel, M. J. et al. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl. Environ. Microbiol. 78, 4620–4626 (2012). While it was long-expected that V. fischeri might sense and be attracted to squid-produced molecules to facilitate directed migration into the light organ crypts, this work is the first to identify squid-produced molecules, chitin oligosaccharides, that function as a chemotactic signal promoting colonization.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Bennett, B. D., Essock-Burns, T. & Ruby, E. G. HbtR, a heterofunctional homolog of the virulence regulator TcpP, facilitates the transition between symbiotic and planktonic lifestyles in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.01624-20 (2020). Comparisons of V. fischeri with the related pathogen Vibrio cholerae reveal that a regulator conserved among Vibrio spp. plays very different roles in the interactions of these two microorganisms with their respective hosts.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Brennan, C. A. et al. A model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide. eLife 3, e01579 (2014). A surprising role for flagellar rotation in the release of lipopolysaccharide molecules that promote squid development is revealed in this work, providing a novel function for the flagellar sheath.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Stabb, E. V. & Millikan, D. S. in Defensive Mutualism in Microbial Symbiosis Vol. 27 (eds White, J. F. & Torres, M. S.) 85–98 (CRC Press, 2009).76.Bose, J. L., Rosenberg, C. S. & Stabb, E. V. Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch. Microbiol. 190, 169–183 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Verma, S. C. & Miyashiro, T. Niche-specific impact of a symbiotic function on the persistence of microbial symbionts within a natural host. Appl. Environ. Microbiol. 82, 5990–5996 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802–810 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Essock-Burns, T., Bongrand, C., Goldman, W. E., Ruby, E. G. & McFall-Ngai, M. J. Interactions of symbiotic partners drive the development of a complex biogeography in the squid-vibrio symbiosis. mBio 11, e00853-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Sycuro, L. K., Ruby, E. G. & McFall-Ngai, M. Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. J. Morphol. 267, 555–568 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Koch, E. J., Miyashiro, T., McFall-Ngai, M. J. & Ruby, E. G. Features governing symbiont persistence in the squid-vibrio association. Mol. Ecol. 23, 1624–1634 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Wollenberg, M. S., Preheim, S. P., Polz, M. F. & Ruby, E. G. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion. Environ. Microbiol. 14, 655–668 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Chun, C. K. et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc. Natl Acad. Sci. USA 105, 11323–11328 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.McFall-Ngai, M., Heath-Heckman, E. A., Gillette, A. A., Peyer, S. M. & Harvie, E. A. The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 24, 3–8 (2012).PubMed 
    Article 

    Google Scholar 
    86.Moriano-Gutierrez, S. et al. Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc. Natl Acad. Sci. USA 116, 7990–7999 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Verma, S. C. & Miyashiro, T. Quorum sensing in the squid-Vibrio symbiosis. Int. J. Mol. Sci. 14, 16386–16401 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Stabb, E. V., Schaefer, A., Bose, J. L. & Ruby, E. G. in Chemical Communication Among Bacteria (eds Winans, S. C. & Bassler, B. L.) 233–250 (ASM Press, 2008).89.Lupp, C. & Ruby, E. G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187, 3620–3629 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Kimbrough, J. H. & Stabb, E. V. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci. Rep. 7, 11734 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Kimbrough, J. H. & Stabb, E. V. Substrate specificity and function of the pheromone receptor AinR in Vibrio fischeri ES114. J. Bacteriol. 195, 5223–5232 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Studer, S. V., Mandel, M. J. & Ruby, E. G. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 190, 5915–5923 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Cao, X. et al. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.00285-11 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Studer, S. V. et al. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability. Environ. Microbiol. 16, 2623–2634 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Boettcher, K. J. & Ruby, E. G. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J. Bacteriol. 172, 3701–3706 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Septer, A. N. & Stabb, E. V. Coordination of the arc regulatory system and pheromone-mediated positive feedback in controlling the Vibrio fischeri lux operon. PLoS ONE 7, e49590 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Stabb, E. V. Could positive feedback enable bacterial pheromone signaling to coordinate behaviors in response to heterogeneous environmental cues? mBio https://doi.org/10.1128/mBio.00098-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Bose, J. L. et al. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol. Microbiol. 65, 538–553 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Lyell, N. L. et al. Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. J. Bacteriol. 195, 5051–5063 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Lyell, N. L., Dunn, A. K., Bose, J. L. & Stabb, E. V. Bright mutants of Vibrio fischeri ES114 reveal conditions and regulators that control bioluminescence and expression of the lux operon. J. Bacteriol. 192, 5103–5114 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Septer, A. N., Lyell, N. L. & Stabb, E. V. The iron-dependent regulator fur controls pheromone signaling systems and luminescence in the squid symbiont Vibrio fischeri ES114. Appl. Environ. Microbiol. 79, 1826–1834 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Stoudenmire, J. L. et al. An iterative, synthetic approach to engineer a high-performance PhoB-specific reporter. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00603-18 (2018). This study not only provides a road map for synthetic promoter engineering in V. fischeri but also uncovers evidence for possible microenvironments present within different crypts of the E. scolopes light organ.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Bose, J. L. et al. Contribution of rapid evolution of the luxR-luxI intergenic region to the diverse bioluminescence outputs of Vibrio fischeri strains isolated from different environments. Appl. Environ. Microbiol. 77, 2445–2457 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Dunn, A. K. Vibrio fischeri metabolism: symbiosis and beyond. Adv. Microb. Physiol. 61, 37–68 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Schwartzman, J. A. & Ruby, E. G. A conserved chemical dialog of mutualism: lessons from squid and vibrio. Microbes Infect. 18, 1–10 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Pan, S. et al. Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri. J. Biol. Chem. 292, 10250–10261 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Thompson, L. R. et al. Transcriptional characterization of Vibrio fischeri during colonization of juvenile Euprymna scolopes. Environ. Microbiol. 19, 1845–1856 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Wier, A. M. et al. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc. Natl Acad. Sci. USA 107, 2259–2264 (2010). In the first dual transcriptional study of an animal host and its symbionts, gene expression in both partners is shown to be regulated over a day–night cycle, revealing a daily remodelling of the crypt epithelial cells and a night-time provision of chitin to the symbionts.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Sun, Y., Verma, S. C., Bogale, H. & Miyashiro, T. NagC represses N-acetyl-glucosamine utilization genes in Vibrio fischeri within the light organ of Euprymna scolopes. Front. Microbiol. 6, 741 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    110.Wasilko, N. P. et al. Sulfur availability for Vibrio fischeri growth during symbiosis establishment depends on biogeography within the squid light organ. Mol. Microbiol. 111, 621–636 (2019). This study sheds light on both the nutritional adaptability of V. fischeri and the complex biogeography of the light organ by demonstrating that this symbiont uses different sulfur sources within different regions of the light organ.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Septer, A. N. et al. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol. Microbiol. 95, 283–296 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    112.Lyell, N. L. & Stabb, E. V. Symbiotic characterization of Vibrio fischeri ES114 mutants that display enhanced luminescence in culture. Appl. Environ. Microbiol. 79, 2480–2483 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Lyell, N. L. et al. An expanded transposon mutant library reveals that Vibrio fischeri delta-aminolevulinate auxotrophs can colonize Euprymna scolopes. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02470-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Colton, D. M., Stoudenmire, J. L. & Stabb, E. V. Growth on glucose decreases cAMP-CRP activity while paradoxically increasing intracellular cAMP in the light-organ symbiont Vibrio fischeri. Mol. Microbiol. 97, 1114–1127 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    115.Miyashiro, T. et al. The N-acetyl-D-glucosamine repressor NagC of Vibrio fischeri facilitates colonization of Euprymna scolopes. Mol. Microbiol. 82, 894–903 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Adin, D. M., Visick, K. L. & Stabb, E. V. Identification of a cellobiose utilization gene cluster with cryptic beta-galactosidase activity in Vibrio fischeri. Appl. Environ. Microbiol. 74, 4059–4069 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Pan, M., Schwartzman, J. A., Dunn, A. K., Lu, Z. & Ruby, E. G. A single host-derived glycan impacts key regulatory nodes of symbiont metabolism in a coevolved mutualism. mBio 6, e00811 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Boettcher, K. J., McFall-Ngai, M. J. & Ruby, E. G. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179, 65–73 (1996).Article 

