in

Oviposition behavior of wild yellow fever vector mosquitoes (Diptera: Culicidae) in an Atlantic Forest fragment, Rio de Janeiro state, Brazil

[adace-ad id="91168"]
  • 1.

    Alho, C. J. R. Importância da biodiversidade para a saúde humana: uma perspectiva ecológica. Estud. Avançados 26, 151–166 (2012).

    Article 

    Google Scholar 

  • 2.

    Docile, T. N., Figueiró, R., Portela, C. & Nessimian, J. L. Macroinvertebrate diversity loss in urban streams from tropical forests. Environ. Monit. Assess. https://doi.org/10.1007/s10661-016-5237-z (2016).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Mutuku, F. M. et al. Distribution, description, and local knowledge of larval habitats of Anopheles gambiae s.l. in a village in western Kenya. Am. J. Trop. Med. Hyg. 74, 44–53 (2006).

    Article 

    Google Scholar 

  • 4.

    Simard, F. et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 9, 17 (2009).

    Article 

    Google Scholar 

  • 5.

    Reiter, P. Yellow fever and dengue: a threat to Europe?. Eurosurveillance 15, 11–17 (2010).

    Google Scholar 

  • 6.

    Medlock, J. M. & Leach, S. A. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect. Dis. 15, 721–730 (2015).

    Article 

    Google Scholar 

  • 7.

    Alencar, J. et al. Ecosystem diversity of mosquitoes (Diptera: Culicidae) in a remnant of Atlantic Forest, Rio de Janeiro state, Brazil . Austral Entomol. https://doi.org/10.1111/aen.12508 (2020).

    Article 

    Google Scholar 

  • 8.

    Arnell, J. H. Mosquito studies (Diptera, Culicidae). XXXII. A revision of the genus Haemagogus. Contrib. Am. Entomol. Inst. 10, 1–174 (1973).

    Google Scholar 

  • 9.

    Alencar, J. et al. Flight height preference for oviposition of mosquito (diptera: Culicidae) vectors of sylvatic yellow fever virus near the hydroelectric reservoir of simplicío, minas Gerais, Brazil. J. Med. Entomol. 50, 791–795 (2013).

    Article 

    Google Scholar 

  • 10.

    Alencar, J. et al. Diversity of yellow fever mosquito vectors in the Atlantic forest of Rio de Janeiro, Brazil . Rev. Soc. Bras. Med. Trop. 49, 351–356 (2016).

    Article 

    Google Scholar 

  • 11.

    Gerais, M. Febre Amarela : uma visão do cenário atual. (2014).

  • 12.

    De Abreu, F. V. S. et al. Combination of surveillance tools reveals that yellow fever virus can remain in the same atlantic forest area at least for three transmission seasons. Mem. Inst. Oswaldo Cruz https://doi.org/10.1590/0074-02760190076 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Moreno, E. S. et al. Reemergência de febre amarela: Detecção de transmissão no estado de São Paulo, Brasil, 2008. Rev. Soc. Bras. Med. Trop. 44, 290–296 (2011).

    Article 

    Google Scholar 

  • 14.

    Bergallo, H. Estratégias e ações para a conservação da biodiversidade no estado do Rio de Janeiro. (Instituto Biomas, 2009).

  • 15.

    Silva, S. O. F. et al. Evaluation of multiple immersion effects on eggs from Haemagogus leucocelaenus, Haemagogus janthinomys, and Aedes albopictus (Diptera: Culicidae) under experimental conditions. J. Med. Entomol. 55, 1093–1097 (2018).

    Article 

    Google Scholar 

  • 16.

    Forattini, O. P. Culicidologia Médica: Identificação, Biologia, Epidemiologia. (Edusp – Editora da Universidade de São Paulo, 2002).

  • 17.

    Marcondes, C. & Alencar, J. Revisão de mosquitos Haemagogus Williston (Diptera: Culicidae) do Brasil. Rev. Biomed. 21, 221–238 (2010).

    Google Scholar 

  • 18.

    Reinert, J. F. Revised list of abbreviations for genera and subgenera of Culicidae (diptera) and notes on generic and subgeneric changes. J. Am. Mosq. Control Assoc. 17, 51–55 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Guimaráes, A. É., De Mello, R. P., Lopes, C. M. & Gentile, C. Ecology of mosquitoes (Diptera: Culicidae) in areas of Serra do Mar State Park, State of São Paulo, Brazil. I—monthly frequency and climatic factors. Mem. Inst. Oswaldo Cruz 95, 1–16 (2000).

    Article 

    Google Scholar 

  • 20.

    Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Possas, C. et al. Yellow fever outbreak in Brazil: the puzzle of rapid viral spread and challenges for immunisation. Mem. Inst. Oswaldo Cruz 113, e180278 (2018).

    Article 

    Google Scholar 

  • 22.

    Brasil, M. da S. Uma análise da situação de saúde com enfoque nas doenças imunopreveníveis e na imunização. Ministário da Saúde https://bvsms.saude.gov.br/bvs/saudelegis/gm/1998/prt3916_30_10_1998.htmlhttp://bvsms.saude.gov.br/bvs/saudelegis/gm/2017/prt2436_22_09_2017.html (2019).

  • 23.

    Cunha, M. S. et al. Epizootics due to Yellow Fever Virus in São Paulo State, Brazil: viral dissemination to new areas (2016–2017). Sci. Rep. 9, 1–13 (2019).

