More stories

  • in

    Marauding plants steer clear of a communist-ruled island

    Cuba has hosted relatively small numbers of tourist groups given its size, which might have helped to keep invasive plants at bay. Credit: Roberto Machado Noa/LightRocket/Getty

    Ecology
    18 February 2021

    Cuba’s relatively closed economy could explain why it has fewer invasive plant species per unit area than other Caribbean islands.

    For more than 60 years, the rocky relationship between the United States and Cuba has helped to steer tourists and businesses away from the Caribbean island. Now, researchers have found that Cuba’s economic and political isolation might also have limited the spread of invasive plants.
    Meghan Brown at Hobart and William Smith Colleges in Geneva, New York, and her colleagues estimated the number of invasive plant species on 45 Caribbean islands. The researchers found that larger islands tend to have more exotic plant species than do smaller ones. But Cuba, the biggest island in the Caribbean, is home to hundreds fewer such species than expected for its size.
    Mass tourism seems to favour the introduction of invasive plants, the team found, probably because hotels plant exotic ornamental species and tourists carry seeds in their bags or on their shoes. Cuba — which has one of the region’s lowest shares of holidaymakers in comparison to its area — has about the same number of invasive species as Puerto Rico, which is one-tenth the size of Cuba but has many more visitors for its land area. More

  • in

    Dogs (Canis familiaris) recognize their own body as a physical obstacle

    1.
    Bahrick, L. E. & Watson, J. S. Detection of intermodal proprioceptive–visual contingency as a potential basis of self-perception in infancy. Dev. Psychol. 21, 963 (1985).
    Article  Google Scholar 
    2.
    Van Den Bos, E. & Jeannerod, M. Sense of body and sense of action both contribute to self-recognition. Cognition 85, 177–187 (2002).
    Article  Google Scholar 

    3.
    Wilson, M. Six views of embodied cognition. Psychon. B. Rev. 9, 625–636 (2002).
    Article  Google Scholar 

    4.
    Smith, L. & Gasser, M. The development of embodied cognition: Six lessons from babies. Artif. life 11, 13–29 (2005).
    Article  Google Scholar 

    5.
    Shettleworth, S. J. Cognition, Evolution, and Behavior. Oxford University Press.

    6.
    Kohda, M. et al. If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals?. PLoS Biol 17, e3000021 (2019).
    CAS  Article  Google Scholar 

    7.
    Gallup, G. G. Chimpanzees: Self-recognition. Science 167, 86–87 (1970).
    ADS  Article  Google Scholar 

    8.
    Epstein, R., Lanza, R. P. & Skinner, B. F. “Self-awareness” in the pigeon. Science 212, 695–696 (1981).
    ADS  CAS  Article  Google Scholar 

    9.
    Heyes, C. M. Self-recognition in primates: Further reflections create a hall of mirrors. Anim. Behav. 50, 1533–1542 (1995).
    Article  Google Scholar 

    10.
    Suddendorf, T. & Butler, D. L. Response to Gallup et al.: Are rich interpretations of visual self-recognition a bit too rich?. Trends. Cogn. Sci. 18, 58–59 (2014).
    Article  Google Scholar 

    11.
    Reiss, D. & Marino, L. Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proc. Natl. Acad. Sci. USA 98, 5937–5942 (2001).
    ADS  CAS  Article  Google Scholar 

    12.
    Plotnik, J. M., De Waal, F. B. & Reiss, D. Self-recognition in an Asian elephant. Proc. Natl. Acad. Sci. USA 103, 17053–17057 (2006).
    ADS  CAS  Article  Google Scholar 

    13.
    Prior, H., Schwarz, A. & Güntürkün, O. Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biol 6, e202 (2008).
    Article  Google Scholar 

    14.
    Bekoff, M. & Sherman, P. W. Reflections on animal selves. Trends Ecol. Evol. 19, 176–180 (2004).
    Article  Google Scholar 

    15.
    Lenkei, R., Faragó, T., Kovács, D., Zsilák, B. & Pongrácz, P. That dog won’t fit: Body size awareness in dogs. Anim. Cogn 23, 337–350 (2019).
    Article  Google Scholar 

    16.
    Zazzo, R. Des enfants, des singes et des chiens devant le miroir. Rev. Psychol. Appl. 29, 235–246 (1979).
    Google Scholar 

    17.
    Cuthill, I. & Guilford, T. Perceived risk and obstacle avoidance in flying birds. Anim. Behav. 40, 188–190 (1990).
    Article  Google Scholar 

    18.
    Khvatov, I. A., Sokolov, A. Y. & Kharitonov, A. N. Snakes Elaphe radiata may acquire awareness of their body limits when trying to hide in a shelter. Behav. Sci. 9, 67 (2019).
    Article  Google Scholar 

    19.
    Maeda, T. & Fujita, K. Do dogs (Canis familiaris) recognize their own body size? In Proceedings of the 2nd Canine Science Forum, Vienna, Austria, 52 (2010).

    20.
    Dale, R. & Plotnik, J. M. Elephants know when their bodies are obstacles to success in a novel transfer task. Sci. Rep. 7, 46309 (2017).
    ADS  CAS  Article  Google Scholar 

    21.
    Brownell, C. A., Zerwas, S. & Ramani, G. B. “So big”: The development of body self-awareness in toddlers. Child Dev. 78, 1426–1440 (2007).
    Article  Google Scholar 

    22.
    Povinelli, D. J. & Cant, J. G. Arboreal clambering and the evolution of self-conception. Q. Rev. Biol. 70, 393–421 (1995).
    CAS  Article  Google Scholar 

    23.
    Povinelli, D. J. Failure to find self-recognition in Asian elephants (Elephas maximus) in contrast to their use of mirror cues to discover hidden food. J. Comp. Psychol. 103, 122 (1989).
    Article  Google Scholar 

    24.
    Topál, J. et al. The dog as a model for understanding human social behaviour. Adv. Stud. Behav. 39, 71–116 (2009).
    Article  Google Scholar 

    25.
    Sanford, E. M., Burt, E. R. & Meyers-Manor, J. E. Timmy’s in the well: Empathy and prosocial helping in dogs. Learn. Behav. 46, 374–386 (2018).
    Article  Google Scholar 

    26.
    Pongrácz, P., Bánhegyi, P. & Miklósi, Á. When rank counts—dominant dogs learn better from a human demonstrator in a two-action test. Behaviour 149, 111–132 (2012).
    Article  Google Scholar 

    27.
    Huber, L., Popovová, N., Riener, S., Salobir, K. & Cimarelli, G. Would dogs copy irrelevant actions from their human caregiver?. Learn. Behav. 46, 387–397 (2018).
    Article  Google Scholar 

    28.
    Virányi, Z. S., Topál, J., Miklósi, Á. & Csányi, V. A nonverbal test of knowledge attribution: A comparative study on dogs and children. Anim. Cogn. 9, 13–26 (2006).
    Article  Google Scholar 

    29.
    Polgárdi, R., Topál, J. & Csányi, V. Intentional behaviour in dog-human communication: An experimental analysis of “showing” behaviour in the dog. Anim. Cogn. 3, 159–166 (2000).
    Article  Google Scholar 

    30.
    Pongrácz, P., Hegedüs, D., Sanjurjo, B., Kővári, A. & Miklósi, Á. “We will work for you”—Social influence may suppress individual food preferences in a communicative situation in dogs. Learn. Motiv. 44, 270–281 (2013).
    Article  Google Scholar 

    31.
    Fugazza, C., Pogány, Á. & Miklósi, Á. Recall of others’ actions after incidental encoding reveals episodic-like memory in dogs. Curr. Biol. 26, 3209–3213 (2016).
    CAS  Article  Google Scholar 

    32.
    Horowitz, A. Smelling themselves: Dogs investigate their own odours longer when modified in an “olfactory mirror” test. Behav. Proc. 143, 17–24 (2017).
    Article  Google Scholar 

    33.
    Moore, C., Mealiea, J., Garon, N. & Povinelli, D. J. The development of body self-awareness. Infancy 11, 157–174 (2007).
    Article  Google Scholar 

    34.
    Howell, T. J. & Bennett, P. C. Can dogs (Canis familiaris) use a mirror to solve a problem?. J. Vet. Behav. 6, 306–312 (2011).
    Article  Google Scholar 

    35.
    Bekoff, M. Awareness: Animal reflections. Nature 419, 255 (2002).
    ADS  CAS  Article  Google Scholar 

    36.
    Kaplan, J. T., Aziz-Zadeh, L., Uddin, L. Q. & Iacoboni, M. The self across the senses: An fMRI study of self-face and self-voice recognition. Soc. Cogn. Affect. Neur. 3, 218–223 (2008).
    Article  Google Scholar  More

  • in

    Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators

    1.
    Seifert, C. A., Azzari, G. & Lobell, D. B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 13, 064033 (2018).
    ADS  Article  Google Scholar 
    2.
    2017 Census of Agriculture, Summary and State Data (USDA, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf

    3.
    Basche, A. D. et al. Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag. 172, 40–50 (2016).
    Article  Google Scholar 

    4.
    Schipanski, M. E. et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125, 12–22 (2014).
    Article  Google Scholar 

    5.
    Blanco-Canqui, H. et al. Cover crops and ecosystem services: insights from studies in temperate soils. Agron. J. 107, 2449–2474 (2015).
    CAS  Article  Google Scholar 

    6.
    Andrews, S. S. et al. On‐farm assessment of soil quality in California’s central valley. Agron. J. 94, 12–23 (2002).
    Article  Google Scholar 

    7.
    Welch, R. Y., Behnke, G. D., Davis, A. S., Masiunas, J. & Villamil, M. B. Using cover crops in headlands of organic grain farms: effects on soil properties, weeds and crop yields. Agric. Ecosyst. Environ. 216, 322–332 (2016).
    Article  Google Scholar 

    8.
    Wyland, L. Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 59, 1–17 (1996).
    Article  Google Scholar 

    9.
    Karlen, D. L. & Doran, J. W. Cover crop management effects on soybean and corn growth and nitrogen dynamics in an on-farm study. Am. J. Altern. Agric. 6, 71–82 (1991).
    Article  Google Scholar 

    10.
    Koch, R. L. et al. On-farm evaluation of a fall-seeded rye cover crop for suppression of soybean aphid (Hemiptera: Aphididae) on soybean: suppression of soybean aphid with rye cover crop. Agric. For. Entomol. 17, 239–246 (2015).
    Article  Google Scholar 

    11.
    Sayre, N. F., deBuys, W., Bestelmeyer, B. T. & Havstad, K. M. “The Range Problem” after a century of rangeland science: new research themes for altered landscapes. Rangeland Ecol. Manag. 65, 545–552 (2012).
    Article  Google Scholar 

    12.
    Kladivko, E. J. et al. State-wide soil health programs for education and on-farm assessment: lessons learned. J. Soil Water Conserv. 74, 12A–17A (2019).
    Article  Google Scholar 

    13.
    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).
    CAS  Article  Google Scholar 

    14.
    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4 (2019).
    Article  Google Scholar 

    15.
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).
    ADS  PubMed  Article  Google Scholar 

    16.
    Stewart, R. D. et al. What we talk about when we talk about soil health. Agric. Environ. Lett. 3, 180033 (2018).
    Article  CAS  Google Scholar 

    17.
    Norris, C. E. et al. Introducing the North American project to evaluate soil health measurements. Agron. J. 112, 3195–3215 (2020).
    Article  Google Scholar 

    18.
    Sanderman, J., Savage, K. & Dangal, S. R. S. Mid‐infrared spectroscopy for prediction of soil health indicators in the United States. Soil Sci. Soc. Am. J. 84, 251–261 (2020).
    ADS  CAS  Article  Google Scholar 

