1.
Diaz-Martin, Z., Swamy, V., Terborgh, J., Alvarez-Loayza, P. & Cornejo, F. Identifying keystone plant resources in an Amazonian forest using a long-term fruit-fall record. J. Trop. Ecol. 30, 291–301. https://doi.org/10.1017/S0266467414000248 (2014).
Article Google Scholar
2.
Terborgh, J. & Andresen, E. The composition of Amazonian forests: Patterns at local and regional scales. J. Trop. Ecol. 14, 645–664 (1998).
Article Google Scholar
3.
Wright, J. S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14. https://doi.org/10.1007/s004420100809 (2002).
ADS Article Google Scholar
4.
Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 (2007).
Article MATH Google Scholar
5.
Chapman, C. A., Wrangham, R. & Chapman, L. J. Indexes of habitat-wide fruit abundance in tropical forests. Biotropica 26, 160–171. https://doi.org/10.2307/2388805 (1994).
Article Google Scholar
6.
White, L. J. T. Patterns of fruit-fall phenology in the Lopé Reserve, Gabon. J. Trop. Ecol. 10, 289–312. https://doi.org/10.1017/S0266467400007975 (1994).
Article Google Scholar
7.
Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. https://doi.org/10.1126/sciadv.1501105 (2015).
Article PubMed PubMed Central Google Scholar
8.
Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113, 892–897 (2016).
ADS CAS Article Google Scholar
9.
Dee, L. E. et al. When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34, 746–758. https://doi.org/10.1016/j.tree.2019.03.010 (2019).
Article PubMed Google Scholar
10.
Pinho, B. X., Peres, C. A., Leal, I. R. & Tabarelli, M. In Tropical Ecosystems in the 21st Century (eds Alex, J. D., Edgar, C. T., & Tom, M. F.) Ch. 7, 253–294 (Academic Press, Cambridge, 2020).
11.
Bastin, J.-F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).
Article Google Scholar
12.
Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864. https://doi.org/10.1111/geb.12747 (2018).
Article Google Scholar
13.
Sist, P., Mazzei, L., Blanc, L. & Rutishauser, E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For. Ecol. Manag. 318, 103–109. https://doi.org/10.1016/j.foreco.2014.01.005 (2014).
Article Google Scholar
14.
Schulze, M., Grogan, J., Landis, R. M. & Vidal, E. How rare is too rare to harvest? Management challenges posed by timber species occurring at low densities in the Brazilian Amazon. For. Ecol. Manag. 256, 1443–1457. https://doi.org/10.1016/j.foreco.2008.02.051 (2008).
Article Google Scholar
15.
SFB. Florestas do Brasil em resumo 2013: dados de 2007–2012. (2013).
16.
Azevedo-Ramos, C., Silva, J. N. M. & Merry, F. The evolution of Brazilian forest concessions. Elem. Sci. Anth. https://doi.org/10.12952/journal.elementa.000048 (2015).
Article Google Scholar
17.
Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881. https://doi.org/10.1126/science.aau5525 (2019).
ADS CAS Article Google Scholar
18.
Degen, B. et al. Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol. Cons. 131, 386–401. https://doi.org/10.1016/j.biocon.2006.02.014 (2006).
Article Google Scholar
19.
Richardson, V. A. & Peres, C. A. Temporal decay in timber species composition and value in Amazonian logging concessions. PLoS ONE 11, e0159035. https://doi.org/10.1371/journal.pone.0159035 (2016).
CAS Article PubMed PubMed Central Google Scholar
20.
Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388. https://doi.org/10.1038/s41558-019-0458-0 (2019).
ADS Article Google Scholar
21.
Nepstad, D. et al. Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Glob. Change Biol. 10, 704–717 (2004).
ADS Article Google Scholar
22.
Vidal, E., West, T. A. & Putz, F. E. Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil. For. Ecol. Manag. 376, 1–8. https://doi.org/10.1016/j.foreco.2016.06.003 (2016).
Article Google Scholar
23.
Varty, N. & Guadagnin, D. L. Vouacapoua americana. The IUCN Red List of Threatened Species: e.T33918A9820054, https://doi.org/10.2305/IUCN.UK.1998.RLTS.T33918A9820054.en (1998).
24.
Dutech, C., Maggia, L., Tardy, C., Joly, H. I. & Jarne, P. Tracking a genetic signal of extinction-recolonization events in a neotropical tree species: Vouacapoua americana aublet in french guiana. Evolution 57, 2753–2764 (2003).
Article Google Scholar
25.
Guimarães, P. R. Jr., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS ONE 3, e1745. https://doi.org/10.1371/journal.pone.0001745 (2008).
ADS CAS Article PubMed PubMed Central Google Scholar
26.
Traissac, S. & Pascal, J. P. Birth and life of tree aggregates in tropical forest: Hypotheses on population dynamics of an aggregated shade-tolerant species. J. Veg. Sci. 25, 491–502. https://doi.org/10.1111/jvs.12080 (2014).
Article Google Scholar
27.
Forget, P.-M. Seed-dispersal of Vouacapoua americana (Caesalpiniaceae) by caviomorph rodents in French Guiana. J. Trop. Ecol. 6, 459–468. https://doi.org/10.1017/S0266467400004867 (1990).
Article Google Scholar
28.
Jansen, P. A., Bongers, F. & van der Meer, P. J. Is farther seed dispersal better? Spatial patterns of offspring mortality in three rainforest tree species with different dispersal abilities. Ecography 31, 43–52. https://doi.org/10.1111/j.2007.0906-7590.05156.x (2008).
Article Google Scholar
29.
MMA. Vol. 18/12/2014 (ed Ministério do Meio Ambiente—MMA) 110–121 (Diário Oficial da União, Brasilia, 2014).
30.
Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420. https://doi.org/10.1111/gcb.13139 (2016).
ADS Article Google Scholar
31.
Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185. https://doi.org/10.1038/nclimate1354 (2012).
ADS CAS Article Google Scholar
32.
Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. U.S.A. 108, 9899–9904. https://doi.org/10.1073/pnas.1019576108 (2011).
ADS Article PubMed PubMed Central Google Scholar
33.
Saatchi, S. S., Houghton, R. A., Dos Santos AlvalÁ, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Change Biol. 13, 816–837. https://doi.org/10.1111/j.1365-2486.2007.01323.x (2007).
ADS Article Google Scholar
34.
Muller-Landau, H. C., Wright, S. J., Calderon, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96, 653–667. https://doi.org/10.1111/j.1365-2745.2008.01399.x (2008).
Article Google Scholar
35.
Mendoza, I. et al. Does masting result in frugivore satiation? A test with Manilkara trees in French Guiana. J. Trop. Ecol. 31, 553–556. https://doi.org/10.1017/S0266467415000425 (2015).
Article Google Scholar
36.
Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470. https://doi.org/10.1016/0169-5347(94)90310-7 (1994).
CAS Article PubMed Google Scholar
37.
Kelly, D. & Sork, V. L. Mast seeding in perennial plants: Why, how, where?. Annu. Rev. Ecol. Syst. 33, 427–447. https://doi.org/10.1146/annurev.ecolsys.33.020602.095433 (2002).
Article Google Scholar
38.
Johnson, M. O. et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: Implications for dynamic global vegetation models. Glob. Change Biol. 22, 3996–4013 (2016).
ADS Article Google Scholar
39.
Batista, A. P. B. et al. Caracterização estrutural em uma floresta de terra firme no estado do Amapá, Brasil. Pesq. flor. bras 35, 21–33 (2015).
Article Google Scholar
40.
Charles-Dominique, P. et al. Les mammiferes frugivores arboricoles nocturnes d’une foret guyanaise: Inter-relations plantes-animaux. La Terre et la Vie: Revue d’Ecologie Appliquée 35, 341–435 (1981).
Google Scholar
41.
de Oliveira, A. N. & do Amaral, I. L. ,. Florística e fitossociologia de uma floresta de vertente na Amazônia Central, Amazonas, Brasil. Acta Amazonica 34, 21–34 (2004).
Article Google Scholar
42.
Pereira, L. A., Pinto Sobrinho, F. D. A. & Costa Neto, S. V. D. Florística e estrutura de uma mata de terra firme na reserva de desenvolvimento sustentável rio Iratapuru, Amapá, Amazônia Oriental, Brasil. (2011).
43.