    Google Scholar 
    119.Kremer, N. et al. The dual nature of haemocyanin in the establishment and persistence of the squid-vibrio symbiosis. Proc. Biol. Sci. 281, 20140504 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    120.Stabb, E. V. Shedding light on the bioluminescence “paradox”. ASM News 71, 223–229 (2005).
    Google Scholar 
    121.Septer, A. N., Bose, J. L., Dunn, A. K. & Stabb, E. V. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri. FEMS Microbiol. Lett. 306, 72–81 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Dunn, A. K. Alternative oxidase activity reduces stress in Vibrio fischeri cells exposed to nitric oxide. J. Bacteriol. https://doi.org/10.1128/JB.00797-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Dunn, A. K. & Stabb, E. V. Genetic analysis of trimethylamine N-oxide reductases in the light organ symbiont Vibrio fischeri ES114. J. Bacteriol. 190, 5814–5823 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    124.Septer, A. N., Wang, Y., Ruby, E. G., Stabb, E. V. & Dunn, A. K. The haem-uptake gene cluster in Vibrio fischeri is regulated by Fur and contributes to symbiotic colonization. Environ. Microbiol. 13, 2855–2864 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Graf, J. & Ruby, E. G. Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron uptake and symbiotic persistence in addition to nitrogen utilization. Mol. Microbiol. 37, 168–179 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    126.Eickhoff, M. J. & Bassler, B. L. Vibrio fischeri siderophore production drives competitive exclusion during dual-species growth. Mol. Microbiol. 114, 244–261 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    127.Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 e135 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Zheng, H. et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl Acad. Sci. USA 116, 25909–25916 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    129.Aschtgen, M. S. et al. Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J. Bacteriol. 198, 2156–2165 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Aschtgen, M. S., Wetzel, K., Goldman, W., McFall-Ngai, M. & Ruby, E. Vibrio fischeri-derived outer membrane vesicles trigger host development. Cell. Microbiol. 18, 488–499 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    131.Lynch, J. B. et al. Ambient pH alters the protein content of outer membrane vesicles, driving host development in a beneficial symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00319-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    132.Franzenburg, S. et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc. Natl Acad. Sci. USA 110, E3730–E3738 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    133.Chen, F. et al. Bactericidal permeability-increasing proteins shape host-microbe interactions. mBio 8, e00040-17 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Heath-Heckman, E. A. et al. Shaping the microenvironment: evidence for the influence of a host galaxin on symbiont acquisition and maintenance in the squid-Vibrio symbiosis. Environ. Microbiol. 16, 3669–3682 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Wang, Y. et al. H-NOX-mediated nitric oxide sensing modulates symbiotic colonization by Vibrio fischeri. Proc. Natl Acad. Sci. USA 107, 8375–8380 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    136.Schwartzman, J. A. et al. Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism. Mol. Microbiol. 112, 1326–1338 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    137.Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    138.Murfin, K. E. et al. Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. mBio 6, e00076 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.Wollenberg, M. S. & Ruby, E. G. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl. Environ. Microbiol. 75, 193–202 (2009). This is the first comparative genome-level study of light organ symbionts both between and within adult squid, suggesting that on average each crypt of an organ is colonized by one or two V. fischeri cells, potentially creating crypt-separated, clonal lineages within a polyclonal organ.CAS 
    PubMed 
    Article 

    Google Scholar 
    140.Tomich, M., Planet, P. J. & Figurski, D. H. The tad locus: postcards from the widespread colonization island. Nat. Rev. Microbiol. 5, 363–375 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    141.Gyllborg, M. C., Sahl, J. W., Cronin, D. C. III., Rasko, D. A. & Mandel, M. J. Draft genome sequence of Vibrio fischeri SR5, a strain isolated from the light organ of the Mediterranean squid Sepiola robusta. J. Bacteriol. 194, 1639 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    142.Bongrand, C. et al. Using colonization assays and comparative genomics to discover symbiosis behaviors and factors in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.03407-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    143.Coryell, R. L. et al. Phylogeographic patterns in the Philippine archipelago influence symbiont diversity in the bobtail squid-Vibrio mutualism. Ecol. Evol. 8, 7421–7435 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    144.Soto, W., Rivera, F. M. & Nishiguchi, M. K. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica. Microb. Ecol. 67, 700–721 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Soto, W., Travisano, M., Tolleson, A. R. & Nishiguchi, M. K. Symbiont evolution during the free-living phase can improve host colonization. Microbiology 165, 174–187 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    146.Fidopiastis, P. M., von Boletzky, S. & Ruby, E. G. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J. Bacteriol. 180, 59–64 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    147.Dillon, M. M., Sung, W., Lynch, M. & Cooper, V. S. Periodic variation of mutation rates in bacterial genomes associated with replication timing. mBio https://doi.org/10.1128/mBio.01371-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    148.Dillon, M. M., Sung, W., Sebra, R., Lynch, M. & Cooper, V. S. Genome-wide biases in the rate and molecular spectrum of spontaneous mutations in Vibrio cholerae and Vibrio fischeri. Mol. Biol. Evol. 34, 93–109 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    149.Wollenberg, M. S. & Ruby, E. G. Phylogeny and fitness of Vibrio fischeri from the light organs of Euprymna scolopes in two Oahu, Hawaii populations. ISME J. 6, 352–362 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    150.Koch, E. J. et al. The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc. Natl Acad. Sci. USA 117, 27578–27586 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    151.Sun, Y. et al. Intraspecific competition impacts Vibrio fischeri strain diversity during initial colonization of the squid light organ. Appl. Environ. Microbiol. 82, 3082–3091 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    152.Speare, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl Acad. Sci. USA 115, E8528–E8537 (2018). The finding that V. fischeri engages in biological ‘warfare’ to become the sole colonizer of a given crypt has provided new insight into the dynamics and processes controlling light organ population structure and strain competition in nature.CAS 
    PubMed 
    Article 

    Google Scholar 
    153.Speare, L., Smith, S., Salvato, F., Kleiner, M. & Septer, A. N. Environmental viscosity modulates interbacterial killing during habitat transition. mBio https://doi.org/10.1128/mBio.03060-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    154.Guckes, K. R. et al. Incompatibility of Vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. J. Bacteriol. https://doi.org/10.1128/JB.00221-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    155.Guckes, K. R., Cecere, A. G., Williams, A. L., McNeil, A. E. & Miyashiro, T. The bacterial enhancer binding protein VasH promotes expression of a Type VI secretion system in Vibrio fischeri during symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00777-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    156.Bultman, K. M., Cecere, A. G., Miyashiro, T., Septer, A. N. & Mandel, M. J. Draft genome sequences of type VI secretion system-encoding Vibrio fischeri strains FQ-A001 and ES401. Microbiol. Resour. Announc. https://doi.org/10.1128/MRA.00385-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Doino, J. A. & McFall-Ngai, M. J. A transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol. Bull. 189, 347–355 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    158.Dunn, A. K., Martin, M. O. & Stabb, E. V. Characterization of pES213, a small mobilizable plasmid from Vibrio fischeri. Plasmid 54, 114–134 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    159.Lyell, N. L., Dunn, A. K., Bose, J. L., Vescovi, S. L. & Stabb, E. V. Effective mutagenesis of Vibrio fischeri by using hyperactive mini-Tn5 derivatives. Appl. Environ. Microbiol. 74, 7059–7063 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    160.Stoudenmire, J. L., Black, M., Fidopiastis, P. M. & Stabb, E. V. Mutagenesis of Vibrio fischeri and other marine bacteria using hyperactive mini-Tn5 derivatives. Methods Mol. Biol. 2016, 87–104 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    161.Pollack-Berti, A., Wollenberg, M. S. & Ruby, E. G. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ. Microbiol. 12, 2302–2311 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    162.Visick, K. L., Hodge-Hanson, K. M., Tischler, A. H., Bennett, A. K. & Mastrodomenico, V. Tools for rapid genetic engineering of Vibrio fischeri. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00850-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    163.Burgos, H. L. et al. Multiplexed competition in a synthetic squid light organ microbiome using barcode-tagged gene deletions. mSystems 5, e00846-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    164.Brooks, J. F. II, Gyllborg, M. C., Kocher, A. A., Markey, L. E. & Mandel, M. J. TfoX-based genetic mapping identifies Vibrio fischeri strain-level differences and reveals a common lineage of laboratory strains. J. Bacteriol. 197, 1065–1074 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    165.Califano, G. et al. Draft genome sequence of Aliivibrio fischeri strain 5LC, a bacterium retrieved from gilthead seabream (Sparus aurata) larvae reared in aquaculture. Genome Announc. 3, e00593-15 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    166.Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    167.Nikolakakis, K., Lehnert, E., McFall-Ngai, M. J. & Ruby, E. G. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl. Environ. Microbiol. 81, 4728–4735 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Beating in on a stable partnership

    1.Visick, K. L., Stabb, E. V. & Ruby, E. G. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00557-0 (2021).Article 

    Google Scholar 
    2.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).Article 

    Google Scholar 
    3.Koch, E. J., Moriano-Gutierrez, S., Ruby, E. G., McFall-Ngai, M. & Liebeke, M. The impact of persistent colonization by Vibrio fischeri on the metabolome of the host squid Euprymna scolopes. J. Exp. Biol. 223, (2020).4.Schwartzman, J. A. et al. The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation. Proc. Natl Acad. Sci. 112, 566–571 (2015).CAS 
    Article 

    Google Scholar 
    5.Brooks, J. F. & Mandel, M. J. The histidine kinase BinK is a negative regulator of biofilm formation and squid colonization. J. Bacteriol. 198, 2596–2607 (2016).Article 

    Google Scholar 
    6.Bultman, K. M., Cecere, A. G., Miyashiro, T., Septer, A. N. & Mandel, M. J. Draft genome sequences of type VI secretion system-encoding Vibrio fischeri strains FQ-A001 and ES401. Microbiol. Resour. Announc. 8, e00385-19 (2019).Article 

    Google Scholar 
    7.Guckes, K. R. et al. Incompatibility of Vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. J. Bacteriol. 201, e00221-19 (2019).Article 

    Google Scholar 
    8.Moriano-Gutierrez, S. et al. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18, e3000934 (2020).CAS 
    Article 

