Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities
1.
Moran, N. A., Ochman, H. & Hammer, T. J. Evolutionary and ecological consequences of gut microbial communities. Annu. Rev. Ecol. Syst. 50, 451–475 (2019).
Article Google Scholar
2.
Engel, P. & Moran, N. A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
CAS PubMed PubMed Central Article Google Scholar
3.
Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).
CAS PubMed Article PubMed Central Google Scholar
4.
Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).
PubMed PubMed Central Article Google Scholar
5.
Mason, C. J. Complex relationships at the intersection of insect gut microbiomes and plant defenses. J. Chem. Ecol. 46, 793–807 (2020).
CAS PubMed Article PubMed Central Google Scholar
6.
Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).
CAS PubMed Article PubMed Central Google Scholar
7.
Jones, A., Mason, C., Felton, G. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9, 2792 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
8.
Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).
CAS PubMed Article PubMed Central Google Scholar
9.
Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).
CAS PubMed PubMed Central Article Google Scholar
10.
Shao, Y., Arias-Cordero, E., Guo, H., Bartram, S. & Boland, W. In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS ONE 9, e85948 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
11.
Priya, N. G., Ojha, A., Kajla, M. K., Raj, A. & Rajagopal, R. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS ONE 7, e30768 (2012).
PubMed Article CAS PubMed Central Google Scholar
12.
Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).
PubMed Article PubMed Central Google Scholar
13.
Martemyanov, V. V. et al. Phenological asynchrony between host plant and gypsy moth reduces insect gut microbiota and susceptibility to Bacillus thuringiensis. Ecol. Evol. 6, 7298–7310 (2016).
PubMed PubMed Central Article Google Scholar
14.
Chen, B. et al. Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species. Pest Manag. Sci. 76, 1313–1323 (2020).
CAS PubMed Article PubMed Central Google Scholar
15.
Su’ad, A. Y. et al. Host plant-dependent effects of microbes and phytochemistry on the insect immune response. Oecologia 191, 141–152 (2019).
Article Google Scholar
16.
Mason, C. J. et al. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc. Natl. Acad. Sci. 116, 15991–15996 (2019).
CAS PubMed Article PubMed Central Google Scholar
17.
Staudacher, H. et al. Variability of bacterial communities in the moth Heliothis virescens indicates transient association with the host. PLoS ONE 11, e0154514 (2016).
PubMed PubMed Central Article CAS Google Scholar
18.
Ericsson, A. C., Personett, A. R., Turner, G., Dorfmeyer, R. A. & Franklin, C. L. Variable colonization after reciprocal fecal microbiota transfer between mice with low and high richness microbiota. Front. Microbiol. 8, 196 (2017).
PubMed PubMed Central Article Google Scholar
19.
Kreisinger, J. et al. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 8, 50 (2017).
PubMed PubMed Central Article Google Scholar
20.
Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 534, 191–199 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
21.
Mikaelyan, A., Thompson, C. L., Hofer, M. J. & Brune, A. Deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Appl. Environ. Microbiol. 82, 1256–1263 (2016).
CAS PubMed PubMed Central Article Google Scholar
22.
Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: The extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142957 (2015).
Google Scholar
23.
Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).
PubMed PubMed Central Article CAS Google Scholar
24.
Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).
ADS CAS Article Google Scholar
25.
Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262 (2018).
CAS PubMed PubMed Central Article Google Scholar
26.
Hannula, S., Zhu, F., Heinen, R. & Bezemer, T. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1254 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
27.
Montezano, D. G. et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26, 286–300 (2018).
Article Google Scholar
28.
Day, R. et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).
Article Google Scholar
29.
Visôtto, L. E., Oliveira, M. G. A., Guedes, R. N. C., Ribon, A. O. B. & Good-God, P. I. V. Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. J. Insect Physiol. 55, 185–191 (2009).
PubMed Article CAS PubMed Central Google Scholar
30.
Xiang, H. et al. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol. 1092, 1085–1092 (2006).
Article Google Scholar
31.
Tang, X. et al. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 7, e36978 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
32.
Gomes, A. F. F., Omoto, C. & Cônsoli, F. L. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J. Pest Sci. 93, 833–851 (2020).