Pereira, L. A., Sena, K. S., dos Santos, M. R. & Neto, S. V. C. Aspectos florísticos da FLONA do Amapá e sua importância na conservação da biodiversidade. Revista Brasileira de Biociências 5, 693–695 (2007).
Google Scholar
44.
Sabatier, D. Saisonnalité et déterminisme du pic de fructification en forêt guyanaise. Revue d’Ecologie (Terrre et Vie) 40, 89–320 (1985).
Google Scholar
45.
ter Steege, H. et al. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J. Trop. Ecol. 16, 801–828 (2000).
Article Google Scholar
46.
Hanya, G. et al. Seasonality in fruit availability affects frugivorous primate biomass and species richness. Ecography 34, 1009–1017. https://doi.org/10.1111/j.1600-0587.2010.06775.x (2011).
Article Google Scholar
47.
Situmorang, J. P. & Sugianto, S. Estimation of carbon stock stands using EVI and NDVI vegetation index in production forest of Lembah Seulawah Sub-District, Aceh Indonesia. Aceh Int. J. Sci. Technol. 5 (2016).
48.
Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389. https://doi.org/10.1126/science.aaj1987 (2017).
ADS CAS Article PubMed Google Scholar
49.
Bhardwaj, D., Banday, M., Pala, N. A. & Rajput, B. S. Variation of biomass and carbon pool with NDVI and altitude in sub-tropical forests of northwestern Himalaya. Environ. Monit. Assess. 188, 635 (2016).
CAS Article Google Scholar
50.
Dubayah, R. O. et al. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG000933 (2010).
Article Google Scholar
51.
Holly, K. G., Sandra, B., John, O. N. & Jonathan, A. F. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).
Article Google Scholar
52.
Asner, G. P. et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. 107, 16738–16742 (2010).
ADS CAS Article Google Scholar
53.
Magnusson, W. et al. Biodiversidade e monitoramento ambiental integrado (Biodiversity and Integrated Environmental Monitoring). 335 (PPBio INPA, 2013).
54.
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
Article Google Scholar
55.
ANA. Sistema de Monitoramento Hidrológico (Hydrological Monitoring System). Agência Nacional de Águas[[nl]]National Water Agency. http://www.hidroweb.ana.gov.br, 2016).
56.
ICMBio. Vol. I (ed MINISTÉRIO DO MEIO AMBIENTE) 222 (Instituto Chico Mendes de Conservação da Biodiversidade, Macapá, Amapá, 2014).
57.
Eswaran, H., Ahrens, R., Rice, T. J. & Stewart, B. A. Soil Classification: A Global Desk Reference. (CRC Press, Boca Raton, 2002).
58.
Dutech, C., Maggia, L. & Joly, H. I. Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree. Mol. Ecol. 9, 1427–1432. https://doi.org/10.1046/j.1365-294x.2000.01027.x (2000).
CAS Article PubMed Google Scholar
59.
ter Steege, H. et al. Hyperdominance in the Amazonian Tree Flora. Science https://doi.org/10.1126/science.1243092 (2013).
Article PubMed Google Scholar
60.
Kido, T., Taniguchi, M. & Baba, K. Diterpenoids from Amazonian crude drug of Fabaceae. Chem. Pharm. Bull. 51, 207–208. https://doi.org/10.1248/cpb.51.207 (2003).
CAS Article Google Scholar
61.
Maurya, R., Ravi, M., Singh, S. & Yadav, P. P. A review on cassane and norcassane diterpenes and their pharmacological studies. Fitoterapia 83, 272–280. https://doi.org/10.1016/j.fitote.2011.12.007 (2012).
CAS Article PubMed Google Scholar
62.
Alves, J. C. Z. O. & Miranda, I. D. S. Análise da estrutura de comunidades arbóreas de uma floresta amazônica de Terra Firme aplicada ao manejo florestal. Acta Amazonica 38, 657–666 (2008).
Article Google Scholar
63.
Forget, P. M., Mercier, F. & Collinet, F. Spatial patterns of two rodent-dispersed rain forest trees Carapa procera (Meliaceae) and Vouacapoua americana (Caesalpiniaceae) at Paracou, French Guiana. J. Trop. Ecol. 15, 301–313. https://doi.org/10.1017/s0266467499000838 (1999).
Article Google Scholar
64.
Forget, P.-M. Ten-year seedling dynamics in Vouacapoua americana in French Guiana: A hypothesis. Biotropica 29, 124–126 (1997).