    Google Scholar 
    9.Koehler, S. et al. The model squid–vibrio symbiosis provides a window into the impact of strain-and species-level differences during the initial stages of symbiont engagement. Environ. Microbiol. 21, 3269–3283 (2019).CAS 
    Article 

    Google Scholar 
    10.Bosch, T. C. G. & Hadfield, M. G. Cellular Dialogues in the Holobiont (CRC Press, 2020). More

  • in

    Biodiversity–productivity relationships are key to nature-based climate solutions

    1.UNEP. Global Environment Outlook – GEO6: Healthy Planet, Healthy People (Cambridge Univ. Press, 2019); https://www.unep.org/resources/global-environment-outlook-62.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    Article 

    Google Scholar 
    3.Mori, A. S., Spies, T. A., Sudmeier-Rieux, K. & Andrade, A. Reframing ecosystem management in the era of climate change: issues and knowledge from forests. Biol. Conserv. 165, 115–127 (2013).Article 

    Google Scholar 
    4.Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5° C rather than 2° C. Science 360, 791–795 (2018).CAS 
    Article 

    Google Scholar 
    5.Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).Article 
    CAS 

    Google Scholar 
    6.Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    Article 

    Google Scholar 
    7.IPBES secretariat. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds. Diaz, S. et al.) (IPBES, 2019); https://ipbes.net/global-assessment8.Midgley, G. F. et al. Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications. Curr. Opin. Environ. Sustain. 2, 264–270 (2010).Article 

    Google Scholar 
    9.Jones, A. D., Calvin, K. V., Collins, W. D. & Edmonds, J. Accounting for radiative forcing from albedo change in future global land-use scenarios. Clim. Change 131, 691–703 (2015).Article 

    Google Scholar 
    10.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    Article 

    Google Scholar 
    11.Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).Article 

    Google Scholar 
    12.Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).CAS 
    Article 

    Google Scholar 
    13.Mori, A. S. Advancing nature-based approaches to address the biodiversity and climate emergency. Ecol. Lett. 23, 1729–1732 (2020).14.Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    15.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).CAS 
    Article 

    Google Scholar 
    16.Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).Article 

    Google Scholar 
    17.Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).Article 
    CAS 

    Google Scholar 
    18.Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).Article 

    Google Scholar 
    19.Hulvey, K. B. et al. Benefits of tree mixes in carbon plantings. Nat. Clim. Change 3, 869–874 (2013).CAS 
    Article 

    Google Scholar 
    20.World Economic Forum. The Global Risks Report 2020 https://www.weforum.org/reports/the-global-risks-report-2020 (2020).21.Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Ann. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    22.Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).Article 

    Google Scholar 
    23.Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).Article 

    Google Scholar 
    24.Mokany, K. et al. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125, 10–19 (2016).Article 

    Google Scholar 
    25.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).CAS 
    Article 

    Google Scholar 
    26.Running, S., Mu, Q., Zhao, M. & MODAPS-SIPS. MOD17A3 MODIS/Terra Gross Primary Productivity Yearly L4 Global 1km SIN Grid (NASA, 2015); https://doi.org/10.5067/MODIS/MOD17A3.00627.Fujimori, S., Hasegawa, T., Ito, A., Takahashi, K. & Masui, T. Gridded emissions and land-use data for 2005-2100 under diverse socioeconomic and climate mitigation scenarios. Sci. Data 5, 180210 (2018).Article 

    Google Scholar 
    28.Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).Article 
    CAS 

    Google Scholar 
    29.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).Article 

    Google Scholar 
    30.Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).CAS 
    Article 

    Google Scholar 
    31.Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).Article 

    Google Scholar 
    32.Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).Article 

    Google Scholar 
    33.Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895–900 (2018).CAS 
    Article 

    Google Scholar 
    34.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).CAS 
    Article 

    Google Scholar 
    35.Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).Article 

    Google Scholar 
    36.Mori, A. S., Lertzman, K. P. & Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J. Appl. Ecol. 54, 12–27 (2017).Article 

    Google Scholar 
    37.Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).CAS 
    Article 

    Google Scholar 
    38.Quine, C. P., Bailey, S. A., Watts, K. & Hulme, P. Sustainable forest management in a time of ecosystem services frameworks: common ground and consequences. J. Appl. Ecol. 50, 863–867 (2013).Article 

    Google Scholar 
    39.Climate Change for Forest Policy-Makers: An Approach for Integrating Climate Change into National Forest Policy in Support of Sustainable Forest Management Version 2.0. FAO Forestry Paper No. 181 (FAO, 2018); http://www.fao.org/3/CA2309EN/ca2309en.pdf40.The Future We Want: Biodiversity and Ecosystems—Driving Sustainable Development. United Nations Development Programme Biodiversity and Ecosystems Global Framework 2012-2020 (UNDP, 2012); https://www.cbd.int/financial/mainstream/undp-globalframework2012-2020.pdf41.Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest Resilience, Biodiversity, and Climate Change. A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems. Technical Series No. 43 (Convention on Biological Diversity, 2009); https://www.cbd.int/doc/publications/cbd-ts-43-en.pdf42.CBD secretariat. Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second ad hoc Technical Expert Group on Biodiversity and Climate Change. Technical Series No. 41 (Convention on Biological Diversity, 2009); https://www.cbd.int/doc/publications/cbd-ts-41-en.pdf43.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    Article 

    Google Scholar 
    44.Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34, 746–758 (2019).Article 

    Google Scholar 
    45.Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecol. Model. 385, 124–132 (2018).Article 

    Google Scholar 
    46.Jordano, P. & Rees, M. What is long-distance dispersal? And a taxonomy of dispersal events. J. Ecol. 105, 75–84 (2017).Article 

    Google Scholar 
    47.Veldman, J. W. et al. Comment on ‘The global tree restoration potential’. Science 366, eaay7976 (2019).Article 

    Google Scholar 
    48.Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351, 597–600 (2016).CAS 
    Article 

    Google Scholar 
    49.Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).CAS 
    Article 

    Google Scholar 
    50.Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).CAS 
    Article 

    Google Scholar 
    51.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS 
    Article 

    Google Scholar 
    52.Bellamy, R. & Osaka, S. Unnatural climate solutions? Nat. Clim. Change 10, 98–99 (2020).Article 

    Google Scholar 
    53.Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    54.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    55.Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).Article 

    Google Scholar 
    56.Collins, W. J. et al. Development and evaluation of an Earth-System model – HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).Article 

    Google Scholar 
    57.Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).Article 

    Google Scholar 
    58.Griffies, S. M. et al. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J. Clim. 24, 3520–3544 (2011).Article 

    Google Scholar 
    59.Fujimori, S., Hasegawa, T. & Masui, T. In Post-2020 Climate Action (eds Fujimori, S., Kainuma, M. & Masui, T.) 305–328 (Springer, 2017).60.Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 580, 787–796 (2017).CAS 
    Article 

    Google Scholar 
    61.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).Article 

    Google Scholar 
    62.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    63.Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).Article 

    Google Scholar 
    64.Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    65.Pearson, R. G., Dawson, T. P. & Liu, C. Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27, 285–298 (2004).Article 

    Google Scholar 
    66.Tamme, R. et al. Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95, 505–513 (2014).Article 

    Google Scholar 
    67.Engen, S., Lande, R., Walla, T. & DeVries, P. J. Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. Am. Nat. 160, 60–73 (2002).Article 

    Google Scholar 
    68.He, F. & Gaston, K. J. Occupancy, spatial variance, and the abundance of species. Am. Nat. 162, 366–375 (2003).Article 

    Google Scholar 
    69.Magurran, A. E. & McGill, B. J. Biological Diversity (Oxford Univ. Press, 2011).70.Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794 (KDD, 2016); https://doi.org/10.1145/2939672.293978571.He, F. & Hubbell, S. P. Species–area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011).CAS 
    Article 

    Google Scholar 
    72.Neigel, J. E. Species–area relationships and marine conservation. Ecol. Appl 13, 138–145 (2003).Article 

    Google Scholar 
    73.Rogan, J. E. & Lacher, T. E. Impacts of Habitat Loss and Fragmentation on Terrestrial Biodiversity. in Earth Systems and Environmental Sciences. https://doi.org/10.1016/b978-0-12-409548-9.10913-3 (Elsevier, 2018).74.Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).CAS 
    Article 

    Google Scholar 
    75.Botanic Gardens Conservation International. Global Tree Search Database. Version 1.3 (Botanic Gardens Conservation International, 2019); https://tools.bgci.org/global_tree_search.php More

  • in

    The presence of Pseudogymnoascus destructans, a fungal pathogen of bats, correlates with changes in microbial metacommunity structure

    1.Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    2.Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).Article 

    Google Scholar 
    3.Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).Article 

    Google Scholar 
    4.Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Presley, S. J., Higgins, C. L. & Willig, M. R. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119, 908–917 (2010).Article 

    Google Scholar 
    6.Leibold, M. A. & Mikkelson, G. M. Coherence, species turnover, and boundary clumping: Elements of metacommunity structure. Oikos 97, 237–250 (2002).Article 

    Google Scholar 
    7.Clements, F. E. Plant Succession: An Analysis of the Development of Vegetation (Carnegie Institution of Washington, Washington, DC, 1916).Book 

    Google Scholar 
    8.Patterson, B. D. & Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. 28, 65–82 (1986).Article 

    Google Scholar 
    9.Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).Article 