    19.
    Rorick, J. D. & Kladivko, E. J. Cereal rye cover crop effects on soil carbon and physical properties in Southeastern Indiana. J. Soil Water Conserv. 72, 260–265 (2017).
    Article  Google Scholar 

    20.
    Faé, G. S. et al. Integrating winter annual forages into a no-till corn silage system. Agron. J. 101, 1286–1296 (2009).
    Article  Google Scholar 

    21.
    Wegner, B. R. et al. Soil response to corn residue removal and cover crops in eastern South Dakota. Soil Sci. Soc. Am. J. 79, 1179–1187 (2015).
    ADS  CAS  Article  Google Scholar 

    22.
    Karlen, D. L., Goeser, N. J., Veum, K. S. & Yost, M. A. On-farm soil health evaluations: challenges and opportunities. J. Soil Water Conserv. 72, 26A–31A (2017).
    Article  Google Scholar 

    23.
    Wade, J. et al. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Sci. Rep. 10, 3917 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
    Article  Google Scholar 

    25.
    Stanton, C. Y. et al. Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California. Clim. Change 147, 633–646 (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).
    ADS  CAS  Article  Google Scholar 

    27.
    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37, 4 (2017).
    Article  Google Scholar 

    28.
    Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: a meta-analysis. PLoS ONE 14, e0215702 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Basche, A. & DeLonge, M. The impact of continuous living cover on soil hydrologic properties: a meta-analysis. Soil Sci. Soc. Am. J. 81, 1179–1190 (2017).
    ADS  CAS  Article  Google Scholar 

    30.
    Roper, W. R., Osmond, D. L. & Heitman, J. L. A response to “Reanalysis validates soil health indicator sensitivity and correlation with long‐term crop yields”. Soil Sci. Soc. Am. J. 83, 1842–1845 (2019).
    ADS  CAS  Article  Google Scholar 

    31.
    King, A. E., Ali, G. A., Gillespie, A. W. & Wagner-Riddle, C. Soil organic matter as catalyst of crop resource capture. Front. Environ. Sci. 8, 50 (2020).
    Article  Google Scholar 

    32.
    Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL 5, 15–32 (2019).
    CAS  Article  Google Scholar 

    33.
    Oldfield, E. E., Wood, S. A. & Bradford, M. A. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth. Ecol. Appl. 30, e02073 (2020).
    PubMed  Article  Google Scholar 

    34.
    Wood, S. A. et al. Opposing effects of different soil organic matter fractions on crop yields. Ecol. Appl. 26, 2072–2085 (2016).
    PubMed  Article  Google Scholar 

    35.
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589 (2017).
    ADS  CAS  Article  Google Scholar 

    36.
    Fine, A. K., Ristow, A., Schindelbeck, R. R. & van Es, H. M. Update of scoring functions for Cornell Soil Health Test. What’s Cropping Up? Blog https://blogs.cornell.edu/whatscroppingup/2016/11/30/update-of-scoring-functions-for-cornell-soil-health-test/ (2016).

    37.
    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Bradford, M. A. et al. Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, E5491 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).
    ADS  CAS  Article  Google Scholar 

    40.
    Moebius, B. N. et al. Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil Sci. 172, 895–912 (2007).
    ADS  CAS  Article  Google Scholar 

    41.
    Reynolds, W. & Topp, G. in Soil Sampling and Methods of Analysis (eds Carter, M. R. & Gregorich, E. G.) 981–997 (CRC Press, 2008).

    42.
    Nelson, D. & Sommers, D. in Methods of Soil Analysis. Part 3 (Sparks, D. L., Page, A. L., Helmke, P. A. & Loeppert, R. H.) 961–1010 (Soil Science Society of America, 1996).

    43.
    Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Altern. Agric. 18, 3–17 (2003).
    Article  Google Scholar 

    44.
    Haney, R. L. & Haney, E. B. Simple and rapid laboratory method for rewetting dry soil for incubations. Commun. Soil Sci. Plant Anal. 41, 1493–1501 (2010).
    CAS  Article  Google Scholar 

    45.
    Wright, S. F. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).
    ADS  CAS  Article  Google Scholar 

    46.
    Bunnefeld, N. & Phillimore, A. B. Island, archipelago and taxon effects: mixed models as a means of dealing with the imperfect design of nature’s experiments. Ecography 35, 15–22 (2012).
    Article  Google Scholar 

    47.
    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).
    MathSciNet  PubMed  Article  Google Scholar 

    48.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    49.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    50.
    Stan Development Team. RStan: the R interface to Stan. R package v2.17.3 (2018).

    51.
    Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).
    CAS  Article  Google Scholar 

    52.
    Gelman, A. et al. Bayesian Data Analysis 3rd edn (Chapman and Hall, CRC, 2013).

    53.
    Howard, P. J. A. & Howard, D. M. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol. Fertil. Soils 9, 306–310 (1990).
    CAS  Article  Google Scholar  More

  • in

    Fossil evidence for vampire squid inhabiting oxygen-depleted ocean zones since at least the Oligocene

    1.
    Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophy. Geosy. 11, Q03004 (2010).
    Google Scholar 
    2.
    Gambacorta, G., Bersezio, R., Weissert, H. & Erba, E. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys. Paleoceanography 31, 732–757 (2016).
    Google Scholar 

    3.
    Palfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo–Ferrar flood basalt volcanism. Geology 28, 747–750 (2000).
    Google Scholar 

    4.
    Leckie, R. M., Bralower, T. J. & Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid‐Cretaceous. Paleoceanography 17, 13-11–13-29 (2002).
    Google Scholar 

    5.
    Erba, E. Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar. Micropaleontol. 52, 85–106 (2004).
    Google Scholar 

    6.
    Erbacher, J. V. J. T. & Thurow, J. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropaleontol. 30, 139–158 (1997).
    Google Scholar 

    7.
    Harries, P. J. & Little, C. T. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 39–66 (1999).
    Google Scholar 

    8.
    Danise, S., Twitchett, R. J. & Little, C. T. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43, 263–266 (2015).
    CAS  Google Scholar 

    9.
    Dera, G., Toumoulin, A. & De Baets, K. Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 80–97 (2016).
    Google Scholar 

    10.
    Rita, P., Nätscher, P., Duarte, L. V., Weis, R. & De Baets, K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian–Toarcian crisis. Roy. Soc. Open Sci. 6, 190494 (2019).
    Google Scholar 

    11.
    Chun, C. Aus den Tiefen des Weltmeeres, 88 (ed. Fischer, G.) (Schilderungen von der Deutschen Tiefsee-Expedition, 1903).

    12.
    Seibel, B. A. et al. Vampire blood: respiratory physiology of the vampire squid (Vampyromorpha: Cephalopoda) in relation to the oxygen minimum layer. Exp. Biol. Online 4, 1–10 (1999).
    Google Scholar 

    13.
    Hoving, H. J. T. & Robison, B. H. Vampire squid: Detritivores in the oxygen minimum zone. Proc. Biol. Sci. 279, 4559–4567 (2012).
    PubMed  PubMed Central  Google Scholar 

    14.
    Golikov, A. V. et al. The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda). Sci. Rep. 9, 19099 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Young, R. & Vecchione, M. Analysis of morphology to determine primary sister taxon relationships within coleoid cephalopods. Am. Malacol. Bull. 12, 91–112 (1996).
    Google Scholar 

    16.
    Strugnell, J. et al. Whole mitochondrial genome of the Ram’s Horn Squid shines light on the phylogenetic position of the monotypic order Spirulida (Haeckel, 1896). Mol. Phylogenet. Evol. 109, 296–301 (2017).
    CAS  Google Scholar 

    17.
    Sanchez, G. et al. Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas. PeerJ 6, e4331 (2018).
    PubMed  PubMed Central  Google Scholar 

    18.
    Lindgren, A. R. et al. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evol. Biol. 12, 129 (2012).
    PubMed  PubMed Central  Google Scholar 

    19.
    Tanner, A. R. et al. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic marine revolution. Proc. Biol. Sci. 284, 20162818 (2017).
    PubMed  PubMed Central  Google Scholar 

    20.
    Lindgren, A. R., Giribet, G. & Nishiguchi, M. K. A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20, 454–486 (2004).
    Google Scholar 

    21.
    Fara, E. What are Lazarus taxa? Geol. J. 36, 291–303 (2001).
    Google Scholar 

    22.
    Packard, A. Cephalopods and fish: the limits of convergence. Biol. Rev. 47, 241–307 (1972).
    CAS  Google Scholar 

    23.
    Nixon, M. & Young, J. Z. The Brains and Lives of Cephalopods, 1–406 (Oxford University Press, 2003).

    24.
    Kröger, B. et al. Cephalopod origin and evolution. Bioessays 33, 602–613 (2011).
    Google Scholar 

    25.
    Fuchs, D. Part M, Chapter 9B: the gladius and gladius vestige in fossil Coleoidea. Treatise Online 83, 1–23 (2016).
    Google Scholar 

    26.
    Fuchs, D. et al. The Muensterelloidea: phylogeny and character evolution of Mesozoic stem octopods. Pap. Palaeontol. 6, 31–92 (2019).
    Google Scholar 

    27.
    Fuchs, D. et al. The locomotion system of fossil Coleoidea (Cephalopoda) and its phylogenetic significance. Lethaia 49, 433–454 (2016).
    Google Scholar 

    28.
    Kretzoi, M. Necroteuthis n.gen. (Ceph. Dibr. Necroteuthidae n.f.) aus dem Oligozän von Budapest und das System der Dibranchiata. F.öldt. K.özl. (Bp.) 72, 124–138 (1942).
    Google Scholar 

    29.
    Donovan, D. T. Evolution of the dibranchiate Cephalopoda. Symp. Zool. Soc. Lond. 38, 15–48 (1977).
    Google Scholar 

    30.
    Riegraf, W., Janssen, N., & Schmitt-Riegraf, C. A. in Fossilum Catalogus I. Animalia, Vol. 135 (ed. Westphal, F.), 1–512 (1998).

    31.
    Fuchs, D. Part M, Coleoidea, chapter 23G: systematic descriptions: octobrachia. Treatise Online 138, 1–52 (2020).
    Google Scholar 

    32.
    Schulz, H. M., Bechtel, A. & Sachsenhofer, R. F. The birth of the Paratethys during the Early Oligocene: from Tethys to an ancient Black Sea analogue? Glob. Planet. Change 49, 163–176 (2005).
    Google Scholar 

    33.
    Bojanowski, M. J. et al. The Central Paratethys during Oligocene as an ancient counterpart of the present-day Black Sea: Unique records from the coccolith limestones. Mar. Geol. 403, 301–328 (2018).
    CAS  Google Scholar 

    34.
    Bizikov, V. A. Evolution of the shell in Cephalopoda, 1–448 (VNIRO, 2008).

    35.
    Weaver, P. G. et al. Characterization of organics consistent with β-Chitin preserved in the Late Eocene cuttlefish Mississaepia mississippiensis. PLoS ONE 6, e28195 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–722 (1994).
    CAS  Google Scholar 

    37.
    Bechtel, A. et al. Facies evolution and stratigraphic correlation in the early Oligocene Tard clay of Hungary as revealed by maceral, biomarker and stable isotope composition. Mar. Petrol. Geol. 35, 55–74 (2012).
    CAS  Google Scholar 

    38.
    Donovan, D. T. Part M., Chapter 9C: composition and structure of gladii in fossil Coleoidea. Treatise Online 75, 1–5 (2016).
    Google Scholar 

    39.
    Nagymarosy, A. et al. The effect of the relative sea-level changes in the north Hungarian Paleogene Basin. Geol. Soc. Greece Spec. Publ. 4, 247–253 (1995).
    Google Scholar 

    40.
    Ozsvárt, P. et al. The Eocene-Oligocene climate transition in the Central Paratethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 471–487 (2016).
    Google Scholar 

    41.
    Nyerges, A., Kocsis, T. Á. & Pálfy, J. Changes in calcareous nannoplankton assemblages around the Eocene-Oligocene climate transition in the Hungarian Palaeogene Basin (Central Paratethys). Hist. Biol. 1–14. https://doi.org/10.1080/08912963.2019.1705295 (2020).
    Article  Google Scholar 

    42.
    Ozsvárt, P. Middle and Late Eocene benthic foraminiferal fauna from the Hungarian Paleogene Basin: systematics and paleoecology. Geol. Pannonica Spec. Pap. 2, 1–129 (2007).
    Google Scholar 

    43.
    Nagymarosy, A. Lower Oligocene nannoplankton in anoxic deposits of the central Paratethys. 8th International Nannoplankton Assoc. Conf., Bremen. J. Nannoplankton Res. 22, 128–129 (2000).
    Google Scholar 

    44.
    Nagymarosy, A. & Voronina, A. A. Calcareous nannoplankton from the Lower Maikopian beds (Early Oligocene, Union of Independent States). In Proc. 4thINA Conf. Prague 1991, Knihovnička ZPN 14b (eds Hamršmíd, B. & Young, J.) 187–221 (Nannoplankton Research, 1992).

