1.Randolph, S. E. Ticks are not insects: Consequences of contrasting vector biology for transmission potential.. Parasitol Today 14, 186–192 (1998).CAS
Article
Google Scholar
2.Hartemink, N. A., Randolph, S. E., Davis, S. A. & Heesterbeek, J. A. P. The basic reproduction number for complex disease systems: Defining R-0 for tick-borne infections. Am. Nat. 171, 743–754 (2008).CAS
Article
Google Scholar
3.Tsao, J. Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet. Res. 40, 1 (2009).Article
Google Scholar
4.Niebylski, M. L., Peacock, M. G. & Schwan, T. G. Lethal effect of Rickettsia rickettsii on its tick vector (Dermacentor andersoni). Appl. Environ. Microbiol. 65, 773–778 (1999).CAS
Article
Google Scholar
5.Ross, D. E. & Levin, M. L. Effects of Anaplasma phagocytophilum infection on the molting success of Ixodes scapularis (Acari: Ixodidae) larvae. J. Med. Entomol. 41, 476–483. https://doi.org/10.1603/0022-2585-41.3.476 (2004).Article
PubMed
Google Scholar
6.Ferguson, H. M. & Read, A. F. Why is the effect of malaria parasites on mosquito survival still unresolved?. Trends Parasitol. 18, 256–261 (2002).Article
Google Scholar
7.Hurd, H., Hogg, J. C. & Renshaw, M. Interactions between bloodfeeding, fecundity and infection in mosquitos. Parasitol Today 11, 411–416. https://doi.org/10.1016/0169-4758(95)80021-2 (1995).Article
Google Scholar
8.Lefevre, T. & Thomas, F. Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infect. Genet. Evol. 8, 504–519. https://doi.org/10.1016/j.meegid.2007.05.008 (2008).Article
PubMed
Google Scholar
9.Hurd, H. Manipulation of medically important insect vectors by their parasites. Annu. Rev. Entomol. 48, 141–161. https://doi.org/10.1146/annurev.ento.48.091801.112722 (2003).CAS
Article
PubMed
Google Scholar
10.Lefèvre, T. et al. New prospects for research on manipulation of insect vectors by pathogens. PLoS Pathog. 2, e72. https://doi.org/10.1371/journal.ppat.0020072 (2006).CAS
Article
PubMed
PubMed Central
Google Scholar
11.Benelli, G. Pathogens manipulating tick behavior-through a glass. Darkly. Pathogens https://doi.org/10.3390/pathogens9080664 (2020).Article
PubMed
Google Scholar
12.Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190. https://doi.org/10.1146/annurev.genet.41.110306.130119 (2008).CAS
Article
PubMed
Google Scholar
13.Bonnet, S. I., Binetruy, F., Hernandez-Jarguin, A. M. & Duron, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell Infect. Microbiol. https://doi.org/10.3389/fcimb.2017.00236 (2017).Article
PubMed
PubMed Central
Google Scholar
14.Duron, O. & Gottlieb, Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol. 36, 816–825. https://doi.org/10.1016/j.pt.2020.07.007 (2020).CAS
Article
PubMed
Google Scholar
15.Li, L. H., Zhang, Y. & Zhu, D. Effects of antibiotic treatment on the fecundity of Rhipicephalus haemaphysaloides ticks. Parasit. Vectors 11, 7. https://doi.org/10.1186/s13071-018-2807-7 (2018).CAS
Article
Google Scholar
16.Zhang, C. M. et al. Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis. Exp. Appl. Acarol. 73, 429–438. https://doi.org/10.1007/s10493-017-0194-y (2017).Article
PubMed
Google Scholar
17.Zhong, J., Jasinskas, A. & Barbour, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE https://doi.org/10.1371/journal.pone.0000405 (2007).Article
PubMed
PubMed Central
Google Scholar
18.Ben-Yosef, M. et al. Coxiella-like endosymbiont of Rhipicephalus sanguineus is required for physiological processes during ontogeny. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00493 (2020).Article