    Google Scholar 
    10.Tornero, I. et al. Dispersal mode and spatial extent influence distance-decay patterns in pond metacommunities. PLOS ONE 13, e0203119. https://doi.org/10.1371/journal.pone.0203119 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Heino, J. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol. Rev. 88, 166–178 (2013).PubMed 
    Article 

    Google Scholar 
    12.Walker, D. M. et al. Variability in snake skin microbial assemblages across spatial scales and disease states. ISME J. 13, 2209–2222 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Presley, S. J., Cisneros, L. M., Patterson, B. D. & Willig, M. R. Vertebrate metacommunity structure along an extensive elevational gradient in the tropics: A comparison of bats, rodents and birds. Glob. Ecol. Biogeogr. 21, 968–976 (2012).Article 

    Google Scholar 
    14.Heino, J. et al. Elements of metacommunity structure and community-environment relationships in stream organisms. Freshw. Biol. 60, 973–988 (2015).Article 

    Google Scholar 
    15.Hernández-Gómez, O., Hoverman, J. T. & Williams, R. N. Cutaneous microbial community variation across populations of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis). Front. Microbiol. 8, 1379. https://doi.org/10.3389/fmicb.2017.01379 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Wilber, M. Q., Jani, A. J., Mihaljevic, J. R. & Briggs, C. J. Fungal infection alters the selection, dispersal and drift processes structuring the amphibian skin microbiome. Ecol. Lett. 23, 88–98 (2020).PubMed 
    Article 

    Google Scholar 
    17.Brown, J. J. et al. Metacommunity theory for transmission of heritable symbionts within insect communities. Ecol. Evol. 10, 1703–1721 (2020).PubMed 
    Article 

    Google Scholar 
    18.Belden, L. K. & Harris, R. N. Infectious diseases in wildlife: The community ecology context. Front. Ecol. Environ. 5, 533–539 (2007).Article 

    Google Scholar 
    19.Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Frick, W. F., Puechmaille, S. J. & Willis, C. K. R. White-nose syndrome in bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) 245–262 (Springer, New York, 2016). https://doi.org/10.1007/978-3-319-25220-9_9
    Google Scholar 
    22.Langwig, K. E. et al. Resistance in persisting bat populations after white-nose syndrome invasion. Philos. Trans. R. Soc. B. 372, 20160044. (2017).Article 

    Google Scholar 
    23.Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012).PubMed 
    Article 

    Google Scholar 
    24.Grisnik, M. et al. The cutaneous microbiota of bats has in vitro antifungal activity against the white nose pathogen. FEMS Microbiol. Ecol. 96, fiz193. https://doi.org/10.1093/femsex/fitz193 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Wickham H. ggplot2: Elegant Graphics for Data Analysis. R package version 3.2.2. https://CRAN.R-project.org/package=ggplot2 (2020).26.Dallas, T. metacom: An R package for the analysis of metacommunity structure. Ecography 37, 402–405 (2014).Article 

    Google Scholar 
    27.Alves, A. T., Petsch, D. K. & Barros, F. Drivers of benthic metacommunity structure along tropical estuaries. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    28.Risely, A. Applying the core microbiome to understand host–microbe systems. J Anim. Ecol. 89, 1549–1558 (2020).PubMed 
    Article 

    Google Scholar 
    29.Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Lemieux-Labonté, V., Simard, A., Willis, C. K. & Lapointe, F. J. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome 5, 115 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Buckley, D. H., Huangyutitham, V., Nelson, T. A., Rumberger, A. & Thies, J. E. Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microbiol 72, 4522–4531 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Zimmermann, J., Gonzalez, J. M., Saiz-Jimenez, C. & Ludwig, W. Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in altamira cave using 23s rRNA sequence analysis. Geomicrobiol. J. 22, 379–388 (2005).CAS 
    Article 

    Google Scholar 
    33.Wilder, A. P., Kunz, T. H. & Sorenson, M. D. Population genetic structure of a common host predicts the spread of white-nose syndrome, an emerging infectious disease in bats. Mol. Ecol. 24, 5495–5506 (2015).PubMed 
    Article 

    Google Scholar 
    34.Martin, A. M. Historical Demography and Dispersal Patterns in the Eastern Pipistrelle Bat (Perimyotis subflavus). MS Thesis Grand Valley State University (2014).35.Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat Ecol. Evol. 3, 116–124 (2019).PubMed 
    Article 

    Google Scholar 
    36.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Liu, L., Yang, J., Yu, Z. & Wilkinson, D. M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 9, 2068–2077 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Reche, I., Pulido-Villena, E., Morales-Baquero, R. & Casamayor, E. O. Does ecosystem size determine aquatic bacterial richness?. Ecology 86, 1715–1722 (2005).Article 

    Google Scholar 
    39.Hillebrand, H., Watermann, F., Karez, R. & Berninger, U. G. Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126, 114–124 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Avena, C. V. et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front. Microbiol. 7, 1–14 (2016).MathSciNet 
    Article 

    Google Scholar 
    41.Lemieux-Labonté, V., Tromas, N., Shapiro, B. J. & Lapointe, F. J. Environment and host species shape the skin microbiome of captive neotropical bats. PeerJ 4, e2430 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Goldenberg Vilar, A. et al. Eutrophication decreases distance decay of similarity in diatom communities. Freshw. Biol. 59, 1522–1531 (2014).Article 

    Google Scholar 
    43.Chase, J. M. Drought mediates the importance of stochastic community assembly. Proc. Natl. Acad. Sci. U.S.A. 104, 17430–17434 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Muletz-Wolz, C. R., Fleischer, R. C. & Lips, K. R. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol. Ecol. 2, 2917–3293 (2019).
    Google Scholar 
    45.Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. MSystems 4, e00186-e219 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Muller, L. K. et al. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia 105, 253–259 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Janicki, A. F. et al. Efficacy of visual surveys for white-nose syndrome at bat hibernacula. PLoS ONE 10, e01333902015 (2015).Article 
    CAS 

    Google Scholar 
    49.Ellison, S. L., English, C. A., Burns, M. J. & Keer, J. T. Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC Biotechnol. 6, 33 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2012).Article 
    CAS 

    Google Scholar 
    52.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Schloss, P. D. & Westcott, S. L. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77, 3219–3226 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Glassman, S.I., & Martiny, J.B. Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. MSphere, 3, (2018).
    55.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).57.De Caceres, M., Jansen, F. & De Caceres, M.M. ‘indicspecies’. R package version 1.7.9. https://CRAN.R-project.org/package=indicspecies (2020).58.Bates, D., Sarkar, D., Bates, M.D. & Matrix, L. The lme4 package. R package version 1–1.26. https://CRAN.R-project.org/package=lme4 (2020).59.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 8, 2224. https://doi.org/10.3389/fmicb.2017.02224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).Article 

    Google Scholar 
    61.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5–2. https://CRAN.R-project.org/package=vegan (2019).62.Fox, J. et al. ‘car’. R package version 2.1-4. https://CRAN.R-project.org/package=car (2016).63.Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).Article 

    Google Scholar  More

  • in

    Reply to: Empirical pressure-response relations can benefit assessment of safe operating spaces

    1.Lade, S. J., Wang-Erlandsson, L., Staal, A. & Rocha, J. C. Empirical pressure-response relations can benefit assessment of safe operating spaces. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01481-5 (2021).2.Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).Article 

    Google Scholar 
    3.Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. in Introduction to Meta-Analysis (eds Borenstein M. et al.) 277–292 (John Wiley & Sons, 2009).4.Barto, E. K. & Rillig, M. C. Dissemination biases in ecology: effect sizes matter more than quality. Oikos 121, 228–235 (2012).Article 

    Google Scholar 
    5.Carpenter, G., Kleinjans, R., Villasante, S. & O’Leary, B. C. Landing the blame: the influence of EU Member States on quota setting. Mar. Policy 64, 9–15 (2016).Article 

    Google Scholar 
    6.Galland, G. R., Nickson, A. E. M., Hopkins, R. & Miller, S. K. On the importance of clarity in scientific advice for fisheries management. Mar. Policy 87, 250–254 (2018).Article 

    Google Scholar 
    7.Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).Article 

    Google Scholar 
    8.Gaba, S., Gabriel, E., Chadœuf, J., Bonneu, F. & Bretagnolle, V. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci. Rep. 6, 30112 (2016).CAS 
    Article 

    Google Scholar 
    9.Hillebrand, H. & Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecol. Lett. 23, 575–585 (2020).Article 

    Google Scholar 
    10.Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).CAS 
    Article 

    Google Scholar 
    11.Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    12.Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).CAS 
    Article 

    Google Scholar 
    13.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).CAS 
    Article 

    Google Scholar 
    14.Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Environmental and spatial risk factors for the larval habitats of Plasmodium knowlesi vectors in Sabah, Malaysian Borneo

    1.Fornace, K. M. et al. Exposure and infection to Plasmodium knowlesi in case study communities in Northern Sabah, Malaysia and Palawan, The Philippines. PLoS Negl. Trop. Dis. 12, e0006432 (2018).Article 

    Google Scholar 
    2.Singh, B. et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024 (2004).Article 

    Google Scholar 
    3.Chin, A. Z. et al. Malaria elimination in Malaysia and the rising threat of Plasmodium knowlesi. J. Physiol. Anthropol. https://doi.org/10.1186/s40101-020-00247-5 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Cooper, D. J. et al. Plasmodium knowlesi Malaria in Sabah, Malaysia, 2015–2017: Ongoing increase in incidence despite nearelimination of the human-only plasmodium species. Clin. Infect. Dis. 70, 361–367 (2020).Article 