Article Google Scholar
65.
Forget, P. M. Recruitment pattern of Vouacapoua-Americana (Caesalpiniaceae), a rodent-dispersed tree specie in French-Guiana. Biotropica 26, 408–419. https://doi.org/10.2307/2389235 (1994).
Article Google Scholar
66.
Forget, P. M. Effect of microhabitat on seed fate and seedling performance in two rodent-dispersed tree species in rain forest in French Guiana. J. Ecol. 85, 693–703. https://doi.org/10.2307/2960539 (1997).
Article Google Scholar
67.
Zhang, S. Y. & Wang, L. X. Comparison of 3 fruit census methods in French-Guiana. J. Trop. Ecol. 11, 281–294 (1995).
Article Google Scholar
68.
Stevenson, P. R. The relationship between fruit production and primate abundance in Neotropical communities. Biol. J. Lin. Soc. 72, 161–178. https://doi.org/10.1006/bijl.2000.049 (2001).
Article Google Scholar
69.
Norris, D., Rodriguez Chuma, V. J. U., Arevalo-Sandi, A. R., Landazuri Paredes, O. S. & Peres, C. A. Too rare for non-timber resource harvest? Meso-scale composition and distribution of arborescent palms in an Amazonian sustainable-use forest. For. Ecol. Manag. 377, 182–191. https://doi.org/10.1016/j.foreco.2016.07.008 (2016).
Article Google Scholar
70.
Paredes, O. S. L., Norris, D., Oliveira, T. G. D. & Michalski, F. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. PLoS ONE 12, e0174049. https://doi.org/10.1371/journal.pone.0174049 (2017).
CAS Article PubMed PubMed Central Google Scholar
71.
Magnusson, W. E. et al. RAPELD: A modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota. Neotrop. 5, 19–24. https://doi.org/10.1590/s1676-06032005000300002 (2005).
Article Google Scholar
72.
Norris, D., Fortin, M.-J. & Magnusson, W. E. Towards monitoring biodiversity in Amazonian forests: How regular samples capture meso-scale altitudinal variation in 25 km(2) plots. PLoS ONE https://doi.org/10.1371/journal.pone.0106150 (2014).
Article PubMed PubMed Central Google Scholar
73.
The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121. https://doi.org/10.1111/j.1095-8339.2009.00996.x (2009).
Article Google Scholar
74.
Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).
Article Google Scholar
75.
Platts, P. J., McClean, C. J., Lovett, J. C. & Marchant, R. Predicting tree distributions in an East African biodiversity hotspot: Model selection, data bias and envelope uncertainty. Ecol. Model. 218, 121–134. https://doi.org/10.1016/j.ecolmodel.2008.06.028 (2008).
Article Google Scholar
76.
Camarero, J. J., Albuixech, J., López-Lozano, R., Casterad, M. A. & Montserrat-Martí, G. An increase in canopy cover leads to masting in Quercus ilex. Trees 24, 909–918. https://doi.org/10.1007/s00468-010-0462-5 (2010).
Article Google Scholar
77.
Fernández-Martínez, M., Garbulsky, M., Peñuelas, J., Peguero, G. & Espelta, J. M. Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks. Plant Ecol. 216, 1061. https://doi.org/10.1007/s11258-015-0489-1 (2015).
Article Google Scholar
78.
Fortin, M.-J. & Dale, M. R. T. Spatial Analysis: A Guide for Ecologists. 365 (Cambridge University Press, Cambridge, 2005).
79.
Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models. Vol. 43 (CRC Press, Boca Raton, 1990).
80.
Wood, S. Generalized Additive Models: An Introduction with R. (CRC Press, Boca Raton, 2006).
81.
Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 157, 157–177. https://doi.org/10.1016/S0304-3800(02)00193-X (2002).
Article Google Scholar
82.
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2016).
83.
Burnham, K. P. & Anderson, D. R. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach. (Springer, New York, 2002).
84.
Pebesma, E. J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 30, 683–691. https://doi.org/10.1016/j.cageo.2004.03.012 (2004).
ADS Article Google Scholar
85.
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Google Scholar
86.
e1071: Misc Functions of the Department of Statistics, Probability Theory Group v. 1.6-8 (2017). More