PubMed
PubMed Central
Google Scholar
19.Duron, O. et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr. Biol. 28, 1896. https://doi.org/10.1016/j.cub.2018.04.038 (2018).CAS
Article
PubMed
Google Scholar
20.Guizzo, M. G. et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci. Rep. https://doi.org/10.1038/s41598-017-17309-x (2017).Article
PubMed
PubMed Central
Google Scholar
21.Abraham, N. M. et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. USA 114, E781–E790. https://doi.org/10.1073/pnas.1613422114 (2017).CAS
Article
PubMed
Google Scholar
22.Cirimotich, C. M. et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332, 855–858. https://doi.org/10.1126/science.1201618 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
23.Dong, Y., Manfredini, F. & Dimopoulos, G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000423 (2009).Article
PubMed
PubMed Central
Google Scholar
24.Gall, C. A. et al. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 10, 1846–1855. https://doi.org/10.1038/ismej.2015.266 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
25.Narasimhan, S. et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe 15, 58–71. https://doi.org/10.1016/j.chom.2013.12.001 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
26.Kurtenbach, K. et al. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660–669 (2006).CAS
Article
Google Scholar
27.Schotthoefer, A. M. & Frost, H. M. Ecology and epidemiology of Lyme borreliosis. Clin. Lab. Med. 35, 723–743. https://doi.org/10.1016/j.cll.2015.08.003 (2015).Article
PubMed
Google Scholar
28.Herrmann, C. & Gern, L. Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus. Parasit. Vectors https://doi.org/10.1186/s13071-014-0526-2 (2015).Article
PubMed
PubMed Central
Google Scholar
29.Berret, J. & Voordouw, M. J. Lyme disease bacterium does not affect attraction to rodent odour in the tick vector. Parasit. Vectors https://doi.org/10.1186/s13071-015-0856-8 (2015).Article
PubMed
PubMed Central
Google Scholar
30.Herrmann, C. & Gern, L. Do the level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks?. Parasitology 139, 330–337. https://doi.org/10.1017/s0031182011002095 (2012).CAS
Article
PubMed
Google Scholar
31.Lefcort, H. & Durden, L. A. The effect of infection with Lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitology 113, 97–103 (1996).Article
Google Scholar
32.Herrmann, C. & Gern, L. Survival of Ixodes ricinus (Acari: Ixodidae) under challenging conditions of temperature and humidity is influenced by Borrelia burgdorferi sensu lato infection. J. Med. Entomol. 47, 1196–1204. https://doi.org/10.1603/me10111 (2010).Article
PubMed
Google Scholar
33.Herrmann, C. & Gern, L. Survival of Ixodes ricinus (Acari: Ixodidae) nymphs under cold conditions is negatively influenced by frequent temperature variations. Ticks Tick Borne Dis 4, 445–451. https://doi.org/10.1016/j.ttbdis.2013.05.002 (2013).Article
PubMed
Google Scholar
34.Herrmann, C., Voordouw, M. J. & Gern, L. Ixodes ricinus ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, have higher energy reserves. Int. J. Parasitol. 43, 477–483. https://doi.org/10.1016/j.ijpara.2012.12.010 (2013).CAS
Article
PubMed
Google Scholar
35.van Duijvendijk, G. et al. A Borrelia afzelii infection increases larval tick burden on Myodes glareolus (Rodentia: Cricetidae) and nymphal body weight of Ixodes ricinus (Acari: Ixodidae). J. Med. Entomol. 54, 422–428. https://doi.org/10.1093/jme/tjw157 (2017).CAS
Article