    Google Scholar 
    5.William, T. et al. Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax malaria in Sabah, Malaysia. PLoS Negl. Trop. Dis. 7, e2026 (2013).Article 

    Google Scholar 
    6.Fornace, K. M. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).CAS 
    Article 

    Google Scholar 
    7.Gunggut, H., Saufi, D. S. N. S. A. M., Zaaba, Z. & Liu, M.S.-M. Where have all the forests gone? Deforestation in land below the wind. Procedia Soc. Behav. Sci. 153, 363–369 (2014).Article 

    Google Scholar 
    8.Brock, P. M. et al. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc. R. Soc. B Biol. Sci. 286, 20182913 (2019).Article 

    Google Scholar 
    9.World Health Organization. WHO|Larval Source Management: A Supplementary Measure for Malaria Vector Control (WHO, 2013).
    Google Scholar 
    10.Wong, M. L. et al. Incrimination of Anopheles balabacensis as the vector for simian malaria in Kudat Division, Sabah, Malaysia. J. Microbiol. Immunol. Infect. 48, S47–S48 (2015).Article 

    Google Scholar 
    11.Vythilingam, I. & Hii, J. Simian malaria parasites: Special emphasis on Plasmodium knowlesi and their anopheles vectors in Southeast Asia. in Anopheles mosquitoes: New insights into malaria vectors (InTech, 2013). https://doi.org/10.5772/54491.Article 

    Google Scholar 
    12.Loh, E., Murray, K., Nava, K., Aguirre, A. & Daszak, A. Evaluating the links between biodiversity, land-use change, and infectious disease emergence. in Tropical Conservation (eds. Aguirre, A. & Sukumar, R.) 79–88. (Oxford, 2016).
    Google Scholar 
    13.Brant, H. L. et al. Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malar. J. 15, 1–10 (2016).Article 

    Google Scholar 
    14.Chua, T. H., Manin, B. O., Vythilingam, I., Fornace, K. & Drakeley, C. J. Effect of different habitat types on abundance and biting times of Anopheles balabacensis Baisas (Diptera: Culicidae) in Kudat district of Sabah, Malaysia. Parasit. Vectors 12, 364 (2019).Article 

    Google Scholar 
    15.Wong, M. L. et al. Seasonal and spatial dynamics of the primary vector of Plasmodium knowlesi within a major transmission focus in Sabah, Malaysia. PLoS Negl. Trop. Dis. 9, e0004153 (2015).Article 

    Google Scholar 
    16.Brown, R. et al. Human exposure to zoonotic malaria vectors in village, farm and forest habitats in Sabah, Malaysian Borneo. PLoS Negl. Trop. Dis. 14, 1–18 (2020).Article 

    Google Scholar 
    17.Yasuoka, J. & Levins, R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. J. Trop. Med. Hyg. 76, 450–460 (2007).Article 

    Google Scholar 
    18.Manin, B. O. et al. Investigating the contribution of peri-domestic transmission to risk of zoonotic malaria infection in humans. PLoS Negl. Trop. Dis. 10, e0000506 (2016).Article 

    Google Scholar 
    19.Rohani, A. et al. Characterization of the larval breeding sites of Anopheles balabacensis (Baisas), in Kudat, Sabah Malaysia. Southeast Asian. J. Trop. Med. Public Health 49, 566–579 (2018).
    Google Scholar 
    20.Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: Influence of environmental factors and implications for vector control. Malar. J. 8, 123 (2009).Article 

    Google Scholar 
    21.Roleček, J., Chytrý, M., Hájek, M., Lvončík, S. & Tichý, L. Sampling design in large-scale vegetation studies: Do not sacrifice ecological thinking to statistical purism!. Folia Geobot. 42, 199–208 (2007).Article 

    Google Scholar 
    22.Bellier, E., Monestiez, P., Durbec, J.-P. & Candau, J.-N. Identifying spatial relationships at multiple scales: Principal coordinates of neighbour matrices (PCNM) and geostatistical approaches. Ecography 30, 385–399 (2007).Article 

    Google Scholar 
    23.Brock, P. M. et al. Plasmodium knowlesi transmission: Integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. Parasitology 143, 389–400 (2016).CAS 
    Article 

    Google Scholar 
    24.Fornace, K. M., Drakeley, C. J., William, T., Espino, F. & Cox, J. Mapping infectious disease landscapes: Unmanned aerial vehicles and epidemiology. Trends Parasitol. 30, 514–519 (2014).Article 

    Google Scholar 
    25.GES DISC. Tropical Rainfall Measurement Mission (TRMM). TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt. https://doi.org/10.5067/TRMM/TMPA/3H/7 (2011).Article 

    Google Scholar 
    26.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 NASA EOSDIS Land Processes DAAC. USGS 5, 2002–2015 (2015).
    Google Scholar 
    27.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. NASA EOSDIS Land Processes DAAC. 5, 2002–2015. https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Article 

    Google Scholar 
    28.NASA/METI/AIST/Japan Spacesystems, and U. S. /Japa. A. S. T. ASTER Global Digital Elevation Model V003. NASA EOSDIS Land Processes DAAC. https://lpdaac.usgs.gov/products/astgtmv003 (2019).29.Fornace, K. M. et al. Environmental risk factors and exposure to the zoonotic malaria parasite Plasmodium knowlesi across northern Sabah, Malaysia: A population-based cross-sectional survey. Lancet Planet. Heal. 3, e179–e186 (2019).Article 

    Google Scholar 
    30.Stark, D. J. et al. Long-tailed macaque response to deforestation in a plasmodium knowlesi-endemic area. EcoHealth 16, 638–646 (2019).Article 

    Google Scholar 
    31.Davidson, G., Chua, T. H., Cook, A., Speldewinde, P. & Weinstein, P. Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework. Malar. J. 18, 1–13 (2019).Article 

    Google Scholar 
    32.Diuk-Wasser, M. A. et al. Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in Mali. Am. J. Trop. Med. Hyg. 76, 869–874 (2007).Article 

    Google Scholar 
    33.Stefani, A., Roux, E., Fotsing, J. M. & Carme, B. Studying relationships between environment and malaria incidence in Camopi (French Guiana) through the objective selection of buffer-based landscape characterisations. Int. J. Health Geogr. 10, 65 (2011).Article 

    Google Scholar 
    34.Wang, X., Blanchet, F. G. & Koper, N. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12198 (2014).Article 

    Google Scholar 
    35.McGarigal, K., Cushman, S. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. https://doi.org/10.1049/oap-cired.2017.1227 (2012).Book 

    Google Scholar 
    36.TuckerLima, J. M., Vittor, A., Rifai, S. & Valle, D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos. Trans. R. Soc. B. 372, 20160125 (2017).Article 

    Google Scholar 
    37.Sallum, M. A. M., Peyton, E. L. & Wilkerson, R. C. Six new species of the Anopheles leucosphyrus group, reinterpretation of An. elegans and vector implications. Med. Vet. Entomol. 19, 158–199 (2005).CAS 
    Article 

    Google Scholar 
    38.Stoops, C. A. et al. Remotely-sensed land use patterns and the presence of Anopheles larvae (Diptera: Culicidae) in Sukabumi, West Java, Indonesia. J. Vector Ecol. 33, 30–39 (2008).Article 

    Google Scholar 
    39.Singh, J. & Tham, A. S. Case history on malaria vector control through the application of environmental management in Malaysia. World Health Org. 88, 1–70 (1988).
    Google Scholar 
    40.Tangena, J. A. A., Thammavong, P., Wilson, A. L., Brey, P. T. & Lindsay, S. W. Risk and control of mosquito-borne diseases in southeast asian rubber plantations. Trends Parasitol. 32, 402–415 (2016).Article 

    Google Scholar 
    41.Kaewwaen, W. & Bhumiratana, A. Landscape ecology and epidemiology of malaria associated with rubber plantations in Thailand: Integrated approaches to malaria ecotoping. Interdiscipl. Perspect. Infect. Dis. 2015, 1–15 (2015).Article 

    Google Scholar 
    42.Foley, D. H., Torres, E. P. & Mueller, I. Stream-bank shade and larval distribution of the Philippine malaria vector Anopheles flavirostris. Med. Vet. Entomol. 16, 347–355 (2002).CAS 
    Article 

    Google Scholar 
    43.Service, M. W. & Service, M. W. Sampling the Larval Population. in Mosquito Ecology 75–209 (Springer, 1993). https://doi.org/10.1007/978-94-015-8113-4_2.Article 
    MATH 

    Google Scholar 
    44.Sallum, M. A. M., Peyton, E. L., Harrison, B. A. & Wilkerson, R. C. Revision of the Leucosphyrus group of Anopheles (Cellia) (Diptera, Culicidae). Rev. Bras. Entomol. 49, 1–152 (2005).Article 

    Google Scholar 
    45.Rattanarithikul, R., Harrison, B. A., Harbach, R. E., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand IV. Anopheles. J. Trop. Med. Public Health 37, 1–26 (2006).
    Google Scholar 
    46.R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ (2020).47.Borremans, B., Faust, C., Manlove, K. R., Sokolow, S. H. & Lloyd-Smith, J. O. Cross-species pathogen spillover across ecosystem boundaries: Mechanisms and theory. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0344 (2019).Article 