    45.
    Murray, J. W. Ecology and Applications of Benthic Foraminifera, 1–426 (Cambridge University Press, 2006).

    46.
    Mørk, A. & Bromley, R. G. Ichnology of a marine regressive systems tract: the Middle Triassic of Svalbard. Polar Res. 27, 339–359 (2008).
    Google Scholar 

    47.
    Báldi, T. Mid-Tertiary Stratigraphy and Paleogeographic Evolution of Hungary, 1–201 (Akadémiai Kiadó, 1986).

    48.
    Khromov, D. N. Distribution patterns in Sepiidae. Smithson. Contr. Zool. 568, 191–206 (1998).
    Google Scholar 

    49.
    Sepkoski, J. J. Jr. A model of onshore-offshore change in faunal diversity. Paleobiology 17, 68–77 (1991).
    Google Scholar 

    50.
    Smith, A. B. & Stockley, B. The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation. P. Roy. Soc. B Biol. Sci. 272, 865–869 (2005).
    Google Scholar 

    51.
    Thuy, B. et al. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction. P. Roy. Soc. B Biol. Sci. 281, 20132624 (2014).
    Google Scholar 

    52.
    Jacobs, D. K. & Lindberg, D. R. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc. Natl Acad. Sci. USA 95, 9396–9401 (1998).
    CAS  Google Scholar 

    53.
    Zeidberg, L. D. & Robison, B. H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc. Natl Acad. Sci. USA 104, 12948–12950 (2007).
    CAS  Google Scholar 

    54.
    Rogers, A. D. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep Sea Res. Pt. II 47, 119–148 (2000).
    Google Scholar 

    55.
    Levin, L. A. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. Annu. Rev. 41, 1–45 (2003).
    Google Scholar 

    56.
    Childress, J. J. & Seibel, B. A. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol. 201, 1223–1232 (1998).
    CAS  Google Scholar 

    57.
    Gooday, A. J. et al. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Mar. Ecol. 31, 125–147 (2010).
    Google Scholar 

    58.
    Wood, R. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol. Rev. 93, 863–873 (2018).
    Google Scholar 

    59.
    Hermoso, M., Minoletti, F. & Pellenard, P. Black shale deposition during Toarcian super‐greenhouse driven by sea level. Clim 9, 2703–2712 (2013).
    Google Scholar 

    60.
    Kruta, I. et al. Proteroctopus ribeti in coleoid evolution. Paleontology 59, 767–773 (2016).
    Google Scholar 

    61.
    Wilby, P. R., Briggs, D. E. & Riou, B. Mineralization of soft-bodied invertebrates in a Jurassic metalliferous deposit. Geology 24, 847–850 (1996).
    CAS  Google Scholar 

    62.
    Etter, W. in Exceptional fossil preservation. A Unique View on the Evolution of Marine Life (eds Bottjer, D. J., Etter, W., Hagadorn, J. W. & Tang, C. M.) 293–305 (Columbia University Press, 2002).

    63.
    Charbonnier, S., Vannier, J., Gaillard, C., Bourseau, J.-P. & Hantzpergue, P. The La Voulte Lagerstätte (Callovian): Evidence for a deep water setting from sponge and crinoid communities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 250, 216–236 (2007).
    Google Scholar 

    64.
    Charbonnier, S., Audo, D., Caze, B. & Biot, V. The La Voulte-sur-Rhône Lagerstätte (Middle Jurassic, France). CR Palevol 13, 369–381 (2014).
    Google Scholar 

    65.
    Vannier, J., Schoenemann, B., Gillot, B., S. Charbonnier, S. & Clarkson, E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Commun. 7, 10320 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Audo, D. et al. palaeoecology of Voulteryon parvulus (eucrustacea, polychelida) from the Middle Jurassic of La Voulte-sur-Rhône Fossil-Lagerstätte (France). Sci. Rep. 9, 1–13 (2019).
    CAS  Google Scholar 

    67.
    Viohl, G. in Solnhofen. Ein Fenster in die Jurazeit. (eds Arratia, G., Schultze, H.-P., Tischlinger, H. & Viohl, G.) 56–62 (Verlag Dr. Friedrich Pfeil, 2015).

    68.
    Engeser, T. & Reitner, J. Teuthiden aus dem Unterapt (“Töck”) von Helgoland (Schleswig-Holstein, Norddeutschland). Pal. Z. 59, 245–260 (1985).
    Google Scholar 

    69.
    Mutterlose, J., Pauly, S. & Steuber, T. Temperature controlled deposition of early Cretaceous (Barremian–early Aptian) black shales in an epicontinental sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 330–345 (2009).
    Google Scholar 

    70.
    Heldt, M., Mutterlose, J., Berner, U. & Erbacher, J. First high-resolution δ13C-records across black shales of the Early Aptian Oceanic Anoxic Event 1a within the mid-latitudes of northwest Europe (Germany, Lower Saxony Basin). Newsl. Stratigr. 45, 151–169 (2012).
    Google Scholar 

    71.
    Bottini, C. & Mutterlose, J. Integrated stratigraphy of Early Aptian black shalesin the Boreal Realm: calcareous nanofossil and stable isotope evidence forglobal and regional processes. Newsl. Stratigr. 45, 115–137 (2012).
    Google Scholar 

    72.
    Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).
    CAS  Google Scholar 

    73.
    Fuchs, D., Laptikhovsky, V., Nikolaeva, S., Ippolitov, A. & Rogov, M. Evolution of reproductive strategies in coleoid mollusks. Paleobiology 46, 82–103 (2020).
    Google Scholar 

    74.
    Tajika, A., Nützel, A. & Klug, C. The old and the new plankton: ecological replacement of associations of mollusc plankton and giant filter feeders after the Cretaceous? PeerJ 6, e4219 (2018).
    PubMed  PubMed Central  Google Scholar 

    75.
    Lu, C. C. & Clarke, M. R. Vertical distribution of cephalopods at 40°N, 53°N and 60°N at 20°W in the North Atlantic. J. Mar. Biol. Assoc. U.K. 55, 143–163 (1975).
    Google Scholar 

    76.
    Clements, T., Colleary, C., De Baets, K. & Vinther, J. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60, 1–14 (2017).
    Google Scholar 

    77.
    Košťák, M., Kohout, O., Mazuch, M. & Čech, S. An unusual occurrence of vascoceratid ammonites in the Bohemian Cretaceous Basin (Czech Republic) marks the lower Turonian boundary between the Boreal and Tethyan realms in central Europe. Cret. Res. 108, 104338 (2020).
    Google Scholar 

    78.
    Oji, T. in Palaeobiology II (eds Briggs, D. E. G. & Crowther, P. R.) 444–447 (Blackwell Science Ltd, 2001).

    79.
    Báldi, T. A. in Geológiai Kirándulások Magyarország Közepén (ed. Palotai, M.) 94–129 (Hantken Kiadó, 2010).

    80.
    Tari, G. et al. Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. Tectonophysics 226, 433–455 (1993).
    Google Scholar 

    81.
    Švábenická, L. et al. Biostratigraphy and paleoenvironmental changes on the transition from the Menilite to Krosno lithofacies (Western Carpathians, Czech Republic). Geol. Carpath. 58, 237–262 (2007).
    Google Scholar 

    82.
    Kováč, M. et al. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob. Planet. Change 140, 9–27 (2016).
    Google Scholar 

    83.
    Nevesskaja, L. A. et al. History of Paratethys. Ann. Inst. Géol. Hong. 70, 337–342 (1987).
    Google Scholar 

    84.
    Lafuente, B., Downs, R. T., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds Armbruster, T. & Danisi, R. M.) 1–30 (De Gruyter, 2015).

    85.
    McCrea, J. M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–857 (1950).
    CAS  Google Scholar 

    86.
    Guiry, M. D. & Guiry, G. M. AlgaeBase (World-wide electronic publication, National University of Ireland, Galway, accessed May 18, 2020); https://www.algaebase.org.

    87.
    Holcová, K. Postmortem transport and resedimentation of foraminiferal tests: relations to cyclical changes of foraminiferal assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 157–182 (1999).
    Google Scholar 

    88.
    Folk, R. L. Nannobacteria and the formation of framboidal pyrite: Textural evidence. J. Earth Syst. Sci. 114, 369–374 (2005).
    Google Scholar 

    89.
    Zágoršek, K. et al. Bryozoan event from Middle Miocene (Early Badenian) lower neritic sediments from the locality Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). Int. J. Earth. Sci. 97, 835–850 (2007).

    90.
    Košťák, M. et al. Micro-computed tomography data supporting the manuscript: Fossil evidence for vampire squid inhabiting oxygen-depleted ocean zones since at least the Oligocene. figshare https://doi.org/10.6084/m9.figshare.13526024 (2021). More

  • in

    Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning

    1.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
    Article  Google Scholar 

    4.
    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).
    ADS  Article  Google Scholar 

    5.
    Smale, D. A., Wernberg, T. & Vanderklift, M. A. Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. Mar. Ecol. Prog. Ser. 568, 17–30 (2017).
    ADS  Article  Google Scholar 

    6.
    Benthuysen, J. A., Oliver, E. C. J., Feng, M. & Marshall, A. G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123, 1301–1326 (2018).
    ADS  Article  Google Scholar 

    7.
    Della-Marta, P., Haylock, M., Luterbacher, J. & Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 112, D15103 (2007).
    ADS  Article  Google Scholar 

    8.
    Oswald, E. & Rood, R. A trend analysis of the 1930–2010 extreme heat events in the Continental United States. J. Appl. Meteorol. Climatol. 53, 565–582 (2014).
    ADS  Article  Google Scholar 

    9.
    Perkins, S. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).
    ADS  Article  Google Scholar 

    10.
    Lima, F. P. & Wethey, D. S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat. Commun. 3, 704 (2012).
    ADS  PubMed  Article  CAS  Google Scholar 

    11.
    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162 (2018).
    Article  Google Scholar 

    12.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
    ADS  Article  Google Scholar 

    13.
    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).
    ADS  PubMed  Article  Google Scholar 

    14.
    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).
    ADS  Article  Google Scholar 

    15.
    Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Caputi, N. et al. Factors affecting the recovery of invertebrates stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484 (2019).
    Article  Google Scholar 

    17.
    Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Murphy, E. A. K. & Reidenbach, M. A. Oxygen transport in periodically ventilated polychaete burrows. Mar. Biol. 163, 208 (2016).
    Article  CAS  Google Scholar 

    19.
    Goulletquer, P. et al. Summer mortality of the Pacific cupped oyster Crassostrea gigas in the Bay of Marennes-Oléron (France). In Mariculture Committee CM 1998/CC: 14 (1998).