PubMed
Google Scholar
36.Carpi, G. et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE 6, e25604. https://doi.org/10.1371/journal.pone.0025604 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
37.van Overbeek, L. et al. Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. FEMS Microbiol. Ecol. 66, 72–84. https://doi.org/10.1111/j.1574-6941.2008.00468.x (2008).CAS
Article
PubMed
Google Scholar
38.Cheng, D., Vigil, K., Schanes, P., Brown, R. N. & Zhong, J. Prevalence and burden of two rickettsial phylotypes (G021 and G022) in Ixodes pacificus from California by real-time quantitative PCR. Ticks Tick Borne Dis. 4, 280–287. https://doi.org/10.1016/j.ttbdis.2012.12.005 (2013).Article
PubMed
PubMed Central
Google Scholar
39.Ninio, C. et al. Antibiotic treatment of the hard tick Ixodes ricinus: Influence on Midichloria mitochondrii load following blood meal. Ticks Tick Borne Dis. 6, 653–657. https://doi.org/10.1016/j.ttbdis.2015.05.011 (2015).Article
PubMed
Google Scholar
40.Diuk-Wasser, M. A. et al. Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in Eastern United States. Am. J. Trop. Med. Hyg. 86, 320–327. https://doi.org/10.4269/ajtmh.2012.11-0395 (2012).Article
PubMed
PubMed Central
Google Scholar
41.Telford, S. R., Mather, T. N., Moore, S. I., Wilson, M. L. & Spielman, A. Incompetence of deer as reservoirs of the Lyme-disease spirochete. Am. J. Trop. Med. Hyg. 39, 105–109 (1988).Article
Google Scholar
42.Jaenson, T. G. T. & Talleklint, L. Incompetence of roe deer as reservoirs of the Lyme borreliosis spirochete. J. Med. Entomol. 29, 813–817 (1992).CAS
Article
Google Scholar
43.van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasit. Vectors 8, 1–11. https://doi.org/10.1186/s13071-015-1257-8 (2015).CAS
Article
Google Scholar
44.Gomez-Chamorro, A. et al. Susceptibility to infection with Borrelia afzelii and TLR2 polymorphism in a wild reservoir host. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-43160-3 (2019).CAS
Article
Google Scholar
45.Gomez-Chamorro, A. et al. Maternal antibodies provide bank voles with strain-specific protection against infection by the Lyme disease pathogen. Appl. Environ. Microbiol. 85, e01887-e11819. https://doi.org/10.1128/aem.01887-19 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
46.Genné, D. et al. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc. R. Soc. B Biol. Sci. 285, 1–10. https://doi.org/10.1098/rspb.2018.1804 (2018).CAS
Article
Google Scholar
47.Genné, D. et al. Competition between strains of Borrelia afzelii in the host tissues and consequences for transmission to ticks. ISME J. https://doi.org/10.1038/s41396-021-00939-5 (2021).Article
PubMed
Google Scholar
48.Jacquet, M., Durand, J., Rais, O. & Voordouw, M. J. Cross-reactive acquired immunity influences transmission success of the Lyme disease pathogen, Borrelia afzelii. Infect. Genet. Evol. 36, 131–140. https://doi.org/10.1016/j.meegid.2015.09.012 (2015).CAS
Article
PubMed
Google Scholar
49.Jacquet, M., Margos, G., Fingerle, V. & Voordouw, M. J. Comparison of the lifetime host-to-tick transmission between two strains of the Lyme disease pathogen Borrelia afzelii. Parasit. Vectors 9, 1–8. https://doi.org/10.1186/s13071-016-1929-z (2016).Article
Google Scholar
50.Belli, A., Sarr, A., Rais, O., Rego, R. O. M. & Voordouw, M. J. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts. Sci. Rep. 7, 1–13. https://doi.org/10.1038/s41598-017-05231-1 (2017).CAS
Article
Google Scholar
51.Hamilton, P. T. et al. Borrelia infection in rodent host has dramatic effects on the microbiome of ticks. bioRxiv preprint (2021).52.Tonetti, N., Voordouw, M. J., Durand, J., Monnier, S. & Gern, L. Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii. Ticks Tick Borne Dis. 6, 334–343. https://doi.org/10.1016/j.ttbdis.2015.02.007 (2015).Article
PubMed
Google Scholar
53.Lo, N. et al. Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus. Environ. Microbiol. 8, 1280–1287. https://doi.org/10.1111/j.1462-2920.2006.01024.x (2006).CAS
Article
PubMed
Google Scholar
54.Prado, S. S. & Almeida, R. P. P. Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica. Entomol. Exp. Appl. 132, 21–29. https://doi.org/10.1111/j.1570-7458.2009.00863.x (2009).Article
Google Scholar
55.Bistolas, K. S. I., Sakamoto, R. I., Fernandes, J. A. M. & Goffredi, S. K. Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00349 (2014).Article
PubMed
PubMed Central
Google Scholar
56.Taylor, C. M., Coffey, P. L., DeLay, B. D. & Dively, G. P. The importance of gut symbionts in the development of the brown marmorated stink bug, Halyomorpha halys (Stal). PLoS ONE https://doi.org/10.1371/journal.pone.0090312 (2014).Article
PubMed
PubMed Central
Google Scholar
57.Prado, S. S., Rubinoff, D. & Almeida, R. P. P. Vertical transmission of a pentatomid caeca-associated symbiont. Ann. Entomol. Soc. Am. 99, 577–585. https://doi.org/10.1603/0013-8746(2006)99[577:Vtoapc]2.0.Co;2 (2006).Article
Google Scholar
58.Salem, H., Kreutzer, E., Sudakaran, S. & Kaltenpoth, M. Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ. Microbiol. 15, 1956–1968. https://doi.org/10.1111/1462-2920.12001 (2013).Article
PubMed
Google Scholar
59.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical
Computing, 2020).60.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
61.Harrell, F. E., Dupont, C. Hmisc: Harrell Miscellaneous v. R package version 4.4-2 (2020).62.Wei, T., Simko, V. R package “corrplot”: Visualization of a Correlation Matrix v. (Version 0.84) (2017).63.Couret, J. et al. Acquisition of Borrelia burgdorferi infection by larval Ixodes scapularis (Acari: Ixodidae) associated with engorgement measures. J. Med. Entomol. 54, 1055–1060. https://doi.org/10.1093/jme/tjx053 (2017).CAS
Article
PubMed
Google Scholar
64.Hanincova, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20. https://doi.org/10.1017/s0031182002002548 (2003).CAS
Article
PubMed
Google Scholar
65.Hanincova, K. et al. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 69, 2825–2830. https://doi.org/10.1128/aem.69.5.2825-2830.2003 (2003).CAS
Article
PubMed
PubMed Central
Google Scholar
66.LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: Effects of host diversity and
community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 100, 567–571 (2003).67.Talleklint, L. & Jaenson, T. G. T. Transmission of Borrelia burgdorferi s.l. from mammal reservoirs to the primary vector of Lyme borreliosis, Ixodes ricinus (Acari, Ixodidae), in Sweden. J. Med. Entomol. 31, 880–886 (1994).CAS
Article
Google Scholar
68.Brunner, J. et al. Molting success of Ixodes scapularis varies among individual blood meal hosts and species. J. Med. Entomol. 48, 860–866 (2011).69.Gray, J. S., Kahl, O., Lane, R. S., Levin, M. L. & Tsao, J. I. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis. 7, 992–1003. https://doi.org/10.1016/j.ttbdis.2016.05.006 (2016).Article
PubMed
PubMed Central
Google Scholar
70.Gray, J. S. The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev. Med. Vet.
Entomol. 79, 323–333 (1991).71.Jouda, F., Perret, J. L. & Gern, L. Ixodes ricinus density, and distribution and prevalence of Borrelia burgdorferi sensu lato infection along an altitudinal gradient. J. Med. Entomol. 41, 162–169. https://doi.org/10.1603/0022-2585-41.2.162 (2004).72.Korenberg, E. I. Seasonal population dynamics of Ixodes ticks and tick-borne encephalitis virus. Exp. Appl. Acarol. 24, 665–681. https://doi.org/10.1023/a:1010798518261 (2000).CAS
Article
PubMed
Google Scholar
73.Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Investig. 120, 3179–3190. https://doi.org/10.1172/JCI42868 (2010).CAS
Article
PubMed
Google Scholar
74.Anderson, R. A., Koella, J. C. & Hurd, H. The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc. R. Soc. B Biol. Sci. 266, 1729–1733 (1999).CAS
Article
Google Scholar
75.Koella, J. C. An evolutionary view of the interactions between anopheline mosquitoes and malaria parasites. Microbes Infect 1, 303–308. https://doi.org/10.1016/s1286-4579(99)80026-4 (1999).CAS
Article
PubMed
Google Scholar
76.Koella, J. C., Sorensen, F. L. & Anderson, R. A. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc. R. Soc. B Biol. Sci. 265, 763–768 (1998).CAS
Article
Google Scholar
77.Hurd, H. Host fecundity reduction: a strategy for damage limitation?. Trends Parasitol. 17, 363–368 (2001)..78.Hurd, H., Warr, E. & Polwart, A. A parasite that increases host lifespan. Proc. R. Soc. B Biol. Sci. 268, 1749–1753 (2001).CAS
Article
Google Scholar
79.Rollend, L., Fish, D. & Childs, J. E. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: A summary of the literature and recent observations. Ticks Tick Borne Dis. 4, 46–51. https://doi.org/10.1016/j.ttbdis.2012.06.008 (2013).Article
PubMed
Google Scholar
80.Richter, D., Debski, A., Hubalek, Z. & Matuschka, F. R. Absence of Lyme disease spirochetes in larval Ixodes ricinus ticks. Vector-Borne Zoonot. 12, 21–27. https://doi.org/10.1089/vbz.2011.0668 (2012).Article
Google Scholar
81.Matuschka, F. R., Schinkel, T. W., Klug, B., Spielman, A. & Richter, D. Failure of Ixodes ticks to inherit Borrelia afzelii infection. Appl. Environ. Microbiol. 64, 3089–3091 (1998).CAS
Article
Google Scholar
82.Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the
transmission of mutualistic bacteria in insects. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2014.2957 (2015).83.Buysse, M., Plantard, O., McCoy, K. D., Duron, O. & Menard, C. Tissue localization of Coxiella-like endosymbionts in three European tick species through fluorescence in situ hybridization. Ticks Tick Borne Dis. 10, 798–804. https://doi.org/10.1016/j.ttbdis.2019.03.014 (2019).Article
PubMed
Google Scholar
84.Lalzar, I., Friedmann, Y. & Gottlieb, Y. Tissue tropism and vertical transmission of Coxiella in Rhipicephalus sanguineus and Rhipicephalus turanicus ticks. Environ. Microbiol. 16, 3657–3668. https://doi.org/10.1111/1462-2920.12455 (2014).Article
PubMed
Google Scholar
85.Levin, M. L. & Fish, D. Density-dependent factors regulating feeding success of Ixodes scapularis larvae (Acari: Ixodidae). J. Parasitol. 84, 36–43. https://doi.org/10.2307/3284526 (1998).CAS
Article
PubMed
Google Scholar
86.Randolph, S. E. Population regulation in ticks—Role of acquired-resistance in natural and unnatural hosts. Parasitology 79, 141–156 (1979).CAS
Article
Google Scholar
87.Randolph, S. E. The effect of Babesia microti on feeding and survival in its tick vector, Ixodes trianguliceps. Parasitology 102, 9–16 (1991).Article
Google Scholar
88.Dizij, A. & Kurtenbach, K. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol. 17, 177–183 (1995).CAS
Article
Google Scholar
89.Dobson, A. D. M., Finnie, T. J. R. & Randolph, S. E. A modified matrix model to describe the seasonal population ecology of the European tick Ixodes ricinus. J. Appl. Ecol. 48, 1017–1028. https://doi.org/10.1111/j.1365-2664.2011.02003.x (2011).Article
Google Scholar
90.Ogden, N. H. et al. Vector seasonality, host infection dynamics and fitness of pathogens transmitted by the tick Ixodes scapularis. Parasitology 134, 209–227 (2007).CAS
Article
Google Scholar
91.Kilpatrick, A. M. et al. Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2016.0117 (2017).Article
Google Scholar More