    Google Scholar  More

  • in

    Climate change drives widespread shifts in lake thermal habitat

    OverviewWe used long-term time series of lake temperature profiles to determine the magnitude of thermal habitat change in 139 widely distributed lakes. Time series were interpolated across depth and season to generate data with consistent resolutions across lakes. To assess temperature change, we used a metric, ‘thermal non-overlap’, based on the percentage of two kernel density estimations of lake temperature which are non-overlapping. We calculated the metric for a range of plausible seasonal and depth habitat restrictions for aquatic species in the face of climate change. We used BRT to explain variability across lakes in their thermal habitat non-overlap as a function of lake characteristics (mean depth and latitude), characteristics of the time series for each lake (starting day of the year, ending day of the year, starting year and ending year, average number of sampling dates per year, long-term trend in the number of sampling dates per year, long-term trend in the yearly seasonal range of sampling dates), the habitat restriction values (season and depth) and the location of the time series delineation for thermal non-overlap calculations (30th, 50th and/or 70th quantiles of the years included in each lake’s time series).Study sitesWe compiled long-term lake temperature data from 139 lakes across the globe. Temperature variations in many of these lakes have already been linked to climate change1,2,19,20,57,58, but temperature change in at least one lake may be partially due to background climate variation in addition to anthropogenic climate change (Atlantic Multidecadal Oscillation in Lake Annie)59. The lakes included in our analysis represent a wide range of surface area (0.02 to 68,800 km2), maximum depth (2.3 to 1,642 m), latitude (60 °S to 69 °N) and elevation (−212 to 1,987 m above sea level) (see Supplementary Table 1 for more information).Temperature dataIn total, we used more than 32 million lake temperature measurements for our analyses. The number of observations per lake ranged from 368 (Lake Stensjon) to 7,636,767 (Lake Superior) with approximately 232,000 observations per lake on average. Temperature data from each lake came from in situ temperature profiles60,61,62,63,64 for lakes smaller than 169 km2 and from a combination of in situ temperature profiles and remotely sensed surface water temperatures for 21 larger lakes. Remote sensing data were used in recognition that temperature and warming rates can vary substantially across latitude and longitude for large lakes19,20,21.The mean length of the temperature time series was 36 years with a range from 15 to 101 years. All lakes had temperature data which started in the year 2000 or earlier and ended in 2000 or later. Lakes had on average 29 temperature profiles per year (inner quartile range: 7–26). In situ temperature data were measured using a wide variety of temperature sensors. Data collection methods included regularly collected discrete temperature profiles, high-resolution thermistor chains and other commonly accepted tools for measuring aquatic temperature. The in situ data are publicly available through the environmental data initiative60.Remotely sensed lake surface temperatures were measured using the Advanced Very High-Resolution Radiometer (AVHRR) and processed by the Group for High Resolution Sea Surface Temperature (GHRSST) project65. AVHRR data have been validated against buoy data from the North American Great Lakes and found to have a root mean squared error of 0.55 °C compared with in situ measurements2. AVHRR temperature data were included to capture horizontal variability in temperature and warming in 21 of the 139 lakes that would not be captured by temperature profiles from a single central location19,20,21. AVHRR data were pooled with in situ data for temperature interpolation.Temperature interpolationTemperature data were spatially and temporally interpolated for each lake. All temperature profile data were first linearly interpolated across depth because temperature variability with depth is highly constrained by lake physics and typically allows for robust interpolations. The largest data gap over which depth interpolation occurred was 0.1 × mean depth of each lake. Following interpolation across depth, data were interpolated across time using standard spline interpolation models with a Kalman filter66. The model output was used to fill data gaps to produce a continuous, daily time series over the day of the year range for which temperature profiles had been regularly measured. Some times of the year were excluded from specific lakes because they lacked regular measurements throughout the length of the long-term time series. Thus, the same starting and ending day of the year was used for each lake throughout its time series, and was often shorter than the full annual cycle (Supplementary Table 1). The largest gap in time over which interpolation occurred was 30 days and this included extrapolations for lakes with missing data at the beginning or end of seasonal coverage in a specific year. Years with longer gaps were omitted from the analysis and the length of the seasonal coverage was optimized to minimize the number of years that needed to be removed. For large lakes with many sampling points (for example, Baikal, Superior, Victoria), temperature data were divided into 1,000 km2 latitude–longitude bins and interpolated across depth and across time separately for each bin. The mean seasonal coverage of the interpolated lake time series was 245 days per year with a minimum of 17 days per year and a maximum of 365 days per year.The interpolated temperature output had a daily temporal resolution and a depth resolution which varied continuously over depth. At the lake surface, we interpolated temperatures every 0.1 m (for example, 0 m, 0.1 m, 0.2 m), to every 1 m starting at a depth of 10 m (for example, 10 m, 11 m, 12 m) and every 100 m starting at a depth of 1,000 m (for example, 1,000 m, 1,100 m, 1,200 m). These depth increments were used because they consistently gave good coverage over all major lake strata, regardless of each lake’s morphometric characteristics, while minimizing computational intensity by eliminating redundancy within lake strata.Thermal habitat non-overlap calculationsAfter interpolating the temperature data across depth and season for each lake, we bisected it into an early part (part a) and a later part (part b). Parts a and b were iteratively delineated at three points positioned serially along the time series—at the 30th, 50th and 70th quantiles. We averaged the final non-overlap values across these three delineations for each lake so that the results depended less on the somewhat arbitrary decision of where to split the time series. For each delineation, we randomly sampled 10,000 temperature values from each of parts a and b. This was repeated ten times resulting in a total of 300,000 temperature values across all three time series delineations and all ten repetitions for each lake (10,000 × 3 × 10). The sampling probability for temperature values in each comparison was weighted by the volume increment associated with each temperature value (depth increment (Id) × cross-sectional area at each depth (Cd)). Id was calculated as the difference between the depth of the sampled temperature value and the next depth in the depth resolution of the interpolated temperatures. Cd at each depth for each lake was calculated using standard, three-parameter models for estimating lake cross-sectional area based on surface area, maximum depth and mean depth67. For large lakes with temperature data at multiple locations across latitude and longitude, Cd was divided by the number of latitude–longitude bins used for each lake. Temperature values from large lakes were sampled regardless of their associated latitude–longitude bins. As a result of the volume-weighting procedure, temperature measurements were sampled in proportion to the volume of water represented by each value, with temperatures representing larger volumes being sampled more often. As a consequence of this volume-weighting procedure, the resulting temperature distributions were robust to moderate changes in the depths used for the temperature interpolation (Supplementary Fig. 1).We defined thermal non-overlap (TNO) as the symmetric difference (Ө) between the kernel density estimations of temperature values from parts a and b of the time series as a proportion of the union (∪) of both kernel density estimations, following an established method42. Conversely, we defined the thermal habitat overlap (as opposed to non-overlap) as the intersection (∩) of the kernel density estimations as a proportion of the union (∪) of both distributions. All values were converted to percentages by multiplying by 100.$${mathrm{TNO}}left( % right) = 100 times frac{{{{T}}_{{mathrm{recent}}},ominus,{{T}}_{{mathrm{baseline}}}}}{{{{T}}_{{mathrm{recent}}} cup {{T}}_{{mathrm{baseline}}}}} = 100 times left( {1 – frac{{{{T}}_{{mathrm{recent}}} cap {{T}}_{{mathrm{baseline}}}}}{{{{T}}_{{mathrm{recent}}} cup {{T}}_{{mathrm{baseline}}}}}} right)$$
    (1)
    We used simulations to test the sensitivity of TNO to changes in mean and s.d. of temperature. We primed these simulations with three baseline temperature distributions all with a mean of 15 °C but with varying s.d. (4, 6, 8 °C). We simulated a range of additional temperature distributions by increasing and decreasing the mean and s.d. of the baseline temperature distributions and then calculated the corresponding values of TNO. The simulated change in both mean and s.d. varied from −3 to +3 °C. We found that TNO was sensitive to changes in mean and s.d. but was slightly more sensitive to reductions in s.d. compared with increases. TNO values also depended on the baseline s.d., such that lower starting s.d. elevates values of non-overlap given an equivalent change in temperature (Extended Data Fig. 1).We also quantified null values of thermal non-overlap (TNOo) by repeating the thermal non-overlap calculations but where parts a and b were defined by randomly dividing the individual years of data into two separate groups as opposed to sequentially dividing them along the time series.$${mathrm{TNO}}_{mathrm{o}}(% ) = 100 times frac{{{{T}}_{{mathrm{random}},{{a}}},ominus,{{T}}_{{mathrm{random}},{{b}}}}}{{{{T}}_{{mathrm{random}},{{a}}} cup {{T}}_{{mathrm{random}},{{b}}}}}$$