    ADS 

    Google Scholar 

  • 24.

    Lourenço-de-Oliveira, R. & Failloux, A. B. High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas. PLoS Negl. Trop. Dis. 11, 1–11 (2017).

    Google Scholar 

  • 25.

    De Figueiredo, M. L. et al. Mosquitoes infected with dengue viruses in Brazil. Virol. J. 7, 1–5 (2010).

    Article 

    Google Scholar 

  • 26.

    Marcondes, C. B. & de Ximenes, M. F. F. M. Zika virus in Brazil and the danger of infestation by aedes (Stegomyia) mosquitoes. Rev. Soc. Bras. Med. Trop. 49, 4–10 (2016).

    Article 

    Google Scholar 

  • 27.

    Grard, G. et al. Zika virus in Gabon (Central Africa) – 2007: a new threat from Aedes albopictus?. PLoS Negl. Trop. Dis. 8, 1–6 (2014).

    ADS 
    Article 

    Google Scholar 

  • 28.

    de Gomes, A. C. et al. Aedes albopictus em área rural do Brasil e implicações na transmissão de febre amarela silvestre. Rev. Saude Publica 33, 95–97 (1999).

    Article 

    Google Scholar 

  • 29.

    Guimarães, A. E. Mosquitos no Parque Nacional da Serra dos Órgãos, Estado do Rio de Janeiro, Brasil. II. Distribuição vertical. Mem. Inst. Oswaldo Cruz 80, 1–2 (1985).

    MathSciNet 
    Article 

    Google Scholar 

  • 30.

    Lopes, J., Arias, J. R. & Yood, J. D. C. Evidências Preliminares De Estratificação Vertical De Postura De Ovos Por Alguns Culicidae (Diptera), Em Floresta No Município De Manaus – Amazonas. Acta Amaz. 13, 431–439 (1983).

    Article 

    Google Scholar 

  • 31.

    Alencar, J. et al. A comparative study of the effect of multiple immersions on Aedini (Diptera: Culicidae) mosquito eggs with emphasis on sylvan vectors of yellow fever virus. Mem. Inst. Oswaldo Cruz 109, 114–117 (2014).

    Article 

    Google Scholar 

  • 32.

    Entomologia médica. 2.O Volume. Culicini: Culex, Aedes e Psorophora | Mosquito Taxonomic Inventory. (1965).

  • 33.

    Principais Mosquitos de Importância Sanitária no Brasil – Fundação Oswaldo Cruz (Fiocruz): Ciência e tecnologia em saúde para a população brasileira. (FIOCRUZ, 1994).

  • 34.

    Amerasinghe, F. P. & Alagoda, T. S. B. Mosquito oviposition in bamboo traps, with special reference to Aedes albopictus, Aedes novalbopictus and Armigeres subalbatus. Int. J. Trop. Insect Sci. 5, 493–500 (1984).

    Article 

    Google Scholar 

  • 35.

    Obenauer, P. J., Kaufman, P. E., Allan, S. A. & Kline, D. L. Infusion-baited ovitraps to survey ovipositional height preferences of container-inhabiting mosquitoes in two Florida habitats. J. Med. Entomol. 46, 1507–1513 (2009).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Althouse, B. M. et al. Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl. Trop. Dis. 10, 1–11 (2016).

    Article 

    Google Scholar 

  • 37.

    Hamrick, P. N. et al. Geographic patterns and environmental factors associated with human yellow fever presence in the Americas. PLoS Negl. Trop. Dis. 11, 1–27 (2017).

    Article 

    Google Scholar 

  • 38.

    Couto-Lima, D. et al. Seasonal population dynamics of the primary yellow fever vector haemagogus leucocelaenus (Dyar & shannon) (diptera: Culicidae) is mainly influenced by temperature in the atlantic forest, Southeast Brazil. Mem. Inst. Oswaldo Cruz 115, 1–13 (2020).

    Article 

    Google Scholar 

  • 39.

    Davis, N. C., Division, I. H., Foundation, R., Health, P. & Health, P. The effect of various temperatures in modifying the extrinsic incubation period of the yellow fever virus in Aedes Aegypti. Am. J. Epidemiol. 16, 163–176 (1931).

    Article 

    Google Scholar 

  • 40.

    Johansson, M. A., Arana-Vizcarrondo, N., Biggerstaff, B. J. & Staples, J. E. Incubation periods of yellow fever virus. Am. J. Trop. Med. Hyg. 83, 183–188 (2010).

    Article 

    Google Scholar 

  • 41.

    De Paiva, C. A. et al. Determination of the spatial susceptibility to yellow fever using a multicriteria analysis. Mem. Inst. Oswaldo Cruz 114, 1–8 (2019).

    Article 

    Google Scholar 

  • 42.

    Calado, D. C. & Navarro da Silva, M. A. Evaluation of the temperature influence on the development of Aedes albopictus. Rev. Saude Publica 36, 173–179 (2002).

    Article 

    Google Scholar 

  • 43.

    Docile, T. N. et al. Frequency of Aedes sp. Linnaeus (Diptera: Culicidae) and Associated Entomofauna in Bromeliads from a Forest Patch within a densely Urbanized Area. Neotrop. Entomol. 46, 613–621 (2017).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Study predicts the oceans will start emitting ozone-depleting CFCs

    Understanding imperfections in fusion magnets