    20.
    Li, M., Lei, Y., Li, T. & Jian, Z. Impact of temperature on intertidal foraminifera: Results from laboratory culture experiment. J. Exp. Mar. Biol. Ecol. 520, 151224 (2019).
    Article  Google Scholar 

    21.
    Pörtner, H. O. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).
    ADS  PubMed  Article  Google Scholar 

    22.
    Pörtner, H. O. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser. 470, 273–290 (2012).
    ADS  Article  CAS  Google Scholar 

    23.
    Straub, S. C. et al. Resistance, extinction, and everything in between—The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
    Article  Google Scholar 

    24.
    Stillman, J. H. & Somero, G. N. Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): Correlation of physiology, biochemistry and morphology with vertical distribution. J. Exp. Biol. 199, 1845–1855 (1996).
    CAS  PubMed  Google Scholar 

    25.
    Joint, I. & Smale, D. A. Marine heatwaves and optimal temperatures for microbial assemblage activity. FEMS Microbiol. Ecol. 93, 243 (2017).
    Article  CAS  Google Scholar 

    26.
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Nature 322, 690–692 (2008).
    Google Scholar 

    27.
    Wu, F. et al. Effects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica. Mar. Pollut. Bull. 120, 99–108 (2017).
    CAS  PubMed  Article  Google Scholar 

    28.
    da Vianna, B. S., Miyai, C. A., Augusto, A. & Costa, T. M. Effects of temperature increase on the physiology and behavior of fiddler crabs. Physiol. Behav. 215, 112765 (2020).
    CAS  PubMed  Article  Google Scholar 

    29.
    François, F., Poggiale, J.-C., Durbec, J.-P. & Stora, G. A new approach for the modelling of sediment reworking induced by a macrobenthic community. Acta. Biotheor. 45, 295–319 (1997).
    Article  Google Scholar 

    30.
    Kristensen, E. et al. What is bioturbation? the need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).
    ADS  Article  Google Scholar 

    31.
    Piot, A., Nozais, C. & Archambault, P. Meiofauna affect the macrobenthic biodiversity—Ecosystem functioning relationship. Oikos 123, 1–11 (2013).
    Google Scholar 

    32.
    Bonaglia, S. et al. Meiofauna improve oxygenation and accelerate sulfide removal in the seasonally hypoxic seabed. Mar. Environ. Res. 159, 104968 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I. & Brüchert, V. Meiofauna increases bacterial denitrification in marine sediments. Nat. Commun. 5, 5133 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Mermillod-Blondin, F. & Rosenberg, R. Ecosystem engineering: The impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat. Sci. 68, 434–442 (2006).
    CAS  Article  Google Scholar 

    35.
    Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43 (2008).
    ADS  Article  Google Scholar 

    36.
    Pascal, L., Maire, O., Deflandre, B., Romero-Ramirez, A. & Grémare, A. Linking behaviours, sediment reworking, bioirrigation and oxygen dynamics in a soft-bottom ecosystem engineer: The mud shrimp Upogebia pusilla (Petagna 1792). J. Exp. Mar. Biol. Ecol. 516, 67–78 (2019).
    Article  Google Scholar 

    37.
    Risgaard-Petersen, N. et al. Evidence for complete denitrification in a benthic foraminifer. Nature 443, 93–96 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Høgslund, S., Revsbech, N. P., Cedhagen, T., Nielsen, L. P. & Gallardo, V. A. Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile. J. Exp. Mar. Biol. Ecol. 359, 85–91 (2008).
    Article  CAS  Google Scholar 

    39.
    Pike, J., Bernhard, J. M., Moreton, S. & Butler, I. Microbiorrigation of marine sediments in dysoxic environments: Implication for early sediment fabric formation and diagenetic processes. Geology 29, 923–926 (2001).
    ADS  Article  Google Scholar 

    40.
    Woulds, C. et al. Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling. Limnol. Oceanogr. 52, 1698–1709 (2007).
    ADS  CAS  Article  Google Scholar 

    41.
    Bernhard, J. M., Mollo-Christensen, E., Eisenkolb, N. & Starczak, V. R. Tolerance of allogromid Foraminifera to severaly elevated carbon dioxide concentrations: Implications to future ecosystem functioning and paleoceanographic interpretations. Glob. Planet. Change 65, 107–114 (2009).
    ADS  Article  Google Scholar 

    42.
    Bradshaw, J. Laboratory experiments on the ecology of foraminifera. Contrib. Cushman Found. Foramin. Res. 12, 87–106 (1961).
    Google Scholar 

    43.
    Pascal, P.-Y., Dupuy, C., Richard, P. & Niquil, N. Bacterivory in the common foraminifer Ammonia tepida: Isotope tracer experiment and the controlling factors. J. Exp. Mar. Biol. Ecol. 359, 55–61 (2008).
    CAS  Article  Google Scholar 

    44.
    Wukovits, J., Enge, A. J., Wanek, W., Watzka, M. & Heinz, P. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica). Biogeosciences 14, 2815–2829 (2017).
    ADS  CAS  Article  Google Scholar 

    45.
    Schmidt, C., Heinz, P., Kucera, M. & Uthicke, S. Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol. Oceanogr. 56, 1587–1602 (2011).
    ADS  Article  Google Scholar 

    46.
    Stuhr, M. et al. Variable thermal stress tolerance of the reef-associated symbiont-bearing foraminifera Amphistegina linked to differences in symbiont type. Coral Reefs 37, 811–824 (2018).
    ADS  Article  Google Scholar 

    47.
    Gross, O. Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: Evidence by microcosm experiments. Hydrobiologia 426, 123–137 (2000).
    Article  Google Scholar 

    48.
    Deldicq, N., Seuront, L., Langlet, D. & Bouchet, V. Assessing behavioural traits of benthic foraminifera: Implications for sediment mixing. Mar. Ecol. Prog. Ser. 643, 21–31 (2020).
    ADS  Article  Google Scholar 

    49.
    Seuront, L. & Bouchet, V. M. P. The devil lies in details: New insights into the behavioural ecology of intertidal foraminifera. J. Foramin. Res. 45, 390–401 (2015).
    Article  Google Scholar 

    50.
    van Dam, J. W., Negri, A. P., Mueller, J. F., Altenburger, R. & Uthicke, S. Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera. PLoS ONE 7, e33900 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Sinutok, S., Hill, R., Kühl, M., Doblin, M. A. & Ralph, P. J. Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar. Biol. 161, 2143–2154 (2014).
    CAS  Article  Google Scholar 

    52.
    Alve, E. & Murray, J. W. Temporal variability in vertical distributions of live (stained) intertidal foraminifera, Southern England. J. Foramin. Res. 31, 12–24 (2001).
    Article  Google Scholar 

    53.
    Debenay, J.-P., Bicchi, E., Goubert, E. & Armynot-du-Châtelet, E. Spatio-temporal distribution of benthic foraminifera in relation to estuarine dynamics (Vie estuary, Vendée, W France). Estuar. Coast. Shelf Sci. 67, 181–197 (2006).
    ADS  Article  Google Scholar 

    54.
    Morvan, J. et al. Patchiness and life cycle of intertidal foraminifera: Implication for environmental and paleoenvironmental interpretation. Mar. Micropaleontol. 61, 131–154 (2006).
    ADS  Article  Google Scholar 

    55.
    Francescangeli, F. et al. Multidisciplinary study to monitor consequences of pollution on intertidal benthic ecosystems (Hauts de France, English Channel, France): Comparison with natural areas. Mar. Environ. Res. 160, 105034 (2020).
    CAS  PubMed  Article  Google Scholar 

    56.
    Amara, R., Meziane, T., Gilliers, C., Hermel, G. & Laffargues, P. Growth and condition indices in juveniles sole Solea solea measured to assess the quality of essential fish habitat. Mar. Ecol. Prog. Ser. 351, 201–208 (2007).
    ADS  Article  Google Scholar 

    57.
    Langlet, D., Bouchet, V. M. P., Delaeter, C. & Seuront, L. Motion behavior and metabolic response to microplastic leachates in the benthic foraminifera Haynesina germanica. J. Exp. Mar. Biol. Ecol. 529, 151395 (2020).
    Article  Google Scholar 

    58.
    Cesbron, F. et al. Sequestered chloroplasts in the benthic foraminifer Haynesina germanica: Cellular organization, oxygen fluxes and potential ecological implications. J. Foramin. Res. 47, 268–278 (2017).
    Article  Google Scholar 

    59.
    Geslin, E. et al. Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors. J. Exp. Mar. Biol. Ecol. 396, 108–114 (2011).
    Article  Google Scholar 

    60.
    Schindelin, J. et al. Fiji : An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    CAS  PubMed  Article  Google Scholar 

    61.
    Seuront, L. Fractals and Multifractals in Ecology and Aquatic Science (CRC Press, Boca Raton, 2010).
    Google Scholar 

    62.
    Seuront, L. On uses, misuses and potential abuses of fractal analysis in zooplankton behavioral studies: A review, a critique and a few recommendations. Phys. A 432, 410–434 (2015).
    MathSciNet  MATH  Article  Google Scholar 

    63.
    Seuront, L. & Cribb, N. Fractal analysis provides new insights into the complexity of marine mammal behavior: A review, two methods, their application to diving and surfacing patterns, and their relevance to marine mammal welfare assessment. Mar. Mamm. Sci. 33, 847–879 (2017).
    Article  Google Scholar 

    64.
    Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478 (1989).
    ADS  CAS  Article  Google Scholar 

    65.
    Glock, N. et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. PNAS 116, 2860–2865 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    66.
    Choquel, C. et al. Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment. Biogeosciences 18, 327–341 (2021).
    ADS  Article  Google Scholar 

    67.
    Ramsing, N. & Gundersen, J. Seawater and Gases-Tabulated Physical Parameters of Interest to People Working with Microsensors in Marine Systems. (Unisense Internal Report, 1994).

    68.
    Zar, J. Biostatistical Analysis 5th edn. (Pearson Education, London, 2009).
    Google Scholar 

    69.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019).

    70.
    Bouchet, V. M. P. & Seuront, L. Strength may lie in numbers: Intertidal foraminifera non-negligible contribution to surface sediment reworking. OJMS 10, 131–140 (2020).
    Article  Google Scholar 

    71.
    Seuront, L. Behavioral fractality in marine copepods: Endogenous rhythms versus exogenous stressors. Phys. A 390, 250–256 (2011).
    Article  Google Scholar 

    72.
    Seuront, L. Hydrocarbon contamination decreases mating success in a marine planktonic copepod. PLoS ONE 6, e26283 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Seuront, L. When complexity rimes with sanity: Loss of fractal and multifractal behavioural complexity as an indicator of sub-lethal contaminations in zooplankton. In Marine Productivity: Perturbation and Resilience of Socio-ecosystems (eds Ceccaldi, H.-J. et al.) 129–137 (Springer, Berlin, 2015).
    Google Scholar 

    74.
    Harrison, S. & Phizacklea, A. Vertical temperature gradient in muddy intertidal sediments in the Forth estuary, Scotland. Limnol. Oceanogr. 32, 954–963 (1987).
    ADS  Article  Google Scholar 

    75.
    Bouchet, V. M. P., Debenay, J.-P., Sauriau, P.-G., Radford-Knoery, J. & Soletchnik, P. Effects of short-term environmental disturbances on living benthic foraminifera during the Pacific oyster summer mortality in the Marennes-Oléron Bay (France). Mar. Environ. Res. 64, 358–383 (2007).
    CAS  PubMed  Article  Google Scholar 

    76.
    Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integr. Comp. Biol. 42, 780–789 (2002).
    PubMed  Article  Google Scholar 

    77.
    Stillman, J. H. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes. Integr. Comp. Biol. 42, 790–796 (2002).
    PubMed  Article  Google Scholar 

    78.
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: An integrative view. Phil. Trans. R. Soc. B 362, 2233–2258 (2007).
    PubMed  Article  CAS  Google Scholar 

    79.
    Przeslawski, R., Zhu, Q. & Aller, R. Effects of abiotic stressors on infaunal burrowing and associated sediment characteristics. Mar. Ecol. Prog. Ser. 392, 33–42 (2009).
    ADS  CAS  Article  Google Scholar 

    80.
    Chapperon, C. & Seuront, L. Behavioral thermoregulation in a tropical gastropod: Links to climate change scenarios. Glob. Change Biol. 17, 1740–1749 (2011).
    ADS  Article  Google Scholar 

    81.
    Tsubokura, T., Goshima, S. & Nakao, S. Seasonal horizontal and vertical distribution patterns of the supralittoral amphipod Trinorchestia trinitatis in relation to environmental variables. J. Crust. Biol. 17, 674–686 (1997).
    Article  Google Scholar 

    82.
    Lardies, M. A., Clasing, E., Navarro, J. M. & Stead, R. A. Effects of environmental variables on burial depth of two infaunal bivalves inhabiting a tidal flat in southern Chile. J. Mar. Biol. Assoc. U.K. 81, 809–816 (2001).
    Article  Google Scholar 

    83.
    Diaz, J. A. & Cabezas-Diaz, S. Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct. Ecol. 18, 867–875 (2004).
    Article  Google Scholar 

    84.
    Lencioni, V. Survival strategies of freshwater insects in cold environments. J. Limnol. 63, 45–55 (2004).
    Article  Google Scholar 

    85.
    Dubois, Y., Blouin-Demers, G., Shipley, B. & Thomas, D. Thermoregulation and habitat selection in wood turtles Glyptemys insculpta: Chasing the sun slowly. J. Anim. Ecol. 78, 1023–1032 (2009).
    CAS  PubMed  Article  Google Scholar 

    86.
    Chapperon, C. & Seuront, L. Keeping warm in the cold: On the thermal benefits of aggregation behaviour in an intertidal ectotherm. J. Therm. Biol. 37, 640–647 (2012).
    Article  Google Scholar 

    87.
    Koo, B. J., Kim, S.-H. & Hyun, J.-H. Feeding behavior of the ocypodid crab Macrophthalmus japonicus and its effects on oxygen-penetration depth and organic-matter removal in intertidal sediments. Estuar. Coast. Shelf Sci. 228, 106366 (2019).
    CAS  Article  Google Scholar 

    88.
    Gosling, E. Bivalve Molluscs Biology, Ecology and Culture (Blackwell Publishing Ltd, Oxford, 2004).
    Google Scholar 

    89.
    Verdelhos, T., Marques, J. C. & Anastácio, P. Behavioral and mortality responses of the bivalves Scrobicularia plana and Cerastoderma edule to temperature, as indicator of climate change’s potential impacts. Ecol. Ind. 58, 95–103 (2015).
    Article  Google Scholar 

    90.
    Angilletta, M. J. Looking for answers to questions about heat stress: Researchers are getting warmer. Funct. Ecol. 23, 231–232 (2009).
    Article  Google Scholar 

    91.
    Lombard, F., Labeyrie, L., Michel, E., Spero, H. J. & Lea, D. W. Modelling the temperature dependent growth rates of planktic foraminifera. Mar. Micropaleontol. 70, 1–7 (2009).
    ADS  Article  Google Scholar 

    92.
    Fraser, K. P. P., Clarke, A. & Peck, L. S. Low-temperature protein metabolism: Seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel 1908. J. Exp. Biol. 205, 3077–3086 (2002).
    CAS  PubMed  Google Scholar 

    93.
    Gilbert, C. et al. One for all and all for one: The energetic benefits of huddling in endotherms. Biol. Rev. 85, 545–569 (2010).
    PubMed  Google Scholar 

    94.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    ADS  Article  Google Scholar 

    95.
    Lou, F., Gao, T. & Han, Z. Transcriptome analyses reveal alterations in muscle metabolism, immune responses and reproductive behavior of Japanese mantis shrimp (Oratosquilla oratoria) at different cold temperature. Comp. Biochem. Physiol. D Genomics Proteomics 32, 100615 (2019).
    CAS  PubMed  Article  Google Scholar 

    96.
    Wieser, W. Temperature relations of ectotherms: A speculative review. In Effects of Temperature on Ectothermic Organisms: Ecological Implications and Mechanisms of Compensation (ed. Wieser, W.) 1–23 (Springer, Berlin, 1973).
    Google Scholar 

    97.
    Price, R. & Warwick, R. M. The effect of temperature on the respiration rate of meiofauna. Oecologia 44, 145–148 (1980).
    ADS  CAS  PubMed  Article  Google Scholar 

    98.
    Stillman, J. H. & Somero, G. N. A comparative analysis of the upper thermal tolerance limits of Eastern Pacific porcelain crabs, genus Petrolisthes : Influences of latitude, vertical zonation, acclimation, and phylogeny. Physiol. Biochem. Zool. 73, 200–208 (2000).
    CAS  PubMed  Article  Google Scholar 

    99.
    Vernberg, W. & Vernberg, F. Environmental Physiology of Marine Organisms (Springer, Berlin, 1972).
    Google Scholar 

    100.
    Mestre, N. C., Brown, A. & Thatje, S. Temperature and pressure tolerance of larvae of Crepidula fornicata suggest thermal limitation of bathymetric range. Mar. Biol. 160, 743–750 (2013).
    Article  Google Scholar 

    101.
    Meysman, F. J. R., Galaktionov, O. S., Glud, R. N. & Middelburg, J. J. Oxygen penetration around burrows and roots in aquatic sediments. J. Mar. Res. 68, 309–336 (2010).
    CAS  Article  Google Scholar 

    102.
    Mouret, A. et al. Oxygen and organic carbon fluxes in sediments of the Bay of Biscay. Deep-Sea Res. I(57), 528–540 (2010).
    Article  CAS  Google Scholar 

    103.
    Bernhard, J. M. Experimental and field evidence of Antarctic foraminiferal tolerance to anoxia and hydrogen sulfide. Mar. Micropaleontol. 20, 203–213 (1993).
    ADS  Article  Google Scholar 

    104.
    Maire, O. et al. How does macrofaunal bioturbation influence the vertical distribution of living benthic foraminifera?. Mar. Ecol. Prog. Ser. 561, 83–97 (2016).
    ADS  Article  Google Scholar 

    105.
    Richirt, J. et al. Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands). Biogeosciences 17, 1415–1435 (2020).
    ADS  Article  Google Scholar 

    106.
    Moens, T. & Vincx, M. Temperature, salinity and food thresholds in two brackish-water bacterivorous nematode species: Assessing niches from food absorption and respiration experiments. J. Exp. Mar. Biol. Ecol. 243, 137–154 (2000).
    Article  Google Scholar 

    107.
    Pinko, D., Abramovich, S. & Titelboim, D. Foraminiferal holobiont thermal tolerance under climate change—Roommates problems or successful collaboration?. Biogeosciences 17, 2341–2348 (2020).
    ADS  Article  Google Scholar 

    108.
    Maire, O., Duchêne, J., Bigot, L. & Grémare, A. Linking feeding activity and sediment reworking in the deposit-feeding bivalve Abra ovata with image analysis, laser telemetry, and luminophore tracers. Mar. Ecol. Prog. Ser. 351, 139–150 (2007).
    ADS  Article  Google Scholar 

    109.
    Ouellette, D. et al. Effects of temperature on in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Mar. Ecol. Prog. Ser. 266, 185–193 (2004).
    ADS  Article  Google Scholar 

    110.
    Guarini, J., Blanchard, G., Gros, P., Gouleau, D. & Bacher, C. Dynamic model of the short-term variability of microphytobenthic biomass on temperate intertidal mudflats. Mar. Ecol. Prog. Ser. 195, 291–303 (2000).
    ADS  Article  Google Scholar 

    111.
    Jauffrais, T. et al. Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida). Biogeosciences 13, 2715–2726 (2016).
    ADS  Article  Google Scholar 

    112.
    Jauffrais, T. et al. Response of a kleptoplastidic foraminifer to heterotrophic starvation: Photosynthesis and lipid droplet biogenesis. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz046 (2019).
    Article  PubMed  Google Scholar  More

  • in

    Performance comparison of two reduced-representation based genome-wide marker-discovery strategies in a multi-taxon phylogeographic framework

    1.
    Avise, J. C. Phylogeography: retrospect and prospect. J. Biogeogr. 36, 3–15 (2009).
    Article  Google Scholar 
    2.
    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).
    Article  Google Scholar 

    3.
    Linder, P. H. Phylogeography. J. Biogeogr. 44, 243–244 (2017).
    Article  Google Scholar 

    4.
    Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. 105, 13486–13491 (2008).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    5.
    Philippe, H. et al. Pitfalls in supermatrix phylogenomics. Pitfalls supermatrix phylogenomics. Eur. J. Taxon. 28, 3. https://doi.org/10.5852/ejt.2017.283 (2017).
    Article  Google Scholar 

    6.
    Villaverde, T. et al. Bridging the micro- and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. New Phytol. 220, 636–650 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Vos, P. et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Meudt, H. M. & Clarke, A. C. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci. 12, 106–117 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Paun, O. & Schönswetter, P. Amplified fragment length polymorphism: an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Methods Mol. Biol. 862, 75–87 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Dejaco, T., Gassner, M., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Taxonomist’s nightmare … evolutionist’s delight: an integrative approach resolves species limits in jumping bristletails despite widespread hybridization and parthenogenesis. Syst. Biol. 65, 947–974 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Sefc, K. M. et al. Shifting barriers and phenotypic diversification by hybridisation. Ecol. Lett. 20, 651–662 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Suchan, T., Malicki, M. & Ronikier, M. Relict populations and Central European glacial refugia: the case of Rhododendron ferrugineum (Ericaceae). J. Biogeogr. 46, 392–404 (2019).
    Article  Google Scholar 

    13.
    Schneeweiss, G. M. & Schönswetter, P. A re-appraisal of nunatak survival in arctic-alpine phylogeography. Mol. Ecol. 20, 190–192 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Lemmon, A. R. & Lemmon, E. M. High-throughput identification of informative nuclear loci for shallow-scale phylogenetics and phylogeography. Syst. Biol. 61, 745–761 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, 1–7 (2008).
    Article  CAS  Google Scholar 

    16.
    Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius L.. Mol. Ecol. 25, 2997–3018 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Bohling, J., Small, M., Von Bargen, J., Louden, A. & DeHaan, P. Comparing inferences derived from microsatellite and RADseq datasets: a case study involving threatened bull trout. Conserv. Genet. 20, 329–342 (2019).
    CAS  Article  Google Scholar 

    19.
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—implications for brown trout conservation. Ecol. Evol. 9, 2106–2120 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Mesak, F., Tatarenkov, A., Earley, R. L. & Avise, J. C. Hundreds of SNPs vs. dozens of SSRs: which dataset better characterizes natural clonal lineages in a self-fertilizing fish?. Front. Ecol. Evol. 2, 74 (2014).
    Article  Google Scholar 

    21.
    Fay, M. F., Cowan, R. S. & Leitch, I. J. The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fingerprints. Ann. Bot. 95, 237–246 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Karam, M.-J., Lefèvre, F., Dagher-Kharrat, M. B., Pinosio, S. & Vendramin, G. G. Genomic exploration and molecular marker development in a large and complex conifer genome using RADseq and mRNAseq. Mol. Ecol. Resour. 15, 601–612 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A. & Cresko, W. A. SNP Discovery and Genotyping for Evolutionary Genetics Using RAD Sequencing. Methods in Molecular Biology (Clifton, N.J.) Vol. 772, 157–178 (Springer, Berlin, 2011).
    Google Scholar 

    24.
    Davey, J. L. & Blaxter, M. W. RADseq: next-generation population genetics. Brief. Funct. Genomics 9, 416–423 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Głowacka, K. et al. Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenergy 7, 386–404 (2015).
    Article  CAS  Google Scholar 

    26.
    Leaché, A. D., Banbury, B. L., Felsenstein, J., De Oca, A. N. M. & Stamatakis, A. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Wu, C.-H. & Drummond, A. J. Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov Chain Monte Carlo. Genetics 188, 151–164 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Emerson, K. J. et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. 107, 16196–16200 (2010).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    29.
    Sboner, A., Mu, X., Greenbaum, D., Auerbach, R. K. & Gerstein, M. B. The real cost of sequencing: higher than you think!. Genome Biol. 12, 125 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Muir, P. et al. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol. 17, 53 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    32.
    Mittermeier, R. A. & Mittermeier, C. G. Megadiversity: Earth’s Biologically Wealthiest Nations. in 501 (CEMEX, 1997).

    33.
    Trimble, M. J. & van Aarde, R. J. Geographical and taxonomic biases in research on biodiversity in human-modified landscapes. Ecosphere 3, art119 (2012).
    Article  Google Scholar 

    34.
    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl. Acad. Sci. USA 110, 12144–12148 (2013).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    35.
    Adenle, A. et al. Stakeholder visions for biodiversity conservation in developing countries. Sustainability 7, 271–293 (2014).
    Article  Google Scholar 

    36.
    Adenle, A. A., Stevens, C. & Bridgewater, P. Global conservation and management of biodiversity in developing countries: an opportunity for a new approach. Environ. Sci. Policy 45, 104–108 (2015).
    Article  Google Scholar 

    37.
    Barber, P. H. et al. Advancing biodiversity research in developing countries: the need for changing paradigms. Bull. Mar. Sci. 90, 187–210 (2014).
    Article  ADS  Google Scholar 

    38.
    Byrne, M. Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora. Aust. J. Bot. 55, 316 (2007).
    Article  Google Scholar 

    39.
    Dufresnes, C. et al. Conservation phylogeography: does historical diversity contribute to regional vulnerability in European tree frogs (Hyla arborea)?. Mol. Ecol. 22, 5669–5684 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).
    Article  Google Scholar 

    41.
    Trimble, M. J. & van Aarde, R. J. Species inequality in scientific study. Conserv. Biol. 24, 886–890 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11, 1–10 (2020).
    Article  CAS  Google Scholar 

    43.
    Záveská, E. et al. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol. Phylogenet. Evol. https://doi.org/10.1016/J.YMPEV.2019.106572 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Luo, M.-C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    45.
    Wang, X. X. et al. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 5, 2957 (2014).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    46.
    Hensen, I. et al. Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. Central Europe. Plant Biol. 12, 526–536 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Huang, H. & Knowles, L. L. Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Syst. Biol 65, 1–9 (2014).
    Google Scholar 

    48.
    Crotti, M., Barratt, C. D., Loader, S. P., Gower, D. J. & Streicher, J. W. Causes and analytical impacts of missing data in RADseq phylogenetics: insights from an African frog (Afrixalus). Zool. Scr. 48, 157–167 (2019).
    Article  Google Scholar 

    49.
    Sinclair, E. A. & Hobbs, R. J. Sample size effects on estimates of population genetic structure: implications for ecological restoration. Restor. Ecol. 17, 837–844 (2009).
    Article  Google Scholar 

    50.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Althoff, D. M., Gitzendanner, M. A. & Segraves, K. A. The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst. Biol. 56, 477–484 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Felsenstein, J. Inferring Phylogenies (Oxford University Press Inc., Oxford, 2004).
    Google Scholar 

    54.
    Eaton, D. A. R., Spriggs, E. L., Park, B. & Donoghue, M. J. Misconceptions on missing data in RAD-seq phylogenetics with a deep-scale example from flowering plants. Syst. Biol. 66, 399–412 (2016).
    Google Scholar 

    55.
    Hodel, R. G. J. et al. The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl. Plant Sci. 4, 1600025 (2016).
    Article  Google Scholar 

    56.
    Puritz, J. B. et al. Demystifying the RAD fad. Mol. Ecol. 23, 5937–5942 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Wagner, H. C. et al. Light at the end of the tunnel: Integrative taxonomy delimits cryptic species in the Tetramorium caespitum complex (Hymenoptera: Formicidae). Myrmecol. News 25, 95–129 (2017).
    Google Scholar 

    59.
    Wheeler, Q. D. Taxonomic Shock and Awe. In The New Taxonomy (ed. Wheeler, Q. D.) 211–226 (CRC Press, Boca Raton, FL, 2008). https://doi.org/10.1201/9781420008562.ch10.
    Google Scholar 

    60.
    Holderegger, R. et al. Conservation genetics: linking science with practice. Mol. Ecol. 28, 3848–3856 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Tel-Zur, N., Abbo, S., Myslabodski, D. & Mizrahi, Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol. Biol. Rep. 17, 249–254 (1999).
    CAS  Article  Google Scholar 

    62.
    Wachter, G. A. et al. Pleistocene survival on central Alpine nunataks: genetic evidence from the jumping bristletail Machilis pallida. Mol. Ecol. 21, 4983–4995 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. optiFLP: software for automated optimization of amplified fragment length polymorphism scoring parameters. Mol. Ecol. Resour. 11, 1113–1118 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Arthofer, W. TinyFLP and tinyCAT: software for automatic peak selection and scoring of AFLP data tables. Mol. Ecol. Resour. 10, 385–388 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner, H. Vegan: Community Ecology Package. R package. (2017).

    66.
    Doležel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244 (2007).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    67.
    Davey, F. & RADseq counter. (2012). https://www.wiki.ed.ac.uk/display/RADSequencing/Home. (Accessed: 15th June 2014)

    68.
    Paun, O. et al. Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 65, 212–227 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org. (Accessed: 1st September 2016)

    71.
    Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    73.
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
    Article  Google Scholar 

    75.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Kosman, E. & Leonard, K. J. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol. Ecol. 14, 415–424 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Miclaus, K., Wolfinger, R. & Czika, W. SNP selection and multidimensional scaling to quantify population structure. Genet. Epidemiol. 33, 488–496 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
    Article  Google Scholar 

    80.
    Wickham, H. ggplot2 (Springer, Berlin, 2009). https://doi.org/10.1007/978-0-387-98141-3.
    Google Scholar  More

  • in

    Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies

    1.
    Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Franklin, T. B., Linder, N., Russig, H., Thöny, B. & Mansuy, I. M. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS ONE 6, e21842. https://doi.org/10.1371/journal.pone.0021842 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    McCarthy, D. M. et al. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol. 16, e2006497. https://doi.org/10.1371/journal.pbio.2006497 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Alfonso, S. et al. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture. Aquat. Toxicol. 208, 29–38 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Anway, M. D., Memon, M. A., Uzumcu, M. & Skinner, M. K. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J. Androl. 27, 868–879 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Crews, D. et al. Transgenerational epigenetic imprints on mate preference. PNAS 104, 5942–5946 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Crews, D. et al. Epigenetic transgenerational inheritance of altered stress responses. PNAS 109, 9143–9148 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Gillette, R. et al. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology 155, 3853–3866 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Gillette, R., Son, M. J., Ton, L., Gore, A. C. & Crews, D. Passing experiences on to future generations: endocrine disruptors and transgenerational inheritance of epimutations in brain and sperm. Epigenetics 13, 1106–1126 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Bhandari, R., Saal, F. & vom Tillitt, D. Transgenerational effects from early developmental exposures to bisphenol A or 17α-ethinylestradiol in medaka Oryzias latipes. Sci. Rep. 5, 9303. https://doi.org/10.1038/srep09303 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Kidd, K. A. et al. Collapse of a fish population after exposure to a synthetic estrogen. PNAS 104, 8897–8901 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Skinner, M. K. et al. Gene bionetworks involved in the epigenetic transgenerational inheritance of altered mate preference: environmental epigenetics and evolutionary biology. BMC Genom. 15, 377. https://doi.org/10.1186/1471-2164-15-377 (2014).
    Article  Google Scholar 

    14.
    Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Moisiadis, V. G. & Matthews, S. G. Glucocorticoids and fetal programming part 1: outcomes. Nature 10, 391–402 (2014).
    CAS  Google Scholar 

    16.
    Crean, A. J. & Bondurianksy, R. What is a paternal effect?. Trends Ecol. Evol. 29, 554–559 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Champagne, F. A. Interplay between paternal germline and maternal effects in shaping development: the overlooked importance of behavioural ecology. Funct. Ecol. 34, 401–413 (2019).
    Article  Google Scholar 

    18.
    Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Reznik, S. Y., Vaghina, N. P. & Voinovich, N. D. Multigenerational maternal effect on diapause induction in Trichogramma species (Hymenoptera: Trichogrammatidae). Biocontrol Sci. Technol. 22, 429–445 (2012).
    Article  Google Scholar 

    20.
    Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Shama, L. N. S. et al. Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean. Evol. Appl. 9, 1096–1111 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Dunn, G. A. & Bale, T. L. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152, 2228–2236 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Skinner, M. K. et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 11, 228. https://doi.org/10.1186/1741-7015-11-228 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Zhu, J., Lee, K. P., Spencer, T. J., Biederman, J. & Bhide, P. G. Transgenerational transmission of hyperactivity in a mouse model of ADHD. J. Neurosci. 34, 2768–2773 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Leroux, S. et al. Embryonic environment and transgenerational effects in quail. Genet. Sel. Evol. 49, 14. https://doi.org/10.1186/s12711-017-0292-7 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Vera-Chang, M. N. et al. Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. PNAS 115, E12435–E12442 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Sheriff, M. J., McMahon, E. K., Krebs, C. J. & Boonstra, R. Risk severity predicts generational impact. J. Zool. 296, 305–310 (2015).
    Article  Google Scholar 

    28.
    Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    He, N. et al. Parental life events cause behavioral difference among offspring: adult pre-gestational restraint stress reduces anxiety across generations. Sci. Rep. 6, 39497. https://doi.org/10.1038/srep39497 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Pentinat, T., Ramon-Krauel, M., Cebria, J., Diaz, R. & Jimenez-Chillaron, J. C. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151, 5617–5623 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. PNAS 111, 1873–1878 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Cropley, J. E. et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol. Metab. 5, 699–708 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Dunn, G. A., Morgan, C. P. & Bale, T. L. Sex-specificity in transgenerational epigenetic programming. Horm. Behav. 59, 290–295 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Glover, V. & Hill, J. Sex differences in the programming effects of prenatal stress on psychopathology and stress responses: an evolutionary perspective. Physiol. Behav. 106, 736–740 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Saavedra-Rodríguez, L. & Feig, L. A. Chronic social instability induces anxiety and defective social interactions across generations. Biol. Psychiatry 73, 44–53 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Moisiadis, V. G., Constantinof, A., Kostaki, A., Szyf, M. & Matthews, S. G. Prenatal glucocorticoid exposure modifies endocrine function and behaviour for 3 generations following maternal and paternal transmission. Sci. Rep. 7, 11814. https://doi.org/10.1038/s41598-017-11635-w (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Hellmann, J. K., Carlson, E. R. & Bell, A. M. Sex-specific plasticity across generations II: grandpaternal effects are lineage specific and sex specific. J. Anim. Ecol. 89, 2800–2812 (2020).
    Article  Google Scholar 

    38.
    gene duplications and functional diversification in Craniates. Le Crom, S., Kapsimali, M., Barome, P-O. & Vernier, P. Dopamine receptors for every species. J. Struct. Funct. Genomics 3, 161–176 (2003).
    Article  Google Scholar 

    39.
    Melis, M. R. & Argiolas, A. Dopamine and sexual behavior. Neurosci. Biobehav. R. 19, 19–38 (1995).
    CAS  Article  Google Scholar 

    40.
    Pfaus, J. G., Ismail, N. & Coria-Avila, G. A. Sexual motivation. In Encyclopedia of Behavioral Neuroscience (eds. Koob, G. F., Le Moal, M. & Thompson, R. F.) 201–-209 (Oxford, Oxford Academic Press, 2010).

    41.
    Bardo, M. T., Donohew, R. L. & Harrington, N. G. Psychobiology of novelty seeking and drug seeking behavior. Behav. Brain Res. 77, 23–43 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Mällo, T. et al. Rats with persistently low or high exploratory activity: behaviour in tests of anxiety and depression and extracellular levels of dopamine. Behav. Brain Res. 177, 269–281 (2006).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    43.
    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: a meta-analysis. Behav. Ecol. 19, 448–455 (2007).
    Article  Google Scholar 

    44.
    Csoka, A. B. & Szyf, M. Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med. Hypotheses 73, 770–780 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Kuczenski, R. & Segal, D. S. Effects of methylphenidate on extracellular dopamine serotonin, and norepinephrine: comparison with amphetamine. J. Neurochem. 68, 2032–2037 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Gamo, N. J., Wang, M. & Arnsten, A. F. T. Methylphenidate and atomoxetine enhance prefrontal function through α2-adrenergic and dopamine D1 receptors. J. Am. Acad. Child Adolesc. Psychiatry 49, 1011–1023 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Greenhill, L. L. et al. Guidelines and algorithms for the use of methylphenidate in children with attention-deficit/hyperactivity disorder. J. Atten. Disord. 6, S89–S100 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Kessler, R. C. et al. The prevalence and correlates of adult ADHD in the United States: results from the national comorbidity survey replication. Am. J. Psychiatry 163, 716–723 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Visser, S. N. et al. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003–2011. J. Am. Acad. Child. Psychiatry 53, 34–46 (2014).
    Article  Google Scholar 

    50.
    Karlstad, Ø. et al. Use of drugs for ADHD among adults—a multinational study among 15.8 million adults in the Nordic countries. Eur. J. Clin. Pharmacol. 72, 1507–1514 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Biederman, J. Attention-deficit/hyperactivity disorder: a selective overview. Biol. Psychiatry 57, 1215–1220 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    McFadyen-Leussis, M. P., Lewis, S. P., Bond, T. L. Y., Carrey, N. & Brown, R. E. Prenatal exposure to methylphenidate hydrochloride decreases anxiety and increases exploration in mice. Pharmacol. Biochem. Behav. 77, 491–500 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Levin, E. D. et al. 2011. Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicol. Teratol. 33, 668–673 (2011).

    54.
    Lloyd, S. A. et al. Prenatal exposure to psychostimulants increases impulsivity, compulsivity, and motivation for rewards in adult mice. Physiol. Behav. 119, 43–51 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Lepelletier, F. X. et al. Prenatal exposure to methylphenidate affects the dopamine system and the reactivity to natural reward in adulthood in rats. Int. J. Neuropsychoph. https://doi.org/10.1093/ijnp/pyu044 (2015).
    Article  Google Scholar 

    56.
    Montagnini, B. G. et al. Effects of repeated administration of methylphenidate on reproductive parameters in male rats. Physiol. Behav. 133, 122–129 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    He, F., Lidow, I. A. & Lidow, M. S. Consequences of paternal cocaine exposure in mice. Neurotoxicol. Teratol. 28, 198–209 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Killinger, C. E., Robinson, S. & Stanwood, G. D. Subtle biobehavioral effects produced by paternal cocaine exposure. Synapse 66, 902–908 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Vassoler, F. M., White, S. L., Schmidt, H. D., Sadri-Vakili, G. & Pierce, R. C. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 16, 42–67 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Fischer, D. K., Rice, R. C., Rivera, A. M., Donohoe, M. & Rajadhyaksha, A. M. Altered reward sensitivity in female offspring of cocaine-exposed fathers. Behav. Brain Res. 332, 23–31 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Wimmer, M. E. et al. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol. Psychiatry 22, 1641–1650 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Yano, M. & Steiner, H. Methylphenidate and cocaine: the same effects on gene regulation?. Trends Pharmacol. Sci. 28, 588–596 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Hall, Z. J., De Serrano, A. R., Rodd, F. H. & Tropepe, V. Casting a wider fish net on animal models in neuropsychiatric research. Prog. Neuropsychopharmacol. Biol. Psychiatry 55, 7–15 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Fontana, B. D., Mezzomo, N. J., Kalueff, A. V. & Rosemberg, D. B. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp. Neurol. 299, 157–171 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Reznick, D. N. The impact of predation on life history evolution in Trinidadian guppies: genetic basis of observed life history patterns. Evolution 36, 1236–1250 (1982).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    DeMarais, A. & Oldis, D. Matrotrophic transfer of fluorescent microspheres in Poeciliid fishes. Copeia 3, 632–636 (2005).
    Article  Google Scholar 

    67.
    Hughes, K. A., Du, L., Rodd, F. H. & Reznick, D. N. Familiarity leads to female mate preference for novel males in the guppy Poecilia reticulata. Anim. Behav. 58(907), 916 (1999).
    Google Scholar 

    68.
    Rodd, F. H., Hughes, K. A., Grether, G. F. & Baril, C. T. A possible non-sexual origin of mate preference: are male guppies mimicking fruit?. Proc. R. Soc. B Biol. Sci. 269, 475–481 (2002).
    Article  Google Scholar 

    69.
    Valvo, J., Rodd, F. H. & Hughes, K. A. Consistent female preference for rare and unfamiliar male color patterns in wild guppy populations. Behav. Ecol. 30, 1672–1681 (2019).
    Article  Google Scholar 

    70.
    Daniel, M. J., Koffinas, L. & Hughes, K. A. Mating preference for novel phenotypes can be explained by general neophilia in female guppies. Am. Nat. 196, 414–428 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Deacon, A. E., Ramnarine, I. W. & Magurran, A. E. How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6, e24416. https://doi.org/10.1371/journal.pone.0024416 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Hughes, K. A., Houde, A. E., Price, A. C. & Rodd, F. H. Mating advantage for rare males in wild guppy populations. Nature 503, 108–110 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    De Serrano, A. R., Fong, C. & Rodd, F. H. Effects of methylphenidate on responses to novelty in a teleost fish (Poecilia reticulata). Behav. Brain Res. 302, 53–59 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    74.
    Schmitz, F. et al. Methylphenidate causes behavioral impairments and neuron and astrocyte loss in the hippocampus of juvenile rats. Mol. Neurobiol. 54, 4201–4216 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    75.
    Bolaños, C. A., Barrot, M., Berton, O., Wallace-Black, D. & Nestler, E. J. Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol. Psychiatry 54, 1317–1329 (2003).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    Bell, A. M. & Hellman, J. K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. S. 50, 97–118 (2019).
    Article  Google Scholar 

    77.
    Walsh, R. N. & Cummins, R. A. Open-field test—critical review. Psychol. Bull. 83, 482–504 (1976).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Hill, M. O. Correspondence analysis: a neglected multivariate method. J. R. Stat. Soc. C Appl. 23, 340–354 (1974).
    MathSciNet  Google Scholar 

    79.
    Godin, J. G. J. Evading predators. In Behavioural Ecology of Teleost Fishes (ed. Godin, J. G. J.) 191–236 (Oxford, Oxford University Press, 1997).

    80.
    Sih, A. Foraging strategies and the avoidance of predation by an aquatic insect Notonecta Hoffmanni. Ecology 63(786), 796 (1982).
    Google Scholar 

    81.
    McPeek, M. A., Grace, M. & Richardson, J. M. L. Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies. Ecology 82, 1535–1545 (2001).
    Article  Google Scholar 

    82.
    Burns, J. G. The validity of three tests of temperament in guppies (Poecilia reticulata). J. Comp. Psychol. 122, 344–356 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Morris, S. M. et al. The genetic toxicity of methylphenidate: a review of the current literature. J. Appl. Toxicol. 32, 756–764 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    SAS Institute. SAS/STAT 9.4 User’s Guide (SAS Institute, Cary, 2013).

    85.
    Seghers, B. H. Feeding behavior and terrestrial locomotion in the cyprinodontid fish, Rivulus harti (Boulenger). Verh. Internat. Verein. Limnol. 20, 2055–2059 (1978).
    Google Scholar 

    86.
    Mattingly, H. T. & Butler, M. J. Laboratory predation on the Trinidadian guppy: implications for the size-selective predation hypothesis and guppy life history evolution. OIKOS 69, 54–64 (1994).
    Article  Google Scholar 

    87.
    Reznick, D. N., Butler, M. J., Rodd, F. H. & Ross, P. N. Life history evolution in guppies (Poecilia reticulata): 6—differential mortality as a mechanism for natural selection. Evolution 50, 1651–1660 (1996).
    PubMed  PubMed Central  Google Scholar 

    88.
    Bijlsma, L., Emke, E., Hernandez, F. & de Voogt, P. Investigation of drugs of abuse and relevant metabolites in Dutch sewage water by liquid chromatography coupled to high resolution mass spectrometry. Chemosphere 89, 1399–1406 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Racamonde, I., Rodil, R., Quintana, J. B., Villaverde-de-Saa, E. & Cela, R. Determination of benzodiazepines, related pharmaceuticals and metabolites in water by solid-phase extraction and liquid-chromatography-tandem mass spectrometry. J. Chromatogr. A 1352, 69–79 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Laland, K. et al. Does evolutionary theory need a rethink?. Nature 514, 161–164 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 9, 2973. https://doi.org/10.1038/s41467-018-05445-5 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    92.
    Soubry, A., Hoyo, C., Jirtle, R. L. & Murphy, S. K. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays 36, 359–371 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. PNAS 115, 6249–6254 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Wang, X. & Bhandari, R. K. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics 14, 611–622 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    95.
    Wang, X. & Bhandari, R. K. The dynamics of DNA methylation during epigenetic reprogramming of primordial germ cells in medaka (Oryzias latipes). Epigenetics 15, 483–498 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    96.
    Furchtgott, E., Dees, J. W. & Wechkin, S. Open-field exploration as a function of age. J. Comp. Physiol. Psychol. 54, 386–388 (1961).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Werboff, J. & Havlena, J. The effects of aging on open-field behavior. Psychol. Rep. 10, 395–398 (1962).
    Article  Google Scholar 

    98.
    Valle, F. P. Rats performance on repeated tests in open field as a function of age. Psychon. Sci. 23, 333–335 (1971).
    Article  Google Scholar 

    99.
    Franklin, T. B. et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    100.
    McBirney, M. et al. Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers. PLoS One 12, e0184306. https://doi.org/10.1371/journal.pone.0184306 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    101.
    Becker, J. B. & Chartoff, E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology 44, 166–183 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Rubinow, D. R. & Schmidt, P. J. Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 44, 111–128 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    103.
    Eriksson, K., Halkka, O., Lokki, J. & Saura, A. Enzyme polymorphism in feral, outbred and inbred rats (Rattus norvegicus). Heredity 37, 341–349 (1976).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    104.
    Connor, J. L. & Belucci, M. J. Natural selection resisting inbreeding depression in captive wild housemice (Mus musculus). Evolution 33, 929–940 (1979).
    PubMed  Article  PubMed Central  Google Scholar 

    105.
    Mina, N. S., Sheldon, B. L., Yoo, B. H. & Frankham, R. Heterozygosity at protein loci in inbred and outbred lines of chickens. Poult. Sci. 70, 1864–1872 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    106.
    Turissini, D. A., Gamez, S. & White, B. J. Genome-wide patterns of polymorphism in an inbred line of the African malaria mosquito Anopheles gambiae. Genome Biol. Evol. 6, 3094–3104 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    107.
    Gray, J. D. et al. Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress. J. Neurosci. 27, 7196–7207 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Marco, E. M. et al. Neurobehavioral adaptations to methylphenidate: the issue of early adolescent exposure. Neurosci. Biobehav. Rev. 35, 1722–1739 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    109.
    American Psychiatric Association. Attention-deficit/hyperactivity disorder. In Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Association, Philadelphia, 2014).

    110.
    Novartis Pharmaceuticals Canada Inc. Product monograph for Ritalin and Ritalin SR (2017).

    111.
    Brenhouse, H. C. & Andersen, S. L. Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci. Biobehav. Rev. 35, 1687–1703 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    112.
    Houde, A. E. Sex, Color, and Mate Choice in Guppies (Princeton, Princeton University Press, 1997).
    Google Scholar 

    113.
    Yoshida, M., Nagamine, M. & Uematsu, K. Comparison of behavioral responses to a novel environment between three teleosts, bluegill Lepomis macrochirus, crucian carp Carassius langsdorfii, and goldfish Carassius auratus. Fisheries Sci. 71, 314–319 (2005).
    CAS  Article  Google Scholar 

    114.
    Blumstein, D. T., Evans, C. S. & Daniels, J. C. JWatcher (v. 1.0, 2006).

    115.
    Ahmad, F. & Richardson, M. K. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity. Behav. Process. 92, 88–98 (2013).
    Article  Google Scholar 

    116.
    Burns, J. G., Price, A. C., Thomson, J. D., Hughes, K. A. & Rodd, F. H. Environmental and genetic effects on exploratory behavior of high- and low-predation guppies (Poecilia reticulata). Behav. Ecol. Sociobiol. 70, 1187–1196 (2016).
    Article  Google Scholar 

    117.
    Marriott, A. S. The effects of amphetamine, caffeine and methylphenidate on the locomotor activity of rats in an unfamiliar environment. Int. J. Neuropharmacol. 7, 487–491 (1968).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    118.
    Dyne, L. J. & Hughes, R. N. Effects of methylphenidate on activity and reactions to novelty in rats. Psychon. Sci. 19, 267–268 (1970).
    Article  Google Scholar 

    119.
    R Core Team. R: A Language and Environment for Statistical Computing (Vienna, R Foundation for Statistical Computing, 2018).

    120.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, Berlin, 2002).
    Google Scholar 

    121.
    Volkow, N. D. et al. Dopamine transporters decrease with age. J. Nucl. Med. 37, 554–559 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    122.
    Andersen, S. L. & Teicher, M. H. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 24, 137–141 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    123.
    Arvidsson, E., Viereckel, T., Mikulovic, S. & Wallén-Mackenzie, Å. Age- and sex-dependence of dopamine release and capacity for recovery identified in the dorsal striatum of C57/Bl6J mice. PLoS One 9, e99592. https://doi.org/10.1371/journal.pone.0099592 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    124.
    Faraone, S. V., Biederman, J., Morley, C. P. & Spencer, T. J. Effect of stimulants on height and weight: a review of the literature. J. Am. Acad. Child Adolesc. Psychiatry 47, 994–1009 (2008).
    PubMed  PubMed Central  Google Scholar 

    125.
    Tempelman, R. J. & Rosa, G. J. M. Empirical Bayes approaches to mixed model inference in quantitative genetics. In Genetic Analysis of Complex Traits Using SAS (ed. Saxton, A.) (SAS Institute, Cary, 2004).

    126.
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
    Article  Google Scholar 

    127.
    Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D. & Schabenberger, O. SAS for Mixed Models (SAS Institute, Cary, 2006).
    Google Scholar  More

  • in

    Contrasting effects of male immigration and rainfall on rank-related patterns of miscarriage in female olive baboons

    1.
    Hrdy, S. B. Infanticide among animals: A review, classification, and examination of the implications for the reproductive strategies of females. Ethol. Sociobiol. 1, 13–40 (1979).
    Article  Google Scholar 
    2.
    Lukas, D. & Huchard, E. The evolution of infanticide by males in mammalian societies. Science 346, 841–844 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Berger, J. Induced abortion and social factors in wild horses. Nature 303, 59–61 (1983).
    ADS  CAS  Article  Google Scholar 

    4.
    Packer, C. & Pusey, A. E. Infanticide in carnivores. In Infanticide: Comparative and Evolutionary Perspectives (eds Hausfater, G. & Hrdy, S. B.) 31–42 (Aldine, New York, 1984).
    Google Scholar 

    5.
    Zipple, M. N. et al. Conditional fetal and infant killing by male baboons. Proc. R. Soc. B 284(1847), 20162561 (2017).
    Article  Google Scholar 

    6.
    Zipple, M. N., Roberts, E. K., Alberts, S. C. & Beehner, J. C. Male-mediated prenatal loss: Functions and mechanisms. Evol. Anthropol. Issues News Rev. 28(3), 114–125 (2019).
    Article  Google Scholar 

    7.
    Bruce, H. M. An exteroceptive block to pregnancy in the mouse. Nature 184, 105 (1959).
    ADS  CAS  Article  Google Scholar 

    8.
    Schwagmeyer, P. L. The Bruce effect: An evaluation of male/female advantages. Am. Nat. 114(6), 932–938 (1979).
    Article  Google Scholar 

    9.
    Labov, J. B. Pregnancy blocking in rodents: Adaptive advantages for females. Am. Nat. 118, 361–371 (1981).
    Article  Google Scholar 

    10.
    Roberts, E. K., Lu, A., Bergman, T. J. & Beehner, J. C. A Bruce effect in wild geladas. Science 335, 1222–1225 (2012).
    ADS  CAS  Article  Google Scholar 

    11.
    Busse, C. & Hamilton, W. J. Infant carrying by male chacma baboons. Science 212(4500), 1281–1283 (1981).
    ADS  CAS  Article  Google Scholar 

    12.
    Palombit, R. A., Seyfarth, R. M. & Cheney, D. L. The adaptive value of “friendships” to female baboons: Experimental and observational evidence. Anim. Behav. 54, 599–614 (1997).
    CAS  Article  Google Scholar 

    13.
    Palombit, R. A. Male infanticide in wild savanna baboons: Adaptive significance and intraspecific variation. In Sexual Selection and Reproductive Competition in Primates: New Perspectives and Directions (ed. Jones, C. B.) 367–412 (The American Society of Primatologists, Norman, 2003).
    Google Scholar 

    14.
    Weingrill, T. Infanticide and the value of male-female relationships in mountain chacma baboons. Behaviour 137, 337–359 (2000).
    Article  Google Scholar 

    15.
    Packer, C. Male dominance and reproductive activity in Papio anubis. Anim. Behav. 27, 37–45 (1979).
    Article  Google Scholar 

    16.
    Smuts, B. B. Sex and Friendship in Baboons (Aldine, New York, 1985).
    Google Scholar 

    17.
    Bercovitch, F. B. Coalitions, cooperation and reproductive tactics among adult male baboons. Anim. Behav. 36, 1198–1209 (1988).
    Article  Google Scholar 

    18.
    Packer, C. Male care and exploitation of infants in Papio anubis. Anim. Behav. 28, 512–520 (1980).
    Article  Google Scholar 

    19.
    Alberts, S. C., Sapolsky, R. M. & Altmann, J. Behavioral, endocrine, and immunological correlates of immigration by an aggressive male into a natural primate group. Horm. Behav. 26, 167–178 (1992).
    CAS  Article  Google Scholar 

    20.
    Packer, C., Collins, D., Sindimwo, A. & Goodall, J. Reproductive constraints on aggressive competition in female baboons. Nature 373, 60–63 (1995).
    ADS  CAS  Article  Google Scholar 

    21.
    Pusey, A., Williams, J. & Goodall, J. The influence of dominance rank on the reproductive success of female chimpanzees. Science 277, 828–831 (1997).
    CAS  Article  Google Scholar 

    22.
    Storey, A. E. & Snow, D. T. Postimplantation pregnancy disruptions in meadow voles: Relationship to variation in male sexual and aggressive behavior. Physiol. Behav. 47(1), 19–25 (1990).
    CAS  Article  Google Scholar 

    23.
    Beehner, J. C., Nguyen, N., Wango, E. O., Alberts, S. C. & Altmann, J. The endocrinology of pregnancy and fetal loss in wild baboons. Horm. Behav. 49, 688 (2006).
    CAS  Article  Google Scholar 

    24.
    Ransom, T. Beach Troop of the Gombe (Bucknell Press, Lewisburg, 1981).
    Google Scholar 

    25.
    Bailey, A., Eberly, L. E. & Packer, C. Does pregnancy coloration reduce female conspecific aggression in the presence of maternal kin?. Anim. Behav. 108, 199–206 (2015).
    Article  Google Scholar 

    26.
    Pratt, N. C. & Lisk, R. D. Effects of social stress during early pregnancy on litter size and sex ratio in the golden hamster (Mesocricetus auratus). J. Reprod. Fertil. 87, 763–769 (1989).
    CAS  Article  Google Scholar 

    27.
    Young, A. J. et al. Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proc. Natl. Acad. Sci. U.S.A. 103, 12005–12010 (2006).
    ADS  CAS  Article  Google Scholar 

    28.
    Arck, P., Hansen, P. J., Mulac Jericevic, B., Piccinni, M. & Szekeres-Bartho, J. Progesterone during pregnancy: endocrine–immune cross talk in mammalian species and the role of stress. Am. J. Reprod. Immunol. 58, 268–279 (2007).
    CAS  Article  Google Scholar 

    29.
    Beehner, J. C. & Lu, A. Reproductive suppression in female primates: A review. Evol. Anthropol. Issues News Rev. 22, 226–238 (2013).
    Article  Google Scholar 

    30.
    Sapolsky, R. M. Endocrine aspects of social instability in the olive baboon (Papio anubis). Am. J. Primatol. 5, 365–379 (1983).
    CAS  Article  Google Scholar 

    31.
    van Lawick-Goodall, J. The behavior of free-living chimpanzees in the Gombe stream reserve. Anim. Behav. Monogr. 1, 161–311 (1968).
    Article  Google Scholar 

    32.
    Altmann, S. A. The pregnancy sign in savannah baboons. J. Zoo Anim. Med. 4, 8–12 (1973).
    Article  Google Scholar 

    33.
    Beehner, J. C., Onderdonk, D. A., Alberts, S. C. & Altmann, J. The ecology of conception and pregnancy failure in wild baboons. Behav. Ecol. 17(5), 741–750 (2006).
    Article  Google Scholar 

    34.
    Higham, J. The reproductive ecology of female olive baboons (Papio hamadryas anubis) at Gashaka-Gumti National Park, Nigeria. PhD Thesis. Roehampton University: London (2006).

    35.
    Tinsley Johnson, E., Snyder-Mackler, N., Lu, A., Bergman, T. J. & Beehner, J. C. Social and ecological drivers of reproductive seasonality in geladas. Behav. Ecol. 29(3), 574–588 (2018).
    Article  Google Scholar  More