    (2)
    To calculate standardized thermal non-overlap (TNOs), we subtracted TNOo from TNO thereby setting the null expectation to zero.$${mathrm{TNO}}_{mathrm{s}}left( {mathrm{% }} right) = {mathrm{TNO}} – {mathrm{TNO}}_{mathrm{o}}$$
    (3)
    In this case, if the temperature distributions in the recent and baseline time periods were identical, the TNOs would equal approximately zero. Values different from zero reflect a combination of random noise and long-term temperature change. All non-overlap values described in the main text and shown in Figs. 2–6 reflect values of TNOs. A comparison between raw values of TNO and TNOo can be found in Extended Data Fig. 5. Thermal non-overlap values and the null values were calculated using the ‘overlap’ function from the ‘overlapping’ package42 in the R environment for statistical computing and visualization. In the function, we set the number of equally spaced points at which the overlapping kernel density estimation is evaluated to 100 for all comparisons because it minimized the values of TNOo (we considered a range of values from 5 to 10,000).To assess the effect of seasonal habitat restrictions (Slimit) and volumetric habitat restrictions (Vlimit), we modified equations (1)–(3) by comparing temperature values only from a specified range of depths and/or days of the year. We considered a range of habitat restrictions scaled from 0 to 0.95, where 0.95 is the most restrictive (temperature values were compared from within bins equivalent to 1/20th of the available seasonal and volumetric habitat) and 0 is the least restrictive (temperature values were compared regardless of season and depth). We focused our interpretations on the unitless habitat restrictions (scaled from 0 to 0.95) instead of in units of days or m3 so that habitat restrictions could be more readily compared across lakes. Comparing a Vlimit value of 0.8 across lakes of different sizes assumes that a habitat restriction of 2 m3 in a 10 m3 lake would be comparable to a 20 m3 habitat delineation in a 200 m3 lake. The actual size of the seasonal habitat restrictions for each lake in units of days were calculated using the value of Slimit as follows:$$S = left( {mathrm{doy}}_{mathrm{max}} – {mathrm{doy}}_{mathrm{min}}right)left( {1 – S_{mathrm{limit}}} right)$$where S is the seasonal habitat restriction in units of days, doymax is the maximum day of the year of the lakes’ seasonal coverage, doymin is the minimum day of the year of the lakes’ seasonal coverage and Slimit is the seasonal habitat restriction scaled from 0 to 0.95. For example, in a lake with a seasonal coverage from day of the year 1 to day of the year 365, with an Slimit value of 0.75, we compared randomly selected temperatures from time periods a and b separately for four seasonal bins (days of the year 1–91, 92–183, 184–273 and 274–365). Similarly, the actual size of the volumetric habitat restrictions (V) for each lake in units of m3 were calculated using the value of Vlimit as follows:$$V = left( {mathrm{volume}} right) times left( {1 – V_{mathrm{limit}}} right)$$where V is the volumetric habitat restriction in units of m3, volume is the lake’s total volume and Vlimit is the volumetric habitat restriction value scaled from 0 to 0.95. For example, if a lake with a volume of 100 m3 had a Vlimit value of 0.75, we randomly selected temperature values from time periods a and b which were within four 25 m3 (100 m3 × (1 − 0.8)) bins. Volume bins were subsequently translated into sequential depth bins for the purpose of temperature value selection, making them functionally depth limits, and they are presented as such in the main text.We factorially combined a discrete series of values for Slimit and Vlimit (0, 1/2, 2/3, 5/6, 8/9, 12/13 and 19/20) to test a range of combined seasonal and volumetric habitat restrictions that do not require the overlap or truncation of bins. For reference, habitat restrictions are presented visually for hypothetical ‘Species 1’ (Slimit = 0, Vlimit = 0.8), ‘Species 2’ (Slimit = 0.8, Vlimit = 0) and ‘Species 3’ (Slimit = 0.8, Vlimit = 0.8) examples (Fig. 1). These limits reflect hypothetical restrictions in a species’ habitat due to ecological factors and approximate the habitat available for a low-light specialist phytoplankton (species 1), a spring migratory fish (species 2) and a diapausing benthic invertebrate (species 3). In Fig. 6, the species habitat restriction values for P. rubescens were Slimit = 0.74, Vlimit = 0.89 (Fig. 6).Explaining variability in thermal habitat non-overlapWe used BRT to explain lake-to-lake variability in thermal habitat change (percentage of non-overlap) while accounting for differences in the temporal coverage of each lake’s time series. The predictor variables in the BRT were the starting year of the time series, ending year of the time series, starting day of the year of the seasonal coverage, ending day of the year of the seasonal coverage, average number of sampling dates per year, linear trend (Theil–Sen slope) in the average number of sampling dates per year, linear trend (Theil–Sen slope) in the yearly extent of the time series’ seasonal coverage, lake mean depth, absolute latitude (degrees from the Equator), seasonal habitat restriction, depth habitat restriction and time series delineation. Geospatial and morphometric data for each lake is available from the previously published HydroLAKES database41. Of the available lake characteristics, we used latitude and mean depth because they were most strongly correlated to TNOs values and because they were least correlated to the other predictors in the model. We used a 100-fold cross-validation with a 70–30% split by lake (that is, 70% of lakes were used in each BRT). Model results were averaged to ensure that the patterns described therein were robust to the exclusion of some lakes. We optimized the learning rate for each BRT by iteratively running the model with smaller and smaller learning rates (from 0.8, 0.4, 0.2, 0.1, 0.05 to 0.025) until the number of trees in the model was greater than 1,000, as suggested in previous literature68. We found that the BRT performed well in cross-validation—the correlation between predicted and observed values in the test datasets from the 100-fold cross-validation was moderate on average across models (r = 0.56, Kendall’s rank correlation; see full goodness-of-fit summary statistics in Extended Data Fig. 6). The correlation between the predicted and the observed values was high (r = 0.76, Kendall’s rank correlation) when predictions were averaged across BRT. We found minimal patterning in the model residuals when comparing the model residuals with each predictor variable used in the BRT (Extended Data Fig. 7).To calculate lake-specific mean thermal non-overlap values and facilitate comparison across lakes, we used the BRT to remove the variation in thermal non-overlap attributable to the starting year of the time series, ending year of the time series, starting day of the year of the seasonal coverage, ending day of the year of the seasonal coverage, average number of sampling dates per year, linear trend (Theil–Sen slope) in the average number of sampling dates per year and the linear trend (Theil–Sen slope) in the yearly extent of the time series’ seasonal coverage of each lake’s time series, following previously published work24. We did this by setting the values for these variables to their median and using the BRT to make a prediction for each lake with these medians as predictors, along with each lake’s observed values for mean depth, absolute latitude, seasonal habitat restriction, depth habitat restriction and time series delineation. The residuals from the BRT were then added back to the predicted values used in further analyses and plotting. The mean lake-specific thermal dissimilarities were calculated as the average across all seasonal habitat restrictions (Slimit), depth habitat restrictions (Vlimit) (0, 1/2, 2/3, 5/6, 8/9, 12/13 and 19/20) and all three time series delineations. The statistical significance of these lake-specific thermal non-overlap values was estimated on a continuous gradient and calculated using a Wilcoxon signed-rank test. In the test, we compared TNO values to TNOo values separately for each combination of time series delineation, seasonal habitat restriction and depth habitat restriction (n = 108). The average P values from these tests for each lake are shown in Supplementary Table 1.We compared thermal non-overlap values to a more widely used metric of whole-lake thermal change—whole-lake temperature trends. Whole-lake temperature trends were calculated based on the annual averages of all temperature values sampled for the pairwise thermal non-overlap calculations to maximize the comparability of the resulting temperature trends and thermal non-overlap values. Due to the temperature sampling probability being volume-weighted, the temperature trend was also indirectly volume-weighted. Temperature trends were calculated using Theil–Sen slopes applied to annual mean temperatures and the statistical significance of each trend (P value) was calculated using a bootstrapped one sample Wilcoxon signed-rank test with 1,000 repetitions. The input data for the Wilcoxon signed-rank test were the complete list of all slopes derived from all pairwise combinations of points in the time series. The number of pairwise slopes used in each repetition of the Wilcoxon signed-rank test was equal to the number of years of temperature data for each lake. Whole-lake temperature trends and thermal non-overlap values were not strongly correlated (r = 0.10, Kendall’s rank correlation coefficient; Extended Data Fig. 4). All statistics and graphics were produced in the R statistical computing environment69.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    First dynamics of bacterial community during development of Acropora humilis larvae in aquaculture

    1.Chavanich, S., Viyakarn, V., Loyjiw, T., Pattaratamrong, P. & Chankong, A. Mass bleaching of soft coral, Sarcophyton spp. in Thailand and the role of temperature and salinity stress. ICES J. Mar. Sci. 66, 1515–1519 (2009).2.Phongsuwan, N. et al. Status and changing patterns on coral reefs in Thailand during the last two decades. Deep Sea Res. Pt. II Top. Stud. Oceanogr. 96, 19–24 (2013).ADS 
    Article 

    Google Scholar 
    3.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.De´ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109, 17995–17999 (2012).6.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    7.Sheppard, C. et al. The Gulf: A young sea in decline. Mar. Pollut. Bull. 60, 13–38 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Cruz-Trinidad, A., Aliño, P. M., Geronimo, R. C. & Cabral, R. B. Linking food security with coral reefs and fisheries in the coral triangle. Coast Manag. 42, 160–182 (2014).Article 

    Google Scholar 
    9.Chavanich, S. et al. A tunicate from a Thai coral reef: A potential source of new anticancer compounds. Coral Reefs 24, 621. https://doi.org/10.1007/s00338-005-0036-y (2005).ADS 
    Article 

    Google Scholar 
    10.Rocha, J., Peixe, L., Gomes, N. & Calado, R. Cnidarians as a source of new marine bioactive compounds-an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9, 1860–1886 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Cooper, E. L., Hirabayashi, K., Strychar, K. B. & Sammarco, P. W. Corals and their potential applications to integrative medicine. Evid. Based Complement. Alternat. Med. 2014, 184959. https://doi.org/10.1155/2014/184959 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Petersen, D. et al. The application of sexual coral recruits for the sustainable management of ex situ populations in public aquariums to promote coral reef conservation-SECORE Project. Aquat. Conserv. 16, 167–179 (2006).Article 

    Google Scholar 
    13.Chavanich, S. & Viyakarn, V. Conservation and restoration of coral reefs under climate change: Strategies and practice. in The Cnidaria, Past, Present and Future. 787–792. (Springer, 2016).14.Boström-Einarsson, L. et al. Coral restoration–A systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631. https://doi.org/10.1371/journal.pone.0226631 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Webster, N. S. & Reusch, T. B. Microbial contributions to the persistence of coral reefs. ISME J. 11, 2167–2174 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.van Oppen, M. J. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Chimetto, L. A. et al. Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst. Appl. Microbiol. 31, 312–319 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Ceh, J. et al. Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol. Evol. 3, 2393–2400 (2013).Article 

    Google Scholar 
    20.Gochfeld, D. J. & Aeby, G. S. Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar. Ecol. Prog. Ser. 362, 119–128 (2008).ADS 
    Article 

    Google Scholar 
    21.Kirkwood, M., Todd, J. D., Rypien, K. L. & Johnston, A. W. The opportunistic coral pathogen Aspergillus sydowii contains dddP and makes dimethyl sulfide from dimethylsulfoniopropionate. ISME J. 4, 147–150 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Raina, J.-B. et al. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 4, e2275. https://doi.org/10.7717/peerj.2275 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Lodwig, E. M. et al. Amino-acid cycling drives nitrogen fixation in the legume—Rhizobium symbiosis. Nature 422, 722–726 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350–363 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: Current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674 (2010).PubMed 
    Article 

    Google Scholar 
    26.Lema, K. A., Willis, B. L. & Bourne, D. G. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl. Environ. Microbiol. 78, 3136–3144 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Ann. Rev. Microbiol. 70, 317–340 (2016).CAS 
    Article 

    Google Scholar 
    28.Lema, K. A., Bourne, D. G. & Willis, B. L. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23, 4682–4695 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Zhou, G. et al. Microbiome dynamics in early life stages of the scleractinian coral Acropora gemmifera in response to elevated pCO2. Environ. Microbiol. 19, 3342–3352 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Bernasconi, R. et al. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10, 1529. https://doi.org/10.3389/fmicb.2019.01529 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Damjanovic, K., Menéndez, P., Blackall, L. L. & van Oppen, M. J. H. Early life stages of a common broadcast spawning coral associate with specific bacterial communities despite lack of internalized bacteria. Microb. Ecol. 79, 706–719 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Miller, N., Maneval, P., Manfrino, C., Frazer, T. K. & Meyer, J. L. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 8, e9635. https://doi.org/10.7717/peerj.9635 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Chamberland, V. F. et al. Four-year-old Caribbean Acropora colonies reared from field-collected gametes are sexually mature. Bull. Mar. Sci. 92, 263–264 (2016).Article 

    Google Scholar 
    34.Baria-Rodriguez, M. V., dela Cruz, D. W., Dizon, R. M., Yap, H. T. & Villanueva, R. D. Performance and cost-effectiveness of sexually produced Acropora granulosa juveniles compared with asexually generated coral fragments in restoring degraded reef areas. Aquat. Conserv. Mar. Freshwater Ecosyst. 29, 891–900 (2019).35.Henry, J. A., O’Neil, K. L. & Patterson, J. T. Native herbivores improve sexual propagation of threatened staghorn coral Acropora cervicornis. Front. Mar. Sci. 6, 713. https://doi.org/10.3389/fmars.2019.00713 (2019).36.Ligson, C. A., Tabalanza, T. D., Villanueva, R. D. & Cabaitan, P. C. Feasibility of early outplanting of sexually propagated Acropora verweyi for coral reef restoration demonstrated in the Philippines. Restor. Ecol. 28, 244–251 (2019).Article 

    Google Scholar 
    37.Tabalanza, T. D. et al. Successfully cultured and reared coral embryos from wild caught spawn slick in the Philippines. Aquaculture 525, 735354. https://doi.org/10.1016/j.aquaculture.2020.735354 (2020).Article 

    Google Scholar 
    38.Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. Specificity of associations between bacteria and the coral Pocillopora meandrina during early development. Appl. Environ. Microbiol. 78, 7467–7475 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kuanui, P., Chavanich, S., Viyakarn, V., Omori, M. & Lin, C. Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of the zooxanthellae in coral tissues. Ocean Sci. J. 50, 263–268 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Kuanui, P. et al. Effect of light intensity on survival and photosynthetic efficiency of cultured corals of different ages. Estuar. Coast Shelf Sci. 235, 106515. https://doi.org/10.1016/j.ecss.2019.106515 (2020).Article 

    Google Scholar 
    41.Marotz, C. et al. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62, 290–293 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bulan, D. E. et al. Spatial and seasonal variability of reef bacterial communities in the upper Gulf of Thailand. Front Mar. Sci. 5, 441. https://doi.org/10.3389/fmars.2018.00441 (2018).Article 

    Google Scholar 
    43.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl. Environ. Microbiol. 84. https://doi.org/10.1128/AEM.02627-17 (2018).47.Bharti, R. & Grimm, D. G. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform. 22, 178–193. https://doi.org/10.1093/bib/bbz155 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    48.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, 2020).50.Olson, N., Ainsworth, T., Gates, R. & Takabayashi, M. Diazotrophic bacteria associated with Hawaiian Montipora corals: Diversity and abundance in correlation with symbiotic dinoflagellates. J. Exp. Mar. Biol. Ecol. 371, 140–146 (2009).CAS 
    Article 

    Google Scholar 
    51.Sharp, K. H., Sneed, J., Ritchie, K., Mcdaniel, L. & Paul, V. J. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strain. Biol. Bull. 228, 98–107 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Sharp, K. H., Distel, D. & Paul, V. J. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 6, 790–801 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3, 685–699 (2009).PubMed 
    Article 

    Google Scholar 
    54.Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Doyle, F. J. III. & Morse, D. E. Effects of light dynamics on coral spawning synchrony. Biol. Bull. 220, 161–173 (2011).PubMed 
    Article 

    Google Scholar 
    55.Baquiran, J. I. P. et al. The prokaryotic microbiome of Acropora digitifera is stable under short-term artificial light pollution. Microorganisms 8, 1566. https://doi.org/10.3390/microorganisms8101566 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    56.Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS 
    Article 

    Google Scholar 
    57.Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774. https://doi.org/10.1038/s41598-017-03139-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Franco, Á. G., Cadavid, L. F. & Arévalo-Ferro, C. Biofilms and extracts from bacteria producing “quorum sensing” signaling molecules protomote chemotaxis and settlement behaviors in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa) larvae. Acta Biol. Colomb. 24, 150–162 (2019).Article 

    Google Scholar 
    59.Jayaprakash, N. et al. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems. Dis. Aquat. Org. 68, 39–45 (2005).CAS 
    Article 

    Google Scholar 
    60.Tsai, S., Chang, W.-C., Chavanich, S., Viyakarn, V. & Lin, C. Ultrastructural observation of oocytes in six types of stony corals. Tissue Cell 48, 349–355 (2016).PubMed 
    Article 

    Google Scholar 
    61.Lin, C., Kup, F.-W., Chavanich, S. & Viyakarn, V. Membrane lipid phase transition behavior of oocytes from three gorgonian corals in relation to chilling injury. PLoS ONE 9, e92812. https://doi.org/10.1371/journal.pone.0092812 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Shnit-Orland, M. & Kushmaro, A. Coral mucus-associated bacteria: A possible first line of defense. FEMS Microbiol. Ecol. 67, 371–380 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Leite, D. C., Salles, J. F., Calderon, E. N., van Elsas, J. D. & Peixoto, R. S. Specific plasmid patterns and high rates of bacterial co-occurrence within the coral holobiont. Ecol. Evol. 8, 1818–1832 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Rypien, K. L., Ward, J. R. & Azam, F. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 12, 28–39 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.ElAhwany, A. M., Ghozlan, H. A., ElSharif, H. A. & Sabry, S. A. Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum. J. Basic Microbiol. 55, 2–10 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Damjanovic, K., van Oppen, M. J., Menéndez, P. & Blackall, L. L. Experimental inoculation of coral recruits with marine bacteria indicates scope for microbiome manipulation in Acropora tenuis and Platygyra daedalea. Front. Microbiol. 10, 1702. https://doi.org/10.3389/fmicb.2019.01702 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Damjanovic, K., Blackall, L. L., Menéndez, P. & van Oppen, M. J. H. Bacterial and algal symbiont dynamics in early recruits exposed to two adult coral species. Coral Reefs 39, 189–202 (2020).Article 

    Google Scholar 
    68.Neave, M. J., Michell, C. T., Apprill, A. & Voolstra, C. R. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 7, 40579. https://doi.org/10.1038/srep40579 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, T. D. Rethinking the coral microbiome: Simplicity exists within a diverse microbial biosphere. MBio 9, e00812. https://doi.org/10.1128/mBio.00812-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More