More stories

  • in

    An equation of state for insect swarms

    State variables
    The first step in describing the macroscopic properties of the swarm is to define a set of state variables that fully characterizes the state of the system. The equation of state then links these state variables in a functional relation. In classical thermodynamics, a complete set of state variables is given by the conjugate pairs of pressure P and volume V, temperature T and entropy S, and, if the number of particles is not fixed, chemical potential μ and number of particles N. We use an analogous set of state variables here to characterize swarms. The most straightforward state variable to define is the number of individuals N, which is given simply by the number of midges in the swarm at a given time (note that midges that are not swarming simply sit on the walls or floor of the laboratory enclosure). The volume V of the swarm can be straightforwardly defined and computed as the volume of the convex hull enclosing all the midges. Note that while N and V are not independently controllable quantities, the ratio N/V is empirically approximately constant in large swarms24, meaning that the “thermodynamic” limit (that is, (N to infty) and (V to infty) with (frac{N}{V} to rho)) is approached in our swarms25. In typical swarming events, N changes on a time scale that is very slow compared to the swarm dynamics; thus, a chemical potential is not needed to describe the instantaneous state of the swarm. Note, though, that since the number of midges varies between measurements that may be separated by many days, N remains a relevant state variable for capturing swarm-to-swarm variability.
    The remaining three state variables are somewhat more subtle, but can be defined by building on previous work. It has been explicitly shown26 that a virial relation based on the kinetic energy and an effective potential energy holds for laboratory swarms of Chironomus riparius. For particles moving in a potential, this virial relation can be used to define a pressure26. As we have shown previously, swarming midges behave as if they are trapped in a harmonic potential well that binds them to the swarm, with a spring constant k(N) that depends on the swarm size24,26 (Fig. 1b). The difference between the kinetic energy and this harmonic potential energy thus allows us to compute a pressure4,26,27, which is conceptually similar to the swim pressure defined in other active systems28. The virial theorem thus provides a link between kinetic energy, potential energy, and a field that plays the role of a pressure, when coupled with the observation that individual midges to a good approximation behave as if they are moving in a harmonic potential24,26. We can write this virial pressure P (per unit mass, assuming a constant mass per midge) as

    $$P = frac{1}{3NV}mathop sum limits_{i = 1}^{N} left( {v_{i}^{2} – frac{1}{2}langle krangle r_{i}^{2} } right),$$

    where N is the number of midges in the swarm, V is the swarm volume, vi is the velocity of midge i, ri is its distance from the swarm centre of mass, and (langle krangle = langle – {mathbf{a}}_{i} cdot hat{mathbf{r}}_{i} / r_{i} rangle) is the effective spring constant of the emergent potential well that binds midges to the swarm. In this expression, ai is the acceleration of midge i, (hat{mathbf{r}}_{i}) is the unit vector pointing from a midge towards the instantaneous centre of mass of the swarm (defined as (1/Nsumnolimits_{i = 1}^{N} {{mathbf{r}}_i })) and averages are taken over the individuals in the swarm. This spring constant depends on the swarm size N (Fig. 1b). We note that we have previously simply used the directly computed potential energy (- langle {mathbf{a}}_{i} cdot {mathbf{r}}_{i} rangle) to define the pressure4,27; here, we instead average the potential terms and fit them to a power law in N (Fig. 1b) to mitigate the contribution of spurious instantaneous noise in the individual positions that would be enhanced by differentiating them twice to compute accelerations. We use this power law to determine the spring constant k instantaneously at each time step.
    The results from the two methods for computing the pressure are similar and consistent, but the method we use here is less prone to noise. Physically, this pressure P can be interpreted as the additional spatially variable energy density required to keep the midges bound to the swarm given that their potential energy varies in space but their mean velocity (and therefore kinetic energy) does not. Thus, compared to a simple passive particle moving in a harmonic well, midges have more kinetic energy than expected at the swarm edges; this pressure compensates for the excess kinetic energy. This pressure should be viewed as a manifestation of the active nature of the midges (similar to a swim pressure28), since the kinetic energy is an active property of each individual midge and the potential energy is an emergent property of the swarm.
    We can define a Shannon-like entropy S via its definition in terms of the joint probability distributions of position and velocity. This entropy is defined as

    $$S = – mathop smallint limits_{ – infty }^{infty } p(x,;v)log_{2} p(x,;v)dxdv,$$

    where p(x,v) is the joint probability density function (PDF) of midge position and velocity. S here is measured in bits, as it is naturally an information entropy. Empirically, we find that the position and velocity PDFs are nearly statistically independent for all components and close to Gaussian, aside from the vertical component of the position (Fig. 1c–f). However, the deviation from Gaussianity in this component (which occurs because of the symmetry breaking due to the ground) does not significantly affect the estimate of the entropy; thus, we approximate it as Gaussian as well. Making these approximations, we can thus analytically write the (extensive) entropy as

    $$S = frac{3N}{{ln 2}}ln left( {2pi esigma_{x} sigma_{v} } right),$$

    where (sigma_{x}) and (sigma_{v}) are the standard deviations of the midge positions and velocities, respectively. In practice, we calculated (sigma_{v}) by averaging the instantaneous root-mean-square values of all three velocity components rather than a time-averaged value; the difference between these components was always less than 10%. This expression makes it more clear why the Gaussian approximation for the vertical component of the position is reasonable here: only the mean and variance of the PDFs are required to compute the entropy, and these low moments are very similar for the true data and the Gaussian estimate.
    Although there is no obvious definition of temperature for a swarm, we can define one starting from the entropy, since temperature (when scaled by a Boltzmann constant) can be defined as the increase in the total physical energy of the system due to the addition of a single bit of entropy. Given our definitions, adding a single bit of entropy (that is, setting (S to S + 1)) for constant (sigma_{x}) and N (that is, a swarm of fixed number and spatial size) is equivalent to setting (sigma_{v} to 2^{1/(3N)} sigma_{v} .) Adding this entropy changes the total energy of the system by an amount

    $$frac{3}{2}sigma_{v}^{2} Nleft( {2^{frac{2}{3N}} – 1} right) equiv k_{B}^{*} T,$$

    which we thus define as the temperature (k_{B}^{*} T). Even though this temperature is nominally a function of the swarm size N, it correctly yields an intensive temperature as expected in the limit of large N, as the explicit N-dependence vanishes in that limit since (lim_{n to infty } k_{B}^{*} T = sigma_{v}^{2} ln 2). In practice, this limit is achieved very rapidly: we find that this temperature is nearly independent of N for N larger than about 20, consistent with our earlier results on the effective “thermodynamic limit” for swarms25. The effective Boltzmann constant (k_{B}^{*}) is included here to convert between temperature and energy, though we note that we cannot set its value, as there is no intrinsically preferred temperature scale.
    Equipartition
    With these definitions in hand, we can evaluate the suitability of these quantities for describing the macroscopic state of midge swarms. First, we note that proper state variables ought to be independent of the swarm history; that is, they ought to describe only the current state of the system rather than the protocol by which that state was prepared. Although this property is difficult to prove incontrovertibly, none of the definitions of our state variables have history dependence. We further find that when these state variables are modulated (see below), their correlation times are very short, lending support to their interpretation as true state variables. We can also compare the relationships between these state variables and the swarm behaviour to what would be expected classically. In equilibrium thermodynamics, for example, temperature is connected to the number of degrees of freedom (d.o.f.) in a system via equipartition, such that each d.o.f. contributes an energy of (frac{1}{2}k_{B}^{*} T). We can write the total energy E of a swarm as the sum of the kinetic energy (E_{k} (t) = frac{1}{2}v^{2}) and potential energy (E_{p} (t) = frac{1}{2}k(N)r(t)^{2}) for all the individuals, where r is the distance of a midge to the swarm centre of mass, v is the velocity of a midge, and k(N) is the effective spring constant. Surprisingly, even though individual midges are certainly not in equilibrium due to their active nature, we find that the total energy is linear in both T and N (Fig. 2a), and that there is no apparent anisotropy, suggesting that equipartition holds for our swarms. This result is highly nontrivial, especially given that our definition of T does not contain the spring constant k(N), which is only determined empirically from our data. Moreover, the slope of the (E/k_{B}^{*} T) curve is well approximated as (9/2)N, implying that each midge has 9 effective d.o.f. (or 6 after discounting the factor of ({text{ln}}2) in our definition of (k_{B}^{*} T)) These d.o.f. can be identified as 3 translational and 3 potential modes, given that the potential well in which the midges reside is three-dimensional. These results demonstrate the surprising applicability of equilibrium thermodynamics for describing the macroscopic state of swarms29.
    Figure 2

    Equipartition and the equation of state. (a) The total energy of the system (E) normalized by (k_{B}^{*} T) as a function of swarm size (blue) along with the kinetic energy (E_{k}) (yellow) and potential energy (E_{p}) (blue). The total normalized energy of the system is well approximated by (9/2)N (black dashed line), indicating that each individual midge contributes ((9/2)k_{B}^{*} T) to E and thus has 9 degrees of freedom (6 after discounting the factor of ({text{ln}}2) in our definition of (k_{B}^{*} T)). The deviations from that behaviour for the largest swarms can be attributed to a growing uncertainty in the energy due to the smaller number of experiments with such large swarms. (b) A portion of our ensemble of data of the measured pressure (blue). The yellow line is the reconstruction of the pressure from our equation of state. The inset shows a zoomed-in portion of the data to highlight the quality of the reconstruction. (c) PDF of the pressure for our entire data ensemble23. The statistics of the directly measured pressure (blue) and reconstructed pressure from the equation of state have nearly identical statistics for the full dynamic range of the signal.

    Full size image

    Equation of state
    The fundamental relation in any thermodynamic system is the equation of state that expresses how the state variables co-vary. Equations of state are thus the foundation for the design and control of thermodynamic systems, because they describe how the system will respond when a subset of the state variables are modulated. Any equation of state can be written in the form (P = f(V, ;T,;N)) for some function f. Although the form of f is a priori unknown, it can typically be written as a power series in V, T, and N, in the spirit of a virial expansion. We fit the equation of state to our data assuming the functional form

    $$P = f(V, ;k_{B}^{*} T,;N) = c_{4} V^{{c_{1} }} (k_{B}^{*} T)^{{c_{2} }} N^{{c_{3} }},$$

    and using nonlinear least-squares regression. We chose to fit to the pressure for convenient analogy with a thermodynamic framework, but any other variable would have been an equivalent possibility. We note that when fitting, we normalized all the state variables by their root-mean-square values so that they were all of the same order of magnitude. These normalization pre-factors do not change the exponents, but are instead simply absorbed into (c_{4}). Thus, to leading order, we assume (P = f(V,;k_{B}^{*} T,;N) propto V^{{c_{1} }} (k_{B}^{*} T)^{{c_{2} }} N^{{c_{3} }}) and fit this relation to the swarm pressure (Fig. 2b,c), obtaining c1 = − 1.7, c2 = 2, and c3 = 1, with uncertainties on the order of 1%. Although the expression for the pressure does depend on three parameters in a nonlinear fashion, the resulting estimates for these parameters are remarkably stable and consistent across all measurements. Hence, we arrive at the equation of state (PV^{1.7} propto N(k_{B}^{*} T)^{2} .)
    This equation of state reveals aspects of the nature of swarms, particularly when compared with the linear equation of state for an ideal gas (where (PV = Nk_{B} T)). In both cases, for example, to maintain a fixed pressure and volume, smaller systems need to be hotter; but this requirement is less severe for swarms since the temperature is squared, meaning that midges have to speed up less than ideal gas molecules do. Likewise, to maintain a fixed temperature, volume expansion must be counteracted by a reduction in pressure; but midges must lower the pressure more than a corresponding ideal gas, which is reflective of the decrease of the swarm spring constant with size.
    Thermodynamic cycling
    Beyond such reasoning, however, the true power of an equation of state in thermodynamics lies in specifying how the state variables will change when some are varied but the system remains in the same state, such as in an engine. To demonstrate that our equation of state similarly describes swarms, it is thus necessary to drive them away from their natural state. Although it is impossible to manipulate the state variables directly in this system of living organisms as one would do with a mechanical system, we have shown previously that time-varying acoustic30 and illumination27 stimulation lead to macroscopic changes in swarm behaviour. Here we therefore build on these findings and use interlaced illumination changes and acoustic signals to drive swarms along four distinct paths in pressure–volume space, analogous to a thermodynamic engine cycle. The stimulation protocol is sketched in Fig. 3a. The “on” state of the acoustic signal is telegraph noise (see Experimental details), while the “off” state is completely quiet. The illumination signal simply switches between two different steady light levels. Switching between the four states of “light-high and sound-on,” “light-high and sound-off,” “light-low and sound-off,” and “light-low and sound-on” with a 40-s period (Fig. 3a) produces the pressure–volume cycle shown in Fig. 3b. We suspect that the loops in the cycle stem from the swarm’s typical “startle” response after abrupt changes in environmental conditions, followed by a rapid relaxation to a steady state27,30.
    Figure 3

    Thermodynamic cycling of a midge swarm with (langle Nrangle = 27). Schematic of the perturbation cycle showing the illumination (solid) and sound (dashed) signal timings. The symbols indicate the switching points identified in (b). (b,c) Phase-averaged swarm behaviour during the perturbation cycle plotted in the pressure–volume phase plane for (b) the pressure signal as measured and (c) as reconstructed using our equation of state. (leftlangle {,} rightrangle_{phi }) denotes a phase average of a quantity over a full cycle. The four different states of the perturbation signal are indicated. The data has been averaged using a moving 3.5-s window for clarity. The swarm behaviour moves in a closed loop in this phase plane during this cycling, as would be expected for an engine in equilibrium thermodynamics, and the equation of state holds throughout even though it was developed only for unperturbed swarms. (d) Phase-averaged pressure (langle Prangle_{phi }) of the swarm during a continuous cycle through the four light and sound states. The blue line shows the directly measured pressure and the yellow line shows the reconstruction using the equation of state.

    Full size image

    In addition to the pressure and volume, we can also measure the other state variables as we perturb the swarms. Given that we do not observe any evidence of a phase transition, we would expect that our equation of state, if valid, should hold throughout this cycle. To check this hypothesis, we used the measured V, T, and N values during unperturbed experiments along with the equation of state to predict the scaling exponents, and in turn the pressure P. We then use these baseline, unperturbed exponents and V, T, and N during the interlaced perturbations to predict a pressure P. This pressure prediction matches the measured signal exceptionally well (Fig. 3c,d) even though the equation of state was formulated only using data from unperturbed swarms, highlighting the quality of this thermodynamic analogy. Although we might expect that a strong enough perturbation might lead to qualitatively different behaviour (if the swarm went through the analog of a phase transition31), our results give strong support to the hypothesis that our equation of state should hold for any perturbation that does not drive such a transition. More

  • in

    Humans push a hulking fish with a chainsaw nose towards oblivion

    The knifetooth sawfish (Anoxypristis cuspidata) is one of five sawfish species, all of which are facing extinction. Credit: Norbert Wu/Minden/Nature Picture Library

    Conservation biology
    12 February 2021

    The strange-looking sawfish, itself a predator, falls prey to overfishing and habitat destruction.

    The long-snouted, shark-like predators called sawfish have vanished from nearly 60% of their historical habitat and are nearing extinction, according to a mathematical method of counting marine species.
    Sawfish (family Pristidae) are rays that live near seashores and in mangrove areas: habitats that are rapidly disappearing. To study what this means for the five species in the family, Helen Yan at Simon Fraser University in Burnaby, Canada, and her colleagues reviewed sawfish research conducted between 2014 and 2019 in 64 countries. From this, they estimated the distribution patterns of these fishes, which are known for their large size — some species routinely reach 5 metres in length — and their chainsaw-like noses.
    The team found the creatures’ distribution patterns had changed in places affected by fishing pressures and habitat loss. These pressures have driven the fishes to extinction in 55 of the 90 countries whose waters they once occupied.
    Saving the sawfish, the researchers say, will require countries to protect the creatures’ offshore habitats and to ban fishers from keeping sawfish that are caught in their nets. More

  • in

    Photosynthetic parameters of a sedge-grass marsh as a big-leaf: effect of plant species composition

    1.
    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, 2013).
    2.
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Matson, P. A., Harriss, a. R. C. (ed.) Biogenic Trace Gases: Measuring Emissions from Soil and Water. Methods in ecology (Blackwell Science, Oxford [England]; Cambridge, Mass., USA, 1995).

    4.
    Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorl. Soc. 82, 2415–2434 (2001).
    ADS  Article  Google Scholar 

    5.
    Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B. & Hall, F. G. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 42, 187–216 (1992).
    ADS  Article  Google Scholar 

    6.
    de Pury, D. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557 (1997).
    Article  Google Scholar 

    7.
    Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208 (2010).
    ADS  Article  Google Scholar 

    8.
    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).
    ADS  CAS  Article  Google Scholar 

    9.
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1995).
    Article  Google Scholar 

    10.
    Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 1999, 95–113 (1999).
    Article  Google Scholar 

    11.
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Tilman, D. Functional diversity. Ecyclopedia Biodivers. 2001, 109–121 (2001).
    Article  Google Scholar 

    13.
    Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (Springer, Berlin, 2003).
    Google Scholar 

    14.
    Crawford, R. M. M. Studies in Plant Survival: Ecological Case Histories of Plant Adaptation to Adversity (Blackwell Scientific Publications, Oxford, 1989).
    Google Scholar 

    15.
    Kaplan, Z. (ed.) Klíč ke květeně: České republiky. Second editions. (Academia, Prague, 2019).

    16.
    Jeník, J., Kurka, R. & Husák, Š. Wetlands of the Třeboň Basin Biosphere Reserve in the central European context, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 11–18 (CRC Press, New York, 2002).

    17.
    Holubičková, B. Příspěvek ke studiu rašeliništní vegetace. I. Mokré louky u Třeboně (A contribution to the study of peatland vegetation. I. Mokré louky near Třeboň). (1959).

    18.
    Blažková, D. Pflanzensoziologische Studie über die Wiesen der Südböhmischen Becken. Stud. CSAV 73, 1–172 (1973).
    Google Scholar 

    19.
    Prach, K. Vegetational changes in a wet meadow complex, south-bohemia, Czech Republic. Folia Geobot. Phytotaxon. 28, 1–13 (1993).
    ADS  Article  Google Scholar 

    20.
    Prach, K. Vegetation changes in a wet meadow complex during the past half-century. Folia Geobot. 43, 119–130 (2008).
    Article  Google Scholar 

    21.
    Prach, K. & Soukupová, L. Alterations in the Wet Meadows vegetation pattern, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 243–254 (CRC Press, 2002).

    22.
    Balátová-Tuláčková, E. Die Nass- und Feuchtwiesen Nordwest-Böhmens mit besonderer Berücksichtigung Der Magnocaricetalia-Gesellschaften. Rozpr. Českoslov. Akad. Věd, Řada Mat. Přír. Věd 1978.

    23.
    Květ, J. (ed.) Freshwater Wetlands and their Sustainable Future: A Case of the Třeboň Basin Biosphere Reserve, Czech Republic. Man and the biosphere series 28. (UNESCO, Paris, 2002).

    24.
    Honissová, M. et al. Seasonal dynamics of biomass partitioning in a tall sedge Carex acuta L. Aquat. Bot. 125, 64–71 (2015).
    Article  Google Scholar 

    25.
    Hejný, S. Dynamic changes in the macrophyte vegetation of South Bohemian fishponds after 35 years. Folia Geobot. Phytotaxon. 25, 245–255 (1990).
    Article  Google Scholar 

    26.
    Káplová, M., Edwards, K. R. & Květ, J. The effect of nutrient level on plant structure and production in a wet grassland: a field study. Plant Ecol. 212, 809–819 (2011).
    Article  Google Scholar 

    27.
    Chambers, J. M. Software for Data Analysis: Programming with R (Springer, Berlin, 2008).
    Google Scholar 

    28.
    Koyama, K. & Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 4, 4389 (2015).
    Article  CAS  Google Scholar 

    29.
    Nobel, P. S. Physicochemical and Environmental Plant Physiology (Academic Press, New York, 2009).
    Google Scholar 

    30.
    Gilmanov, T. G. et al. Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements: GPP OF SOUTHERN PLAINS ECOSYSTEMS. Glob. Biogeochem. Cycles 17, 1–15 (2003).
    Google Scholar 

    31.
    Bates, D. M. & Watts, D. G. Nonlinear Regression Analysis and Its Applications (Wiley, New York, 1988).
    Google Scholar 

    32.
    Ogren, E. Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiol. 101, 7 (1993).
    Article  Google Scholar 

    33.
    Hollander, M., Wolfe, D. A. & Chicken, E. Nonparametric Statistical Methods (Wiley, New York, 2014).
    Google Scholar 

    34.
    Best, D. J. & Roberts, D. E. Algorithm AS 89: the upper tail probabilities of Spearman’s Rho. Appl. Stat. 24, 377 (1975).
    Article  Google Scholar 

    35.
    Busch, J. & Losch, R. The gas exchange of Carex species from eutrophic wetlands and its dependence on microclimatic and soil wetness conditions. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 24, 117–120 (1999).
    ADS  Article  Google Scholar 

    36.
    Ondok, J. & Gloser, J. Leaf photosynthesis and dark respiration in a sedge-grass marsh. 1. model for mid-summer conditions. Photosynthetica 17, 77–88 (1983).
    Google Scholar 

    37.
    Caudle, K. L. & Maricle, B. R. Physiological relationship between oil tolerance and flooding tolerance in marsh plants. Environ. Exp. Bot. 107, 7–14 (2014).
    CAS  Article  Google Scholar 

    38.
    Ge, Z.-M. et al. Measured and modeled biomass growth in relation to photosynthesis acclimation of a bioenergy crop (Reed canary grass) under elevated temperature, CO2 enrichment and different water regimes. Biomass Bioenerg. 46, 251–262 (2012).
    CAS  Article  Google Scholar 

    39.
    Waring, E. F. & Maricle, B. R. Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding. Environ. Exp. Bot. 77, 77–86 (2012).
    CAS  Article  Google Scholar 

    40.
    Gloser, J. Net photosynthesis and dark respiration of reed estimated by gas-exchange measurements, in Pond Littoral Ecosystems. Structure and Functioning, vol. 1978, 227–234 (Springer, Berlin, 1978).

    41.
    Zhou, X., Liu, X., Wallace, L. L. & Luo, Y. Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. J. Integr. Plant Biol. 49, 270–281 (2007).
    CAS  Article  Google Scholar 

    42.
    Jones, H. G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (Cambridge University Press, Cambridge, 1992).
    Google Scholar 

    43.
    Smith, M. & Houpis, J. L. J. Gas exchange responses of the wetland plant Schoenoplectus hallii to irradiance and vapor pressure deficit. Aquat. Bot. 79, 267–275 (2004).
    CAS  Article  Google Scholar 

    44.
    Li, M., Yang, D. & Li, W. Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica 45, 222–228 (2007).
    Google Scholar 

    45.
    Li, M., Hou, G., Yang, D., Deng, G. & Li, W. Photosynthetic traits of Carex cinerascens in flooded and nonflooded conditions. Photosynthetica 48, 370–376 (2010).
    CAS  Article  Google Scholar 

    46.
    Vervuren, P., Beurskens, S. & Blom, C. Light acclimation, CO2 response and long-term capacity of underwater photosynthesis in three terrestrial plant species. Plant Cell Environ. 22, 959–968 (1999).
    Article  Google Scholar 

    47.
    Bouma, T. J., De Visser, R., Van Leeuwen, P. H., De Kock, M. J. & Lambers, H. The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature source leaves and their contribution to leaf dark respiration. J. Exp. Bot. 46, 1185–1194 (1995).
    CAS  Article  Google Scholar 

    48.
    McCutchan, C. L. & Monson, R. K. Night-time respiration rate and leaf carbohydrate concentrations are not coupled in two alpine perennial species. New Phytol. 149, 419–430 (2002).
    Article  Google Scholar 

    49.
    Emerson, R. The quantum yield of photosynthesis. Annu. Rev. Plant Physiol. 9, 1–24 (1958).
    CAS  Article  Google Scholar 

    50.
    Singsaas, E. L., Ort, D. R. & DeLucia, E. H. Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 128, 15–23 (2001).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    de Lobo, F. A. et al. Fitting net photosynthetic light-response curves with Microsoft Excel—a critical look at the models. Photosynthetica 51, 445–456 (2013).
    CAS  Article  Google Scholar 

    52.
    Busch, J. Characteristic values of key ecophysiological parameters in the genus Carex. FLORA 196, 405–430 (2001).
    Article  Google Scholar 

    53.
    Hull, J. C. Photosynthetic induction dynamics to sunflecks of four deciduous forest understory herbs with different phenologies1. Int. J. Plant Sci. 163, 913–924 (2002).
    ADS  Article  Google Scholar 

    54.
    Wayne, E. R. & Van Auken, O. W. Light responses of Carex planostachys from various microsites in a Juniperus community. J. Arid Environ. 73, 435–443 (2009).
    ADS  Article  Google Scholar 

    55.
    Colmer, T. D. & Pedersen, O. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol. 177, 918–926 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Mommer, L. & Visser, E. J. W. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann. Bot. 96, 581–589 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Dušek, J. Seasonal dynamic of nonstructural saccharides in a rhizomatous grass Calamagrostis epigeios. Biol. Plant. 45, 383–387 (2002).
    Article  Google Scholar 

    58.
    Mitsch, W. J. (ed.) Wetland Ecosystems (Wiley, Hoboken, NJ, 2009).

    59.
    Soukupová, L. Life strategy of graminoid populations in the wet meadows, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 255–267 (CRC Press, New York, 2002).

    60.
    Polechová, J. & Storch, D. Ecological Niche, in Encyclopedia of Ecology 72–80 (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/B978-0-12-409548-9.11113-3.

    61.
    Dykyjová, D. Production ecology of Acorus calamus. Folia Geobot. Phytotaxon. 15, 29–57 (1980).
    Article  Google Scholar 

    62.
    Westlake, D. F., Květ, J., Andrzej Szczepański, a International Biological Programme. (ed.) The Production Ecology of Wetlands: The IBP Synthesis (Cambridge University Press, Cambridge, UK; New York, NY, USA, 1998).

    63.
    Pai, A. & McCarthy, B. C. Variation in shoot density and rhizome biomass of Acorus calamus L. With respect to environment. Castanea 70, 263–275 (2005).
    Article  Google Scholar 

    64.
    Pai, A. & McCarthy, B. C. Suitability of the medicinal plant, Acorus calamus L, for wetland restoration. Nat. Areas J. 30, 380–386 (2010).
    Article  Google Scholar 

    65.
    Květ, J., Lukavská, J. & Tetter, M. Biomass and net primary production in graminoid vegetation. in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 293–299 (CRC Press, Boca Raton, 2002).

    66.
    Hejný, S. The dynamic characteristics of littoral vegetation with respect to changes of water level. Hidrobiol. Bucur. 1971, 71–85 (1971).
    Google Scholar  More

  • in

    Reduced nest development of reared Bombus terrestris within apiary dense human-modified landscapes

    1.
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).
    Article  Google Scholar 
    2.
    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
    Article  Google Scholar 

    3.
    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. U.S.A. 99, 16812–16816. https://doi.org/10.1073/pnas.262413599 (2002).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).
    Article  PubMed  Google Scholar 

    5.
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biol. Rev. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).
    Article  PubMed  Google Scholar 

    6.
    Winfree, R., Aguilar, R., Vazquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076. https://doi.org/10.1890/08-1245.1 (2009).
    Article  PubMed  Google Scholar 

    7.
    Isaacs, R. et al. Integrated crop pollination: Combining strategies to ensure stable and sustainable yields of pollination-dependent crops. Basic Appl. Ecol. 22, 44–60. https://doi.org/10.1016/j.baae.2017.07.003 (2017).
    Article  Google Scholar 

    8.
    Steffan-Dewenter, I. & Tscharntke, T. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122, 288–296. https://doi.org/10.1007/s004420050034 (2000).
    ADS  CAS  Article  Google Scholar 

    9.
    Paini, D. R. & Roberts, J. D. Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biol. Cons. 123, 103–112. https://doi.org/10.1016/j.biocon.2004.11.001 (2005).
    Article  Google Scholar 

    10.
    Schaffer, W. M. et al. Competition for nectar between introduced honey bees and native North American bees and ants. Ecology 64, 564–577. https://doi.org/10.2307/1939976 (1983).
    Article  Google Scholar 

    11.
    Dupont, Y. L., Hansen, D. M., Valido, A. & Olesen, J. M. Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol. Cons. 118, 301–311. https://doi.org/10.1016/j.biocon.2003.09.010 (2004).
    Article  Google Scholar 

    12.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Thomson, D. M. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol. Lett. 19, 1247–1255. https://doi.org/10.1111/ele.12659 (2016).
    Article  PubMed  Google Scholar 

    14.
    Thomson, D. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85, 458–470. https://doi.org/10.1890/02-0626 (2004).
    Article  Google Scholar 

    15.
    Goulson, D. & Sparrow, K. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J. Insect. Conserv. 13, 177–181. https://doi.org/10.1007/s10841-008-9140-y (2009).
    Article  Google Scholar 

    16.
    Paini, D. R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera : Apidae) on native bees: A review. Austral. Ecol. 29, 399–407. https://doi.org/10.1111/j.1442-9993.2004.01376.x (2004).
    Article  Google Scholar 

    17.
    Gross, C. L. The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem. Biol. Cons. 102, 89–95. https://doi.org/10.1016/s0006-3207(01)00088-x (2001).
    Article  Google Scholar 

    18.
    Nielsen, A., Reitan, T., Rinvoll, A. W. & Brysting, A. K. Effects of competition and climate on a crop pollinator community. Agric. Ecosyst. Environ. 246, 253–260. https://doi.org/10.1016/j.agee.2017.06.006 (2017).
    Article  Google Scholar 

    19.
    Lindström, S. A. M., Herbertssön, L., Rundlof, M., Bommarco, R. & Smith, H. G. Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proc. R. Soc. B Biol. Sci. 283, 8. https://doi.org/10.1098/rspb.2016.1641 (2016).
    Article  Google Scholar 

    20.
    Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0249-9 (2017).
    Article  PubMed  Google Scholar 

    21.
    González-Varo, J. P. & Vilà, M. Spillover of managed honeybees from mass-flowering crops into natural habitats. Biol. Conserv. 212, 376–382. https://doi.org/10.1016/j.biocon.2017.06.018 (2017).
    Article  Google Scholar 

    22.
    Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations, and Communities 3rd edn. (Blackwell Science Ltd, Hoboken, 1996).
    Google Scholar 

    23.
    United Nations. (United Nations, Department of Economic and Social Affairs, Population Division, New York, 2012).

    24.
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1435. https://doi.org/10.1126/science.1255957 (2015).
    CAS  Article  Google Scholar 

    25.
    Scheper, J. et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52, 1165–1175. https://doi.org/10.1111/1365-2664.12479 (2015).
    Article  Google Scholar 

    26.
    McCune, F., Normandin, E., Mazerolle, M. J. & Fournier, V. Response of wild bee communities to beekeeping, urbanization, and flower availability. Urban Ecosyst. https://doi.org/10.1007/s11252-019-00909-y (2019).
    Article  Google Scholar 

    27.
    Samuelson, A. E., Gill, R. J., Brown, M. J. F. & Leadbeater, E. Lower bumblebee colony reproductive success in agricultural compared with urban environments. Proc. R. Soc. B Biol. Sci. 285, 9. https://doi.org/10.1098/rspb.2018.0807 (2018).
    Article  Google Scholar 

    28.
    Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. B Biol. Sci. 270, 569–575. https://doi.org/10.1098/rspb.2002.2292 (2003).
    Article  Google Scholar 

    29.
    Couvillon, M. J., Schurch, R. & Ratnieks, F. L. W. Dancing bees communicate a foraging preference for rural lands in high-level agri-environment schemes. Curr. Biol. 24, 1212–1215. https://doi.org/10.1016/j.cub.2014.03.072 (2014).
    CAS  Article  PubMed  Google Scholar 

    30.
    Bänsch, S., Tscharntke, T., Ratnieks, F. L. W., Härtel, S. & Westphal, C. Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agric. Ecosyst. Environ. 291, 106792. https://doi.org/10.1016/j.agee.2019.106792 (2020).
    Article  Google Scholar 

    31.
    Walther-Hellwig, K. & Frankl, R. Foraging distances of Bombus muscorum, Bombus lapidarius, and Bombus terrestris (Hymenoptera, Apidae). J. Insect Behav. 13, 239–246. https://doi.org/10.1023/A:1007740315207 (2000).
    Article  Google Scholar 

    32.
    Chauzat, M. P. et al. Demographics of the European apicultural industry. PLoS ONE 8, e79018. https://doi.org/10.1371/journal.pone.0079018 (2013).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Stanley, D. A., Gunning, D. & Stout, J. C. Pollinators and pollination of oilseed rape crops (Brassica napus L.) in Ireland: ecological and economic incentives for pollinator conservation. J. Insect Conserv. 17, 1181–1189. https://doi.org/10.1007/s10841-013-9599-z (2013).
    Article  Google Scholar 

    34.
    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671. https://doi.org/10.1890/07-1292.1 (2008).
    Article  Google Scholar 

    35.
    Lebuhn, G., Droege, S., Connor, E., Gemmill-Herren, B. & Azzu, N. in Guidance for practioners 64 pp. (FAO, Rome, 2016).

    36.
    De Saeger, S. et al. (ed Rapporten van het Instituut voor Natuur- en Bosonderzoek 2016) (Instituut voor Natuur- en Bosonderzoek, Brussel, 2016).

    37.
    3QGIS_Development_Team. QGIS Geographic Information System, 2018).

    38.
    Oksanen, J. et al. Community Ecology Package ‘Vegan’. (2016). https://github.com/vegandevs/vegan.

    39.
    Meeus, I., de Graaf, D. C., Jans, K. & Smagghe, G. Multiplex PCR detection of slowly-evolving trypanosomatids and neogregarines in bumblebees using broad-range primers. J. Appl. Microbiol. 109, 107–115. https://doi.org/10.1111/j.1365-2672.2009.04635.x (2010).
    CAS  Article  PubMed  Google Scholar 

    40.
    Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58. https://doi.org/10.1016/j.jip.2014.08.007 (2014).
    Article  PubMed  Google Scholar 

    41.
    De Smet, L. et al. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS ONE 7, e47953. https://doi.org/10.1371/journal.pone.0047953 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Parmentier, L. et al. Commercial bumblebee hives to assess an anthropogenic environment for pollinator support: A case study in the region of Ghent (Belgium). Environ. Monit. Assess. 186, 2357–2367. https://doi.org/10.1007/s10661-013-3543-2 (2014).
    CAS  Article  PubMed  Google Scholar 

    43.
    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80. https://doi.org/10.1038/nature14420 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    44.
    Goulson, D. Bumblebees: Their Behaviour and Ecology (Oxford University Press, Oxford, 2003).
    Google Scholar 

    45.
    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    46.
    Hedges, L. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, Cambridge, 1985).
    Google Scholar 

    47.
    DeBach, P. The competitive displacement and coexistence principles. Annu. Rev. Entomol. 11, 183–212. https://doi.org/10.1146/annurev.en.11.010166.001151 (1966).
    Article  Google Scholar 

    48.
    Balfour, N. J., Gandy, S. & Ratnieks, F. L. W. Exploitative competition alters bee foraging and flower choice. Behav. Ecol. Sociobiol. 69, 1731–1738. https://doi.org/10.1007/s00265-015-1985-y (2015).
    Article  Google Scholar 

    49.
    Herbertssön, L., Lindström, S. A. M., Rundlof, M., Bornmarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616. https://doi.org/10.1016/j.baae.2016.05.001 (2016).
    Article  Google Scholar 

    50.
    Ropars, L., Dajoz, I., Fontaine, C., Muratet, A. & Geslin, B. Wild pollinator activity negatively related to honey bee colony densities in urban context. PLoS ONE 14, 16. https://doi.org/10.1371/journal.pone.0222316 (2019).
    CAS  Article  Google Scholar 

    51.
    Ellis, C., Park, K. J., Whitehorn, P., David, A. & Goulson, D. The neonicotinoid insecticide Thiacloprid impacts upon bumblebee colony development under field conditions. Environ. Sci. Technol. 51, 1727–1732. https://doi.org/10.1021/acs.est.6b04791 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    52.
    Geslin, B., Gauzens, B., Thebault, E. & Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8, e63421 (2013).
    ADS  Article  Google Scholar 

    53.
    Neame, L. A., Griswold, T. & Elle, E. Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conserv. Divers. 6, 57–66 (2013).
    Article  Google Scholar 

    54.
    Glaum, P., Simao, M.-C., Vaidya, C., Fitch, G. & Iulinao, B. Big city Bombus: Using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development. R. Soc. Open Sci. 4, 170156 (2017).
    ADS  Article  Google Scholar 

    55.
    Normandin, E., Vereecken, N. J., Buddle, C. M. & Fournier, V. Taxonomic and functional trait diversity of wild bees in two urban settings. PeerJ 5, e3051 (2017).
    Article  Google Scholar 

    56.
    Moerman, R., Vanderplanck, M., Fournier, D., Jacquemart, A. L. & Michez, D. Pollen nutrients better explain bumblebee colony development than pollen diversity. Insect Conserv. Divers. 10, 171–179. https://doi.org/10.1111/icad.12213 (2017).
    Article  Google Scholar  More

  • in

    Bridgehead effect and multiple introductions shape the global invasion history of a termite

    1.
    Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015).
    CAS  PubMed  Article  Google Scholar 
    2.
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Miguel Pereira, H. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).
    CAS  PubMed  Article  Google Scholar 

    3.
    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).
    Article  Google Scholar 

    4.
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).
    Article  Google Scholar 

    5.
    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Schrieber, K. & Lachmuth, S. The genetic paradox of invasions revisited: the potential role of inbreeding  environment interactions in invasion success. Biol. Rev. 92, 939–952 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Allendorf, F. W. & Lundquist, L. L. Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).
    Article  Google Scholar 

    11.
    Estoup, A. et al. Is there a genetic paradox of biological invasion? Annu. Rev. Ecol. Evol. Syst. 47, 51–72 (2016).
    Article  Google Scholar 

    12.
    Roman, J. & Darling, J. A. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22, 454–464 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Uller, T. & Leimu, R. Founder events predict changes in genetic diversity during human-mediated range expansions. Glob. Change Biol. 17, 3478–3485 (2011).
    Article  Google Scholar 

    14.
    Bossdorf, O. et al. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144, 1–11 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Hufbauer, R. A. et al. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol. Appl. 5, 89–101 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Facon, B., Pointier, J.-P., Jarne, P., Sarda, V. & David, P. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr. Biol. 18, 363–367 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Lombaert, E. et al. Bridgehead effect in the worldwide invasion of the biocontrol Harlequin ladybird. PLoS ONE 5, e9743 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Ascunce, M. S. et al. Global invasion history of the fire ant Solenopsis invicta. Science 331, 1066–1068 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Bertelsmeier, C. et al. Recurrent bridgehead effects accelerate global alien ant spread. Proc. Natl Acad. Sci. USA 115, 5486 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Cristescu, M. E. Genetic reconstructions of invasion history. Mol. Ecol. 24, 2212–2225 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Estoup, A. & Guillemaud, T. Reconstructing routes of invasion using genetic data: why, how and so what? Mol. Ecol. 19, 4113–4130 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database Vol. 12 (Invasive Species Specialist Group, 2000).

    26.
    Wang, J. & Grace, J. K. Current status of Coptotermes Wasmann (Isoptera: Rhinotermitidae) in China, Japan, Australia and the American Pacific. Sociobiology 33, 295–305 (1999).
    Google Scholar 

    27.
    Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Shiraki, T. On the Japanese termites. Transcr. Entomol., Jpn. 2, 229–242 (1909).
    Google Scholar 

    29.
    Kistner, D. H. A new genus and species of termitophilous Aleocharinae from mainland China associated with Coptotermes formosanus and its zoogeographical significance (Coleoptera: Staphylinidae). Sociobiology 10, 93–104 (1985).
    Google Scholar 

    30.
    Maruyama, M. & Iwata, R. Two new termitophiles of the tribe Termitohospitini (Coleoptera: Staphylinidae: Aleocharinae) associated with Coptotermes formosanus (Isoptera: Rhinotermitidae). Can. Entomologist 134, 419–432 (2002).
    Article  Google Scholar 

    31.
    Maruyama, M., Kanao, T. & Iwata, R. Discovery of two Aleocharine Staphylinid species (Coleoptera) associated with Coptotermes formosanus (Isoptera: Rhinotermitidae) from Central Japan, with a review of the possible natural distribution of C. formosanus in Japan and surrounding countries. Sociobiology 59, 605–616 (2014).
    Google Scholar 

    32.
    Li, G. in Fauna Sinica: Insecta (eds Huang, F. et al.) 299–341 (Science Press, 2000).

    33.
    Chouvenc, T. et al. Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic road map for species validity and distribution of an economically important subterranean termite genus. Syst. Entomol. 41, 299–306 (2016).
    Article  Google Scholar 

    34.
    Yeap, B.-K., Othman, A. S. & Lee, C.-Y. Molecular systematics of Coptotermes (Isoptera: Rhinotermitidae) from East Asia and Australia. Ann. Entomol. Soc. Am. 102, 1077–1090 (2009).
    Article  Google Scholar 

    35.
    Lee, T. R. C., Cameron, S. L., Evans, T. A., Ho, S. Y. W. & Lo, N. The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers. Mol. Phylogen. Evol. 82, 234–244 (2015).
    Article  Google Scholar 

    36.
    Austin, J. W. et al. Genetic evidence for two introductions of the Formosan subterranean termite, Coptotermes Formosanus (Isoptera: Rhinotermitidae), to the United States. Fla. Entomol. 89, 183–193 (2006).
    CAS  Article  Google Scholar 

    37.
    Li, H.-F., Ye, W., Su, N.-Y. & Kanzaki, N. Phylogeography of Coptotermes Gestroi and Coptotermes Formosanus (Isoptera: Rhinotermitidae) in Taiwan. Ann. Entomol. Soc. Am. 102, 684–693 (2009).
    Article  Google Scholar 

    38.
    Fang, R., Huang, L. & Zhong, J. H. Surprising low levels of genetic diversity of Formosan subterranean termites in South China as revealed by the COII gene (Isoptera: Rhinotermitidae). Sociobiology 51, 1–20 (2008).
    Google Scholar 

    39.
    Tokuda, G., Isagawa, H. & Sugio, K. The complete mitogenome of the Formosan termite, Coptotermes formosanus Shiraki. Insectes Soc. 59, 17–24 (2012).
    Article  Google Scholar 

    40.
    Vargo, E. L., Husseneder, C. & Grace, J. K. Colony and population genetic structure of the Formosan subterranean termite, Coptotermes formosanus, in Japan. Mol. Ecol. 12, 2599–2608 (2003).
    CAS  PubMed  Article  Google Scholar 

    41.
    Broughton, R. E. & Grace, J. K. Lack of mitochondrial DNA variation in an introduced population of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Sociobiology 24, 121–126 (1994).
    Google Scholar 

    42.
    Korman, A. K. & Pashley, D. P. Genetic comparisons among U.S. populations of Formosan subterranean termites. Sociobiology 19, 41–50 (1991).
    Google Scholar 

    43.
    Wang, J. & Grace, J. K. Genetic relationship of Coptotermes formosanus (Isoptera: Rhinotermitidae) populations from the United States and China. Sociobiology 36, 7–19 (2000).
    Google Scholar 

    44.
    Vargo, E. L., Husseneder, C., Woodson, D., Waldvogel, M. G. & Grace, J. K. Genetic analysis of colony and population structure of three introduced populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in the continental United States. Environ. Entomol. 35, 151–166 (2006).
    Article  Google Scholar 

    45.
    Gentz, M. C., Rubinoff, D. & Grace, J. K. Phylogenetic analysis of subterranean termites (Coptotermes spp., Isoptera: Rhinotermitidae) indicates the origins of Hawaiian and North American invasions: potential implications for invasion biology. Proc. Hawaii. Entomol. Soc. 40, 1–9 (2008).
    Google Scholar 

    46.
    Husseneder, C. et al. Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biol. Invasions 14, 419–437 (2012).
    Article  Google Scholar 

    47.
    Haverty, M. I., Nelson, L. J. & Page, M. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. J. Chem. Ecol. 16, 1635–1647 (1990).
    CAS  PubMed  Article  Google Scholar 

    48.
    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Swezey, O. H. Notes and exhibitions. Proc. Hawaii. Entomol. Soc. 3 (1914).

    50.
    Swezey, O. H. Entomological notes. Proc. Hawaii. Entomol. Soc. 3 (1915).

    51.
    Su, N.-Y. & Tamashiro, M. An Overview of the Formosan Subterranean Termite (Isoptera: Rhinotermitidae) in the World 3–15 (University of Hawaii, College of Tropical Agriculture and Human Resources research extension series, 1987).

    52.
    Chambers, D. M., Zungoli, P. A. & Hill, H. S. J. Distribution and habitats of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in South Carolina. J. Econ. Entomol. 81, 1611–1619 (1988).
    Article  Google Scholar 

    53.
    Beal, R. H. Formosan invader. Pest Control 35, 13–17 (1967).
    Google Scholar 

    54.
    Spink, W. The Formosan subterranean termite in Louisiana. La. State Univeristy Circ. 89, 12 (1967).
    Google Scholar 

    55.
    Shi, M.-M., Michalski, S. G., Welk, E., Chen, X.-Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: genetic east–west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720 (2014).
    Article  Google Scholar 

    56.
    Ye, Z. et al. Phylogeography of a semi-aquatic bug, Microvelia horvathi (Hemiptera: Veliidae): an evaluation of historical, geographical and ecological factors. Sci. Rep. 6, 21932 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Qiu, Y.-X., Fu, C.-X. & Comes, H. P. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogen. Evol. 59, 225–244 (2011).
    Article  Google Scholar 

    58.
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness – Implications for brown trout conservation. Ecol. Evol. 9, 2106–2120 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Fischer, M. C. et al. Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom. 18, 69 (2017).
    Article  Google Scholar 

    60.
    Mori, H. The Formosan Subterranean Termite in Japan: its Distribution, Damage, and Current and Potential Control Measures 23–26 (University of Hawaii, College of Tropical Agriculture and Human Resources research extension series, 1987).

    61.
    Westphal, M. I., Browne, M., MacKinnon, K. & Noble, I. The link between international trade and the global distribution of invasive alien species. Biol. Invasions 10, 391–398 (2008).
    Article  Google Scholar 

    62.
    Floerl, O., Inglis, G. J., Dey, K. & Smith, A. The importance of transport hubs in stepping-stone invasions. J. Appl. Ecol. 46, 37–45 (2009).
    Article  Google Scholar 

    63.
    Nordyke, E. C. & Lee, R. K. C. Chinese in Hawai’i: a historical and demographic perspective. Hawaii. J. Hist. 23, 196–216 (1989).
    Google Scholar 

    64.
    Gay, F. J. A World Review of Introduced Species of Termites (CSIRO, 1967).

    65.
    Boyd, M. Oriental immigration: the experience of the Chinese, Japanese, and Filipino populations in the United States. Int. Migr. Rev. 5, 48–61 (1971).
    Article  Google Scholar 

    66.
    Matsumoto, Y. S. Okinawa migrants to Hawaii. Hawaii. J. Hist. 16, 125–133 (1982).
    Google Scholar 

    67.
    Javal, M. et al. Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect. Mol. Ecol. 28, 951–967 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Lesieur, V. et al. The rapid spread of Leptoglossus occidentalis in Europe: a bridgehead invasion. J. Pest Sci. 92, 189–200 (2019).
    Article  Google Scholar 

    70.
    Correa, M. C. G. et al. European bridgehead effect in the worldwide invasion of the obscure mealybug. Biol. Invasions 21, 123–136 (2019).
    Article  Google Scholar 

    71.
    Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).
    PubMed  Article  Google Scholar 

    72.
    Yang, C.-C. et al. Propagule pressure and colony social organization are associated with the successful invasion and rapid range expansion of fire ants in China. Mol. Ecol. 21, 817–833 (2012).
    PubMed  Article  Google Scholar 

    73.
    Blumenfeld, A. J. & Vargo, E. L. Geography, opportunity and bridgeheads facilitate termite invasions to the United States. Biol. Invasions 22, 3269–3282 (2020).
    Article  Google Scholar 

    74.
    Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524 (1991).
    CAS  PubMed  Article  Google Scholar 

    75.
    Crnokrak, P. & Barrett, S. C. H. Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56, 2347–2358 (2002).
    PubMed  Article  Google Scholar 

    76.
    Eyer, P. A. et al. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol. Ecol. 27, 4711–4724 (2018).
    PubMed  Google Scholar 

    77.
    Facon, B. et al. Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr. Biol. 21, 424–427 (2011).
    CAS  PubMed  Article  Google Scholar 

    78.
    Charlesworth, J. & Eyre-Walker, A. The other side of the nearly neutral theory, evidence of slightly advantageous back-mutations. Proc. Natl Acad. Sci. USA 104, 16992 (2007).
    CAS  PubMed  Article  Google Scholar 

    79.
    Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 14, 82 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Zepeda‐Paulo, F. et al. The invasion route for an insect pest species: the tobacco aphid in the New World. Mol. Ecol. 19, 4738–4752 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Miller, N. et al. Multiple transatlantic introductions of the western corn rootworm. Science 310, 992 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Kolbe, J. J. et al. Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. Conserv. Biol. 21, 1612–1625 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Whitney, K. D. & Gabler, C. A. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers. Distrib. 14, 569–580 (2008).
    Article  Google Scholar 

    84.
    Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. Proc. Natl Acad. Sci. USA 97, 5948–5953 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Pearcy, M., Goodisman, M. A. & Keller, L. Sib mating without inbreeding in the longhorn crazy ant. Proc. R. Soc. B: Biol. Sci. 278, 2677–2681 (2011).
    Article  Google Scholar 

    86.
    Eyer, P.-A., Blumenfeld, A. J. & Vargo, E. L. Sexually antagonistic selection promotes genetic divergence between males and females in an ant. Proc. Natl Acad. Sci. USA 116, 24157–24163 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Su, N.-Y., Scheffrahn, R. H. & Weissling, T. A new introduction of a subterranean termite, Coptotermes havilandi Holmgren (Isoptera: Rhinotermitidae) in Miami, Florida. Fla. Entomol. 80, 408–411 (1997).
    Article  Google Scholar 

    88.
    Chouvenc, T., Scheffrahn, R. H., Mullins, A. J. & Su, N.-Y. Flight phenology of two Coptotermes species (Isoptera: Rhinotermitidae) in southeastern Florida. J. Econ. Entomol. 110, 1693–1704 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    89.
    Chouvenc, T., Helmick, E. E. & Su, N.-Y. Hybridization of two major termite invaders as a consequence of human activity. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0120745 (2015).

    90.
    Chouvenc, T., Sillam-Dussès, D. & Robert, A. Courtship behavior confusion in two subterranean termite species that evolved in allopatry (Blattodea, Rhinotermitidae, Coptotermes). J. Chem. Ecol. https://doi.org/10.1007/s10886-020-01178-2 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    91.
    Perdereau, E. et al. Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    92.
    Perdereau, E. et al. Relationship between invasion success and colony breeding structure in a subterranean termite. Mol. Ecol. 24, 2125–2142 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    93.
    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).
    PubMed Central  Article  Google Scholar 

    94.
    Clement, J. L. & Bagneres, A. G. in Pheromone Communication in Social Insects. Ants, Wasps, Bees, and Termites (eds Vander Meer, R. K., Breed, M. D., Espelie, K. E. & Winston, M. L.) 126–155 (Westview Press, 1998).

    95.
    Perdereau, E., Dedeine, F., Christidès, J.-P. & Bagnères, A.-G. Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189–1198 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Perdereau, E., Dedeine, F., Christidès, J. P., Dupont, S. & Bagnères, A. G. Competition between invasive and indigenous species: an insular case study of subterranean termites. Biol. Invasions 13, 1457–1470 (2010).
    Article  Google Scholar 

    97.
    Perdereau, E., Bagnères, A. G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. 57, 393–402 (2010).
    Article  Google Scholar 

    98.
    Fournier, D. et al. Clonal reproduction by males and females in the little fire ant. Nature 435, 1230–1234 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    99.
    Thoms, E. M. et al. Bugs, baits, and bureaucracy: completing the first termite bait efficacy trials (quarterly replenishment of noviflumuron) initiated after adoption of Florida Rule, Chapter 5E-2.0311. Am. Entomol. 55, 29–39 (2009).
    Article  Google Scholar 

    100.
    Vargo, E. & Husseneder, C. in Biology of Termites: A Modern Synthesis (eds Bignell, D. E., Roisin, Y. & Lo, N.) 321–348 (Springer, 2011).

    101.
    FastQC v0.11.8 (Babraham Bioinformatics, Babraham Institute, 2018).

    102.
    Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    103.
    Paris, J. R., Stevens, J. R. & Catchen, J. M. Lost in parameter space: a road map for stacks. Methods Ecol. Evol. 8, 1360–1373 (2017).
    Article  Google Scholar 

    104.
    Benestan, L. M. et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol. Ecol. 25, 2967–2977 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    105.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    106.
    Lischer, H. E. L. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    107.
    Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational Inference of Population Structure in Large SNP Data Sets. Genetics 197, 573 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    108.
    Pina-Martins, F., Silva, D. N., Fino, J. & Paulo, O. S. Structure_threader: an improved method for automation and parallelization of programs structure, fastStructure and MavericK on multicore CPU systems. Mol. Ecol. Resour. 17, e268–e274 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    109.
    Chhatre, V. E. Distruct v2.3, A modified cluster membership plotting script. http://distruct2.popgen.org (2018).

    110.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    111.
    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).

    112.
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    113.
    Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Biol. Evol. 35, 1284–1290 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    114.
    Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    115.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    116.
    Leaché, A. D., Banbury, B. L., Felsenstein, J., de Oca, An-M. & Stamatakis, A. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    117.
    Pattengale, N. D., Masoud, A., Bininda-Emonds, O. R. P., Moret, B. M. E. & Stamatkis, A. How many bootstrap replicates are necessary? J. Comput. Biol. 17, 337–354 (2010).
    CAS  PubMed  Article  Google Scholar 

    118.
    Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025 (2002).
    PubMed  PubMed Central  Google Scholar 

    119.
    Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2016).
    CAS  PubMed  Article  Google Scholar 

    120.
    Ryan, S. F. et al. Global invasion history of the agricultural pest butterfly Pieris rapae revealed with genomics and citizen science. Proc. Natl Acad. Sci. USA 116, 20015 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Fraimout, A. et al. Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol. Biol. Evol. 34, 980–996 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    122.
    Cornuet, J.-M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    123.
    Raynal, L. et al. ABC random forests for Bayesian parameter inference. Bioinformatics 35, 1720–1728 (2018).
    Article  CAS  Google Scholar 

    124.
    Liu, X. & Fu, Y.-X. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    125.
    Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    126.
    Liu, X., Fu, Y.-X., Maxwell, T. J. & Boerwinkle, E. Estimating population genetic parameters and comparing model goodness-of-fit using DNA sequences with error. Genome Res. 20, 101–109 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    127.
    Nielsen, R. Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics 154, 931 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    128.
    Liu, S., Ferchaud, A.-L., Grønkjær, P., Nygaard, R. & Hansen, M. M. Genomic parallelism and lack thereof in contrasting systems of three-spined sticklebacks. Mol. Ecol. 27, 4725–4743 (2018).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Patterns and processes of pathogen exposure in gray wolves across North America

    1.
    Ferrari, M. J. et al. The dynamics of measles in sub-Saharan Africa. Nature 451, 679–684 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hudson, P. J. et al. Trophic interactions and population growth rates: Describing patterns and identifying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 357, 1259–1271 (2002).
    Article  Google Scholar 

    3.
    Thieltges, D. W., Ferguson, M. A. D., Jones, C. S., Leslie, R. & Poulin, R. Biogeographical patterns of marine larval trematode parasites in two intermediate snail hosts in Europe. J. Biogeogr. 36, 1493–1501 (2009).
    Article  Google Scholar 

    4.
    Bryan, H. M. et al. Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: Wolves in a coastal archipelago. Parasitology 139, 781–790 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Hosseini, P. R., Dhondt, A. A. & Dobson, A. Seasonality and wildlife disease: how seasonal birth, aggregation and variation in immunity affect the dynamics of Mycoplasma gallisepticum in house finches. Proc. R Soc. London Ser. B Biol. Sci. 271, 2569–2577 (2004).
    Article  Google Scholar 

    6.
    Guernier, V., Hochberg, M. E. & Guégan, J. F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, 740–746 (2004).
    CAS  Article  Google Scholar 

    7.
    Nunn, C. L., Altizer, S. M., Sechrest, W. & Cunningham, A. A. Latitudinal gradients of parasite species richness in primates. Divers. Distrib. 11, 249–256 (2005).
    Article  Google Scholar 

    8.
    Merino, S. et al. Haematozoa in forest birds from southern Chile: Latitudinal gradients in prevalence and parasite lineage richness. Austral. Ecol. 33, 329–340 (2008).
    Article  Google Scholar 

    9.
    Benejam, L., Alcaraz, C., Sasal, P., Simon-Levert, G. & García-Berthou, E. Life history and parasites of the invasive mosquitofish (Gambusia holbrooki) along a latitudinal gradient. Biol. Invasions 11, 2265–2277 (2009).
    Article  Google Scholar 

    10.
    Seabloom, E. W., Borer, E. T., Mitchell, C. E. & Power, A. G. Viral diversity and prevalence gradients in North American Pacific Coast grasslands. Ecology 91, 721–732 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Bonds, M. H., Dobson, A. P. & Keenan, D. C. Disease ecology, biodiversity, and the latitudinal gradient in income. PLoS Biol. 10, e1001456 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Peterson, R. O., Thomas, N. J., Thurber, J. M., Vucetich, J. A. & Waite, T. A. Population limitations and the wolves of Isle Royale. J. Mammal. 97, 828–841 (1998).
    Article  Google Scholar 

    14.
    Almberg, E. S., Mech, L. D., Smith, D. W., Sheldon, J. W. & Crabtree, R. L. A serological survey of infectious disease in Yellowstone National Park’s canid community. PLoS ONE 4, e7042 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Almberg, E. S. et al. Social living mitigates the costs of a chronic illness in a cooperative carnivore. Ecol. Lett. 18, 660–667 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Brandell, E. E. et al. Infectious diseases in Yellowstone’s Wolves. In Yellowstone Wolves: Science and Discovery in the World’s First National Park (eds. Smith, D. W., Stahler, D. R. & MacNulty, D. R.) 121–133 (The University of Chicago Press, 2020).

    17.
    Watts, D. E. & Benson, A. M. Prevalence of antibodies for selected canine pathogens among wolves (Canis lupus) from the Alaska Peninsula, USA. J. Wildl. Dis. 52, 506–515 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Carstensen, M. et al. A serosurvey of diseases of free-ranging gray wolves (Canis lupus) in Minnesota, USA. J. Wildl. Dis. 53, 459–471 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Anderson, R. M. & May, R. M. Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).
    Article  Google Scholar 

    20.
    Silbernagel, E. R., Skelton, N. K., Waldner, C. L. & Bollinger, T. K. Interaction among deer in a chronic wasting disease endemic zone. J. Wildl. Manag. 75, 1453–1461 (2011).
    Article  Google Scholar 

    21.
    Gehrt, S. D. Raccoons and allies. In Wild Mammals of North America: Biology, Management, and Conservation (eds. Feldhamer, G., Thompson, B. & Chapman, J.) 611–633 (2003).

    22.
    McFarlane, R., Sleigh, A. & McMichael, T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9, 24–35 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Woodroffe, R. et al. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PLoS ONE 7, e30099 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Knobel, D. L., Butler, J. R., Lembo, T., Critchlow, R. & Gompper, M. E. Dogs, disease, and wildlife. In Free-Ranging Dogs and Wildlife Conservation (ed. Gompper, M. E.) (Oxford University Press, Oxford, 2014).
    Google Scholar 

    25.
    Viana, M. et al. Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in domestic dogs and lions. Proc. Natl. Acad. Sci. 112, 1464–1469 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Bianco, A. et al. Two waves of canine distemper virus showing different spatio-temporal dynamics in Alpine wildlife (2006–2018). Infect. Genet. Evol. 84, 104359 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Dubey, J. P., Schares, G. & Ortega-Mora, L. M. Epidemiology and control of neosporosis and Neospora caninum. Clin. Microbiol. Rev. 20, 323–367 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science 323, 1339–1343 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Candille, S. I. et al. A β-defensin mutation causes black coat color in domestic dogs. Science 318, 1418–1423 (2007).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Coulson, T., Macnulty, D. R., Stahler, D. R., Wayne, R. K. & Smith, D. W. Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science 334, 1275–1278 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Hedrick, P. W., Stahler, D. R. & Dekker, D. Heterozygote advantage in a finite population: Black color in wolves. J. Hered. 105, 457–465 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Altizer, S., Davis, A. K., Cook, K. C. & Cherry, J. J. Age, sex, and season affect the risk of mycoplasmal conjunctivitis in a southeastern house finch population. Can. J. Zool. 82, 755–763 (2004).
    Article  Google Scholar 

    33.
    Biek, R. et al. Factors associated with pathogen seroprevalence and infection in Rocky Mountains cougars. J. Wildl. Dis. 42, 606–615 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Härkönen, T., Harding, K., Rasmussen, T. D., Teilmann, J. & Dietz, R. Age- and sex-specific mortality patterns in an emerging wildlife epidemic: The phocine distemper in European harbour seals. PLoS ONE 2, e887 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Guerra-Silveira, F. & Abad-Franch, F. Sex bias in infectious disease epidemiology: Patterns and processes. PLoS ONE 8, e62390 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    McDonald, J. L., Smith, G. C., McDonald, R. A., Delahay, R. J. & Hodgson, D. Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife–disease interactions. Proc. R. Soc. B Biol. Sci. 281, 20140526 (2014).
    Article  Google Scholar 

    37.
    Williams, E. S. & Barker, I. K. (eds) Infectious Diseases of Wild Mammals (Wiley, New York, 2001).
    Google Scholar 

    38.
    USGS. North America Political Boundaries. (2006). Available at: https://www.sciencebase.gov/catalog/item/4fb555ebe4b04cb937751db9.

    39.
    Justice-Allen, A. & Clement, M. J. Effect of canine parvovirus and canine distemper virus on the Mexican wolf (Canis lupus baileyi) population in the USA. J. Wildl. Dis. 55, 682–688 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Nelson, B. et al. Prevalence of antibodies to canine parvovirus and distemper virus in wolves in the Canadian Rocky Mountains. J. Wildl. Dis. 48, 68–76 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing). (2019 v3.6.3). Available at: https://www.R-project.org.

    42.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    43.
    Gelman, A. & Loken, E. The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time. Psychol. Bull. 140, 1272–1280 (2013).
    Google Scholar 

    44.
    Fuller, T. K. & Murray, D. L. Biological and logistical explanations of variation in wolf population density. Anim. Conserv. 1, 153–157 (1998).
    Article  Google Scholar 

    45.
    Fuller, T. K. & Sievert, P. R. Carnivore demography and the consequences of changes in prey availability. In Conservation biology series – Cambridge 163–178 (2001).

    46.
    MacNulty, D. R., Tallian, A., Stahler, D. R. & Smith, D. W. Influence of group size on the success of wolves hunting bison. PLoS ONE 9, 1–8 (2014).
    Article  CAS  Google Scholar 

    47.
    Barber-Meyer, S. M., Mech, L. D., Newton, W. E. & Borg, B. L. Differential wolf-pack-size persistence and the role of risk when hunting dangerous prey. Behaviour 153, 1473–1487 (2016).
    Article  Google Scholar 

    48.
    Gipson, P. S., Ballard, W. B., Nowak, R. M. & Mech, L. D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manag. 64, 752 (2000).
    Article  Google Scholar 

    49.
    Fuller, T. K., Mech, L. D. & Cochrane, J. F. Wolf population dynamics. In Wolves: Behavior, Ecology, and Conservation (eds Mech, L. D. & Boitani, L.) 161–191 (University of Chicago Press, Chicago, 2003).
    Google Scholar 

    50.
    Jimenez, M. D. et al. Wolf dispersal in the Rocky Mountains, Western United States: 1993–2008. J. Wildl. Manag. 81, 581–592 (2017).
    Article  Google Scholar 

    51.
    NASA Socioeconomic Data and Applications Center. Gridded Population of the World (GPW), v4. EarthData (2015). Available at: https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11/data-download.

    52.
    Millán, J. et al. Patterns of exposure of Iberian wolves (Canis lupus) to canine viruses in human-dominated landscapes. EcoHealth 13, 123–134 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    North American Land Change Monitoring System 30m, 2010–2015 (Landsat). Commission of Environmental Cooperation (2015). Available at: http://www.cec.org/north-american-land-change-monitoring-system/.

    54.
    USGS EROS Archive—Digital Elevation—Global 30 Arc-Second Elevation (GTOPO30). Earth Resources Observation and Science (EROS) Center (1996).

    55.
    Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).
    Article  Google Scholar 

    56.
    Poole, K. G., Wakelyn, L. A. & Nicklen, P. N. Habitat selection by lynx in the Northwest Territories. Can. J. Zool. 74, 845–850 (1996).
    Article  Google Scholar 

    57.
    Nielsen, S. E., Boyce, M. S., Stenhouse, G. B. & Munro, R. H. M. Modeling grizzly bear habitats in the yellowhead ecosystem of Alberta: Taking autocorrelation seriously. Ursus 13, 45–56 (2001).
    Google Scholar 

    58.
    Arjo, W. M. & Pletscher, D. H. Coyote and wolf habitat use in northwestern Montana. Northwest Sci. 78, 24–32 (2004).
    Google Scholar 

    59.
    Oakleaf, J. K. et al. Habitat selection by recolonizing wolves in the northern Rocky Mountains of the United States. J. Wildl. Manag. 70, 554–563 (2006).
    Article  Google Scholar 

    60.
    Hebblewhite, M. & Merrill, E. Modelling wildlife-human relationships for social species with mixed-effects resource selection models. J. Appl. Ecol. 45, 834–844 (2008).
    Article  Google Scholar 

    61.
    Roever, C. L., Boyce, M. S. & Stenhouse, G. B. Grizzly bears and forestry II: Grizzly bear habitat selection and conflicts with road placement. For. Ecol. Manag. 256, 1262–1269 (2008).
    Article  Google Scholar 

    62.
    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J. P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc. Ecol. 25, 419–433 (2010).
    Article  Google Scholar 

    63.
    Mayor, S. J., Schneider, D. C., Schaefer, J. A. & Mahoney, S. P. Habitat selection at multiple scales. Ecoscience 16, 238–247 (2009).
    Article  Google Scholar 

    64.
    Milakovic, B. et al. Habitat selection by a focal predator (Canis lupus) in a multiprey ecosystem of the northern Rockies. J. Mammal. 92, 568–582 (2011).
    Article  Google Scholar 

    65.
    Kittle, A. M. et al. Wolves adapt territory size, not pack size to local habitat quality. J. Anim. Ecol. 84, 1177–1186 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Kittle, A. M. et al. Landscape-level wolf space use is correlated with prey abundance, ease of mobility, and the distribution of prey habitat. Ecosphere 8, e01783 (2017).
    Article  Google Scholar 

    67.
    Morin, S. J., Bowman, J., Marrotte, R. R. & Fortin, M. J. Fine-scale habitat selection by sympatric Canada lynx and bobcat. Ecol. Evol. 10, 9396–9409 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    O’Neil, S. T., Vucetich, J. A., Beyer, D. E., Hoy, S. R. & Bump, J. K. Territoriality drives preemptive habitat selection in recovering wolves: Implications for carnivore conservation. J. Anim. Ecol. 89, 1433–1447 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models (Cambridge University Press, 2007).

    70.
    Menard, S. Standards for standardized logistic regression coefficients. Soc. Forces 89, 1409–1428 (2011).

    71.
    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (Wiley, New York, 2000).
    Google Scholar 

    72.
    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, Berlin, 2009).
    Google Scholar 

    73.
    Finkelman, B. S. et al. Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral coexistence and latitudinal gradients. PLoS ONE 2, e1296 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Nguyen, D. et al. Fungal disease incidence along tree diversity gradients depends on latitude in European forests. Ecol. Evol. 6, 2426–2438 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    75.
    Rhodes, C. J., Atkinson, R. P. D., Anderson, R. M. & Macdonald, D. W. Rabies in Zimbabwe: reservoir dogs and the implications for disease control. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 353, 999–1010 (1998).
    CAS  Article  Google Scholar 

    76.
    Lembo, T. et al. Exploring reservoir dynamics: A case study of rabies in the Serengeti ecosystem. J. Appl. Ecol. 45, 1246–1257 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 597–614 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    Nunn, C. L. & Heymann, E. W. Malaria infection and host behavior: A comparative study of Neotropical primates Malaria infection and host behavior. Behav. Ecol. Sociobiol. 59, 30–37 (2005).
    Article  Google Scholar 

    79.
    Begon, M., Bowers, R. G., Kadianakis, N. & Hodgkinson, D. E. Disease and community structure: the importance of host self-regulation in a host-host-pathogen model. Am. Nat. 139, 1131–1150 (1992).
    Article  Google Scholar 

    80.
    Power, A. G. & Mitchell, C. E. Pathogen spillover in disease epidemics. Am. Nat. 164, S79–S89 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Schweizer, R. M. et al. Natural selection and origin of a melanistic allele in North American gray wolves. Mol. Biol. Evol. 35, 1190–1209 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Wilson, P. J., Grewal, S. K., Mallory, F. F. & White, B. N. Genetic characterization of hybrid wolves across Ontario. J. Hered. 100, S80–S89 (2009).
    CAS  Article  Google Scholar 

    84.
    Gondim, L. F. P. et al. Transmission of Neospora caninum between wild and domestic animals. J. Parasitol. 90, 1361–1365 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Dubey, J. P. et al. Seroprevalence of Neospora caninum and Toxoplasma gondii antibodies in white-tailed deer (Odocoileus virginianus) from Iowa and Minnesota using four serologic tests. Vet. Parasitol. 161, 330–334 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Stieve, E., Beckmen, K., Kania, S. A., Widner, A. & Patton, S. Neospora caninum and Toxoplasma gondii antibody prevalence in Alaska wildlife. J. Wildl. Dis. 46, 348–355 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Pruvot, M., Hutchins, W. & Orsel, K. Statistical evaluation of a commercial Neospora caninum competitive ELISA in the absence of a gold standard: Application to wild elk (Cervus elaphus) in Alberta. Parasitol. Res. 113, 2899–2905 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    88.
    Bondo, K. J. et al. Health survey of boreal caribou (Rangifer tarandus caribou) in northeastern British Columbia, Canada. J. Wildl. Dis. 55, 544–562 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Donahoe, S. L., Lindsay, S. A., Krockenberger, M., Phalen, D. & Šlapeta, J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int. J. Parasitol. Parasites Wildl. 4, 216–238 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Huggard, D. J. Prey selectivity of wolves in Banff National Park I. Prey species. Can. J. Zool. 71, 130–139 (1993).
    Article  Google Scholar 

    91.
    Hebblewhite, M., Paquet, P. C., Pletscher, D. H., Lessard, R. B. & Callaghan, C. J. Development and application of a ratio estimator to estimate wolf kill rates and variance in a multiple-prey system. Wildl. Soc. Bull. 31, 933–946 (2003).
    Google Scholar 

    92.
    Adams, L. G. et al. Are inland wolf-ungulate systems influenced by marine subsidies of Pacific salmon?. Ecol. Appl. 20, 251–262 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Latham, A. D. M., Latham, M. C., McCutchen, N. A. & Boutin, S. Invading white-tailed deer change wolf-caribou dynamics in northeastern Alberta. J. Wildl. Manag. 75, 204–212 (2011).
    Article  Google Scholar 

    94.
    Metz, M. C., Smith, D. W., Vucetich, J. A., Stahler, D. R. & Peterson, R. O. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park. J. Anim. Ecol. 81, 553–563 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Merkle, J. A., Polfus, J. L., Derbridge, J. J. & Heinemeyer, K. S. Dietary niche partitioning among black bears, grizzly bears and wolves in a multi-prey ecosystem. Can. J. Zool. 95, 663–671 (2017).
    Article  Google Scholar 

    96.
    Gable, T. D., Windels, S. K., Bruggink, J. G. & Barber-Meyer, S. M. Weekly summer diet of gray wolves (Canis lupus) in northeastern Minnesota. Am. Midl. Nat. 179, 15–27 (2018).
    Article  Google Scholar 

    97.
    O’Donovan, S. A., Budge, S. M., Hobson, K. A., Kelly, A. P. & Derocher, A. E. Intrapopulation variability in wolf diet revealed using a combined stable isotope and fatty acid approach. Ecosphere 9, e02420 (2018).
    Article  Google Scholar 

    98.
    Whittington, J., St. Clair, C. C. & Mercer, G. Spatial responses of wolves to roads and trails in mountain valleys. Ecol. Appl. 15, 543–553 (2005).
    Article  Google Scholar  More

  • in

    Capturing yeast associated with grapes and spontaneous fermentations of the Negro Saurí minority variety from an experimental vineyard near León

    1.
    Csoma, H., Zakany, N., Capece, A., Romano, P. & Sipiczki, M. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: Comparative genotypic and phenotypic analysis. Int. J. Food Microbiol. 140, 239–248. https://doi.org/10.1016/j.ijfoodmicro.2010.03.024 (2010).
    CAS  Article  PubMed  Google Scholar 
    2.
    Di Maio, S. et al. Biodiversity of indigenous Saccharomyces populations from old wineries of South-Eastern Sicily (Italy): Preservation and economic potential. PLoS ONE 7, e30428. https://doi.org/10.1371/journal.pone.0030428 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Bokulich, N. A., Ohta, M., Richardson, P. M. & Mills, D. A. Monitoring seasonal changes in winery-resident microbiota. PLoS ONE 8, e66437. https://doi.org/10.1371/journal.pone.0066437 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Mas, A., Padilla, B., Esteve-Zarzoso, B. & Beltran, G. Utilización de inóculos mixtos de levaduras autóctonas como herramienta para reproducir la huella microbiológica de la zona. Acenologica. http://www.acenologia.com/cienciaytecnologia/inoculos_mixtos_levaduras_autoctonas_cienc0715.htm (2013).

    5.
    Varela, C. & Borneman, A. R. Yeasts found in vineyards and wineries. Yeast 34, 111–128. https://doi.org/10.1002/yea.3219 (2017).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fleet, G. H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86, 11–22. https://doi.org/10.1016/S0168-1605(03)00245-9 (2003).
    CAS  Article  PubMed  Google Scholar 

    7.
    Mannazzu, I., Clementi, F. & Ciani, M. In Biodiversity and Biotechnology of Wine Yeasts 19–34 (2002).

    8.
    Martini, A., Ciani, M. & Scorzetti, G. Direct enumeration and isolation of wine yeasts from grape surfaces. Am. J. Enol. Vit. 47, 435 (1996).
    Google Scholar 

    9.
    Mortimer, R. & Polsinelli, M. On the origins of wine yeast. Res. Microbiol. 150, 199–204. https://doi.org/10.1016/S0923-2508(99)80036-9 (1999).
    CAS  Article  PubMed  Google Scholar 

    10.
    Ciani, M., Comitini, F., Mannazzu, I. & Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 10, 123–133. https://doi.org/10.1111/j.1567-1364.2009.00579.x (2010).
    CAS  Article  PubMed  Google Scholar 

    11.
    Ribéreau-Gayon, P., Dubourdieu, D., Donéche, B. & Lonvaud, A. The Microbiology of Wine and Vinifications 2nd edn, Vol. 1, 512 (2006).

    12.
    Charoenchai, C., Fleet, G. H., Henschke, P. A. & Todd, B. E. N. T. Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aus. J. Grape Wine Res. 3, 2–8. https://doi.org/10.1111/j.1755-0238.1997.tb00109.x (1997).
    CAS  Article  Google Scholar 

    13.
    Fernández, M. T., Ubeda, J. F. & Briones, A. I. Comparative study of non-Saccharomyces microflora of musts in fermentation, by physiological and molecular methods. FEMS Microbiol. Lett. 173, 223–229. https://doi.org/10.1111/j.1574-6968.1999.tb13506.x (1999).
    Article  Google Scholar 

    14.
    Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A. & Masneuf-Pomarede, I. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 125, 197–203. https://doi.org/10.1016/j.ijfoodmicro.2008.04.001 (2008).
    CAS  Article  PubMed  Google Scholar 

    15.
    Grangeteau, C. et al. Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation?. Food Microbiol. 50, 70–77. https://doi.org/10.1016/j.fm.2015.03.009 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Fleet, G. H. Wine yeasts for the future. FEMS Yeast Res. 8, 979–995. https://doi.org/10.1111/j.1567-1364.2008.00427.x (2008).
    CAS  Article  PubMed  Google Scholar 

    17.
    Canonico, L., Comitini, F., Oro, L. & Ciani, M. Sequential fermentation with selected immobilized non-Saccharomyces yeast for reduction of ethanol content in wine. Front. Microbiol. 7, 278–278. https://doi.org/10.3389/fmicb.2016.00278 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Padilla, B., Gil, J. V. & Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 7, 411–411. https://doi.org/10.3389/fmicb.2016.00411 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Esteve-Zarzoso, B., Manzanares, P., Ramön, D. & Quero, A. The role of non-Saccharomyces yeasts in industrial winemaking. Int. Microbiol. 1, 143–148 (1998).
    CAS  PubMed  Google Scholar 

    20.
    Gonzalez, R., Quirós, M. & Morales, P. Yeast respiration of sugars by non-Saccharomyces yeast species: A promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci. Techol. 29, 55–61. https://doi.org/10.1016/j.tifs.2012.06.015 (2013).
    CAS  Article  Google Scholar 

    21.
    Quirós, M., Rojas, V., Gonzalez, R. & Morales, P. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int. J. Food Microbiol. 181, 85–91. https://doi.org/10.1016/j.ijfoodmicro.2014.04.024 (2014).
    CAS  Article  PubMed  Google Scholar 

    22.
    Morales, P., Rojas, V., Quirós, M. & Gonzalez, R. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl. Microbiol. Biotechnol. 99, 3993–4003. https://doi.org/10.1007/s00253-014-6321-3 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Varela, C. et al. Strategies for reducing alcohol concentration in wine. Aus. J. Grape Wine Res. 21, 670–679. https://doi.org/10.1111/ajgw.12187 (2015).
    Article  Google Scholar 

    24.
    Roudil, L. et al. Non-Saccharomyces commercial starter cultures: Scientific trends, recent patents and innovation in the wine sector. Recent Patents Food Nutr. Agric. https://doi.org/10.2174/2212798410666190131103713 (2019).
    Article  Google Scholar 

    25.
    Le Jeune, C., Erny, C., Demuyter, C. & Lollier, M. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol. 23, 709–716. https://doi.org/10.1016/j.fm.2006.02.007 (2006).
    CAS  Article  PubMed  Google Scholar 

    26.
    Versavaud, A., Courcoux, P., Roulland, C., Dulau, L. & Hallet, J. N. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl. Environ. Microbiol. 61, 3521 (1995).
    CAS  Article  Google Scholar 

    27.
    Pérez-Coello, M. S., Briones Pérez, A. I., Ubeda Iranzo, J. F. & Martin Alvarez, P. J. Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiol. 16, 563–573. https://doi.org/10.1006/fmic.1999.0272 (1999).
    CAS  Article  Google Scholar 

    28.
    Torriani, S., Zapparoli, G. & Suzzi, G. Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Antonie Van Leeuwenhoek 75, 207–215. https://doi.org/10.1023/A:1001773916407 (1999).
    CAS  Article  PubMed  Google Scholar 

    29.
    Naumov, G. I., Masneuf, I., Naumova, E. S., Aigle, M. & Dubourdieu, D. Association of Saccharomyces bayanus var. uvarum with some French wines: Genetic analysis of yeast populations. Res. Microbiol. 151, 683–691. https://doi.org/10.1016/s0923-2508(00)90131-1 (2000).
    CAS  Article  PubMed  Google Scholar 

    30.
    Redžepović, S., Orlić, S., Sikora, S., Majdak, A. & Pretorius, I. S. Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Letts. Appl. Microbiol. 35, 305–310. https://doi.org/10.1046/j.1472-765X.2002.01181.x (2002).
    Article  Google Scholar 

    31.
    Rementeria, A. et al. Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country, North Spain). Int. J. Food Microbiol. 86, 201–207. https://doi.org/10.1016/S0168-1605(03)00289-7 (2003).
    CAS  Article  PubMed  Google Scholar 

    32.
    Cappello, M. S., Bleve, G., Grieco, F., Dellaglio, F. & Zacheo, G. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J. Appl. Microbiol. 97, 1274–1280. https://doi.org/10.1111/j.1365-2672.2004.02412.x (2004).
    CAS  Article  PubMed  Google Scholar 

    33.
    Fay, J. C. & Benavides, J. A. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1, e5. https://doi.org/10.1371/journal.pgen.0010005 (2005).
    CAS  Article  PubMed Central  Google Scholar 

    34.
    Schuller, D., Alves, H., Dequin, S. & Casal, M. Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol. Ecol. 51, 167–177. https://doi.org/10.1016/j.femsec.2004.08.003 (2005).
    CAS  Article  PubMed  Google Scholar 

    35.
    Viel, A. et al. The geographic distribution of Saccharomyces cerevisiae isolates within three Italian neighboring winemaking regions reveals strong differences in yeast abundance, genetic diversity and industrial strain dissemination. Front. Microbiol. 8, 1595–1595. https://doi.org/10.3389/fmicb.2017.01595 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Sun, Y. et al. Evaluation of Chinese Saccharomyces cerevisiae wine strains from different geographical origins. Am. J. Enol. Vit. 68, 73. https://doi.org/10.5344/ajev.2016.16059 (2017).
    Article  Google Scholar 

    37.
    da Silva, G. A. D., Agustini, B. C., de Mello, L. M. R. & Tonietto, J. Autochthonous yeast populations from different Brazilian geographic indications. BIO Web Conf. 7 (2016).

    38.
    Crosato, G. et al. Genetic variability and physiological traits of Saccharomyces cerevisiae strains isolated from “Vale dos Vinhedos” vineyards reflect agricultural practices and history of this Brazilian wet subtropical area. World J. Microbiol. Biotechnol. 34, 105. https://doi.org/10.1007/s11274-018-2490-z (2018).
    CAS  Article  PubMed  Google Scholar 

    39.
    Chavan, P. et al. Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiol. 26, 801–808. https://doi.org/10.1016/j.fm.2009.05.005 (2009).
    CAS  Article  PubMed  Google Scholar 

    40.
    Kachalkin, A. V., Abdullabekova, D. A., Magomedova, E. S., Magomedov, G. G. & Chernov, I. Y. Yeasts of the vineyards in Dagestan and other regions. Microbiology 84, 425–432. https://doi.org/10.1134/S002626171503008X (2015).
    CAS  Article  Google Scholar 

    41.
    Cordero-Bueso, G., Arroyo, T., Serrano, A. & Valero, E. Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS Microbiol. Ecol. 77, 429–437. https://doi.org/10.1111/j.1574-6941.2011.01124.x (2011).
    CAS  Article  PubMed  Google Scholar 

    42.
    Valero, E., Schuller, D., Cambon, B., Casal, M. & Dequin, S. Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study. FEMS Yeast Res. 5, 959–969. https://doi.org/10.1016/j.femsyr.2005.04.007 (2005).
    CAS  Article  PubMed  Google Scholar 

    43.
    Valero, E., Cambon, B., Schuller, D., