in

Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought

[adace-ad id="91168"]
  • 1.

    Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784. https://doi.org/10.2307/1313099 (1997).

    Article 

    Google Scholar 

  • 2.

    Naiman, R. J., Latterell, J. J., Pettit, N. E. & Olden, J. D. Flow variability and the biophysical vitality of river systems. CR Geosci. 340, 629–643. https://doi.org/10.1016/j.crte.2008.01.002 (2008).

    Article 

    Google Scholar 

  • 3.

    Larson, E. R., Magoulick, D. D., Turner, C. & Laycock, K. H. Disturbance and species displacement: Different tolerances to stream drying and desiccation in a native and an invasive crayfish. Freshw. Biol. 54, 1899–1908. https://doi.org/10.1111/j.1365-2427.2009.02243.x (2009).

    Article 

    Google Scholar 

  • 4.

    Magoulick, D. D. & Kobza, R. M. The role of refugia for fishes during drought: A review and synthesis. Freshw. Biol. 48, 1186–1198 (2003).

    Article 

    Google Scholar 

  • 5.

    Poff, N. L. & Allan, J. D. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76, 606–627 (1995).

    Article 

    Google Scholar 

  • 6.

    Bruckerhoff, L. A., Leasure, D. R. & Magoulick, D. D. Flow-ecology relationships are spatially structured and differ among flow regimes. J. Appl. Ecol. 56, 398–412. https://doi.org/10.1111/1365-2664.13297 (2019).

    Article 

    Google Scholar 

  • 7.

    Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170. https://doi.org/10.1111/j.1365-2427.2009.02204.x (2010).

    Article 

    Google Scholar 

  • 8.

    Warfe, D. M., Hardie, S. A., Uytendaal, A. R., Bobbi, C. J. & Barmuta, L. A. The ecology of rivers with contrasting flow regimes: Identifying indicators for setting environmental flows. Freshw. Biol. 59, 2064–2080. https://doi.org/10.1111/fwb.12407 (2014).

    Article 

    Google Scholar 

  • 9.

    Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193. https://doi.org/10.1111/j.1365-2427.2009.02307.x (2010).

    Article 

    Google Scholar 

  • 10.

    Belmar, O., Velasco, J. & Martinez-Capel, F. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean Rivers, Segura River Basin (Spain). Environ. Manag. 47, 992–1004. https://doi.org/10.1007/s00267-011-9661-0 (2011).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Mcmanamay, R. A. & Frimpong, E. A. Hydrologic filtering of fish life history strategies across the United States: Implications for stream flow alteration. Ecol. Appl. 25, 243–263. https://doi.org/10.1890/14-0247.1 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North-American Fishes—Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).

    Article 

    Google Scholar 

  • 13.

    Olden, J. D. & Kennard, M. J. Intercontinental comparison of fish life history strategies along a gradient of hydrologic variability. Am. Fish. Soc. Symp. 73, 83–107 (2010).

    Google Scholar 

  • 14.

    Grossman, G. D., Ratajczak, R. E. Jr., Crawford, M. & Freeman, M. C. Assemblage organization in stream fishes: Effects of environmental variation and interspecific interactions. Ecol. Monogr. 68, 395–420 (1998).

    Article 

    Google Scholar 

  • 15.

    Fitzgerald, D. B., Winemiller, K. O., Perez, M. H. S. & Sousa, L. M. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98, 21–31. https://doi.org/10.1002/ecy.1616 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Lynch, D. T., Leasure, D. R. & Magoulick, D. D. Flow alteration-ecology relationships in Ozark Highland streams: Consequences for fish, crayfish and macroinvertebrate assemblages. Sci. Total Environ. 672, 680–697. https://doi.org/10.1016/j.scitotenv.2019.03.383 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Lynch, D. T., Leasure, D. R. & Magoulick, D. D. The influence of drought on flow-ecology relationships in Ozark Highland streams. Freshw. Biol. 63, 946–968. https://doi.org/10.1111/fwb.13089 (2018).

    Article 

    Google Scholar 

  • 18.

    Matthews, W. J., Marsh-Matthews, E., Cashner, R. C. & Gelwick, F. Disturbance and trajectory of change in a stream fish community over four decades. Oecologia 173, 955–969. https://doi.org/10.1007/s00442-013-2646-3 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Taylor, C. M. & Warren, M. L. Dynamics in species composition of stream fish assemblages: Environmental variability and nested subsets. Ecology 82, 2320–2330. https://doi.org/10.1890/0012-9658(2001)082[2320:Discos]2.0.Co;2 (2001).

    Article 

    Google Scholar 

  • 20.

    Matthews, W. J. & Marsh-Matthews, E. Dynamics of an upland stream fish community over 40 years: Trajectories and support for the loose equilibrium concept. Ecology 97, 706–719. https://doi.org/10.1890/14-2179.1 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 21.

    Cook, R., Angermeier, R., Finn, D., Poff, N. & Krueger, K. Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia. Oecologia 140, 639–649 (2004).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Leasure, D. R., Magoulick, D. D. & Longing, S. D. Natural flow regimes of the Ozark-Ouachita interior highlands region. River Res. Appl. 32, 18–35. https://doi.org/10.1002/rra.2838 (2016).

    Article 

    Google Scholar 

  • 23.

    Adamski, J., Petersen, J., Freiwald, D. & Davis, J. Environmental and Hydrologic Setting of the Ozark Plateaus Study Unit, Arkansas, Kansas, Missouri, and Oklahoma 69 (National Water-Quality Assessment Program, 1995).

    Google Scholar 

  • 24.

    Fenneman, N. M. Physiography of Eastern United States (McGraw-Hill, 1938).

    Google Scholar 

  • 25.

    Hunrichs, R. Identification and classification of perennial streams of Arkansas (U.S. Geological Survey Water Resources Investigations Report 83-4063, 1983).

    Google Scholar 

  • 26.

    Hedman, E., Skelton, J. & Freiwald, D. Flow characteristics for selected springs and streams in the Ozark subregion, Arkansas, Kansas, Missouri, and Oklahoma (U.S. Geological Survey Hydrologic Investigations Atlas HA-688, 1987).

    Google Scholar 

  • 27.

    Qiao, L., Zou, C. B., Gaitan, C. F., Hong, Y. & McPherson, R. A. Analysis of precipitation projections over the climate gradient of the Arkansas Red River Basin. J. Appl. Meteorol. Clim. 56, 1325–1336. https://doi.org/10.1175/Jamc-D-16-0201.1 (2017).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Zippin, C. An evaluation of the removal method of estimating animal populations. Biometrics 12, 163–189. https://doi.org/10.2307/3001759 (1956).

    Article 

    Google Scholar 

  • 30.

    Van Deventer, J. S. & Platts, W. S. A Computer Software System for Entering, Managing, and Analyzing Fish Capture Data from Streams (U.S. Dept. of Agriculture, Forest Service, 1985).

    Book 

    Google Scholar 

  • 31.

    ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4) (Microcomputer power, 2002).

  • 32.

    Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO (Cambridge University Press, 2003).

    Book 

    Google Scholar 

  • 33.

    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).

    MATH 

    Google Scholar 

  • 34.

    R_Core_Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.R-project.org/ (Vienna, Austria, 2016).

  • 35.

    Hallett, L. M. et al. CODYN: AnR package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151. https://doi.org/10.1111/2041-210x.12569 (2016).

    Article 

    Google Scholar 

  • 36.

    Robison, H. W. & Buchanan, T. M. Fishes of Arkansas (University of Arkansas Press, 1988).

    Google Scholar 

  • 37.

    Pflieger, W. L. The Fishes of Missouri (Missouri Department of Conservation, 1975).

    Google Scholar 

  • 38.

    Winemiller, K. O. Life-history strategies and the effectiveness of sexual selection. Oikos 63, 318–327. https://doi.org/10.2307/3545395 (1992).

    Article 

    Google Scholar 

  • 39.

    Hoeinghaus, D. J., Winemiller, K. O. & Birnbaum, J. S. Local and regional determinants of stream fish assemblage structure: Inferences based on taxonomic vs. functional groups. J. Biogeogr. 34, 324–338. https://doi.org/10.1111/j.1365-2699.2006.01587.x (2007).

    Article 

    Google Scholar 

  • 40.

    Whiterod, N. S., Hammer, M. P. & Vilizzi, L. Spatial and temporal variability in fish community structure in Mediterranean climate temporary streams. Fundam. Appl. Limnol. 187, 135–150. https://doi.org/10.1127/fal/2015/0771 (2015).

    Article 

    Google Scholar 

  • 41.

    Driver, L. J. & Hoeinghaus, D. J. Spatiotemporal dynamics of intermittent stream fish metacommunities in response to prolonged drought and reconnectivity. Mar. Freshw. Res. 67, 1667–1679. https://doi.org/10.1071/Mf15072 (2016).

    Article 

    Google Scholar 

  • 42.

    Labbe, T. R. & Fausch, K. D. Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecol. Appl. 10, 1774–1791 (2000).

    Article 

    Google Scholar 

  • 43.

    Colvin, R., Giannico, G. R., Li, J., Boyer, K. L. & Gerth, W. J. Fish use of intermittent watercourses draining agricultural lands in the upper Willamette River Valley, Oregon. Trans. Am. Fish. Soc. 138, 1302–1313. https://doi.org/10.1577/t08-150.1 (2009).

    Article 

    Google Scholar 

  • 44.

    Kerezsy, A. G., Keith, M., Maria, F., & Skelton, P. in Intermittent Rivers and Ephemeral Streams: Ecology and Management (eds. Thibault, B. D., & Nuria, B. A.) (Academic Press, 2017).

  • 45.

    Franssen, N. R., Tobler, M. & Gido, K. B. Annual variation of community biomass is lower in more diverse stream fish communities. Oikos 120, 582–590. https://doi.org/10.1111/j.1600-0706.2010.18810.x (2011).

    Article 

    Google Scholar 

  • 46.

    Falke, J. A. et al. The role of groundwater pumping and drought in shaping ecological futures for stream fishes in a dryland river basin of the western Great Plains, USA. Ecohydrology 4, 682–697. https://doi.org/10.1002/eco.158 (2011).

    Article 

    Google Scholar 

  • 47.

    Perkin, J. S. et al. Groundwater declines are linked to changes in Great Plains stream fish assemblages. Proc. Natl. Acad. Sci. USA 114, 7373–7378. https://doi.org/10.1073/pnas.1618936114 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Lake, P. S. Ecological effects of perturbation by drought in flowing waters. Freshw. Biol. 48, 1161–1172. https://doi.org/10.1046/j.1365-2427.2003.01086.x (2003).

    Article 

    Google Scholar 

  • 49.

    Ludlam, J. P. & Magoulick, D. D. Spatial and temporal variation in the effects of fish and crayfish on benthic communities during stream drying. J. N. Am. Benthol. Soc. 28, 371–382. https://doi.org/10.1899/08-149.1 (2009).

    Article 

    Google Scholar 

  • 50.

    McManamay, R. A., Bevelhimer, M. S. & Frimpong, E. A. Associations among hydrologic classifications and fish traits to support environmental flow standards. Ecohydrology 8, 460–479. https://doi.org/10.1002/eco.1517 (2015).

    Article 

    Google Scholar 

  • 51.

    Hodges, S. W. & Magoulick, D. D. Refuge habitats for fishes during seasonal drying in an intermittent stream: Movement, survival and abundance of three minnow species. Aquat. Sci. 73, 513–522. https://doi.org/10.1007/s00027-011-0206-7 (2011).

    Article 

    Google Scholar 

  • 52.

    Magalhaes, M., Beja, P., Schlosser, I. & Collares-Pereira, M. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshw. Biol. 52, 1494–1510 (2007).

    Article 

    Google Scholar 

  • 53.

    Matthews, W. & Marsh-Matthews, E. Effects of drought on fish across axes of space, time and ecological complexity. Freshw. Biol. 48, 1232–1253 (2003).

    Article 

    Google Scholar 

  • 54.

    Driver, L. J. & Hoeinghaus, D. J. Fish metacommunity responses to experimental drought are determined by habitat heterogeneity and connectivity. Freshw. Biol. 61, 533–548. https://doi.org/10.1111/fwb.12726 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Seasonal change is a major driver of soil resistomes at a watershed scale

    The future of the IoT (batteries not required)