Article Google Scholar
33.
Acevedo, F. E. et al. Fall armyworm-associated gut bacteria modulate plant defense responses. Mol. Plant-Microbe Interact. 30, 127–137 (2017).
CAS PubMed Article PubMed Central Google Scholar
34.
Gichuhi, J. et al. Diversity of fall armyworm, Spodoptera fugiperda and their bacterial community in Kenya. PeerJ 8, e8701 (2020).
PubMed PubMed Central Article Google Scholar
35.
Wagner, M. R., Busby, P. E. & Balint-Kurti, P. Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytol. 225, 2152–2165 (2020).
CAS PubMed Article PubMed Central Google Scholar
36.
Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K. & Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 97, 30–39 (2014).
CAS Article Google Scholar
37.
Keshri, J. et al. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant. Appl. Microbiol. Biotechnol. 102, 4025–4037 (2018).
CAS PubMed Article Google Scholar
38.
Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15, e0229848 (2020).
CAS PubMed PubMed Central Article Google Scholar
39.
Chan, Q. W. T., Melathopoulos, A. P., Pernal, S. F. & Foster, L. J. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genomics 10, 387 (2009).
PubMed PubMed Central Article CAS Google Scholar
40.
Mazumdar, T. et al. Survival strategies of Enterococcus mundtii in the gut of Spodoptera littoralis: A live report. bioRxiv. https://doi.org/10.1101/2020.02.03.932053 (2020).
41.
Mason, C. J., Jones, A. G. & Felton, G. W. Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ. https://doi.org/10.1111/pce.13430 (2018).
Article PubMed PubMed Central Google Scholar
42.
Mason, C. J., Rubert-Nason, K. F., Lindroth, R. L. & Raffa, K. F. Aspen defense chemicals influence midgut bacterial community composition of gypsy moth. J. Chem. Ecol. 41, 75–84 (2014).
PubMed Article CAS PubMed Central Google Scholar
43.
Chaturvedi, S., Rego, A., Lucas, L. K. & Gompert, Z. Sources of variation in the gut microbial community of Lycaeides melissa caterpillars. Sci. Rep. https://doi.org/10.1038/s41598-017-11781-1 (2017).
Article PubMed PubMed Central Google Scholar
44.
Fescemyer, H. W. et al. Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. Insect Biochem. Mol. Biol. 43, 280–291 (2013).
CAS PubMed Article PubMed Central Google Scholar
45.
Hammer, T. J., McMillan, W. O. & Fierer, N. Metamorphosis of a butterfly-associated bacterial community. PLoS ONE 9, e86995 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
46.
Chippendale, G. M. Metamorphic changes in haemolymph and midgut proteins of the southwestern corn borer, Diatraea grandiosella. J. Insect Physiol. 16, 1909–1920 (1970).
CAS Article Google Scholar
47.
Pechan, T., Cohen, A., Williams, W. P. & Luthe, D. S. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. 99, 13319–13323 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
48.
Mohan, S. et al. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J. Insect Physiol. 52, 21–28 (2006).
CAS PubMed Article PubMed Central Google Scholar
49.
Tsuji, G. Y., Hoogenboom, G. & Thornton, P. K. Understanding Options for Agricultural Production Vol. 7 (Springer Science & Business Media, Berlin, 2013).
Google Scholar
50.
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
Article Google Scholar
51.
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
CAS PubMed Article PubMed Central Google Scholar
52.
Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
CAS PubMed PubMed Central Article Google Scholar
53.
R Core Team. R: A Language and Environment for Statistical Computing. (2020).
54.
Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. https://CRAN.R-project.org/package=pheatmap (2018).
55.
Kay, M. & Wobbrock, J. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. https://doi.org/10.5281/zenodo.594511, R package version 0.10.7, https://github.com/mjskay/ARTool (2020).
56.
Wobbrock, J., Findlater, L., Gergle, D., & Higgins, J.. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only ANOVA Procedures. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ’11), 143–146.(2011).
57.
Raubenheimer, D. & Simpson, S. L. Analysis of covariance: An alternative to nutritional indices. Entomol. Exp. Appl. 62, 221–231 (1992).
Article Google Scholar More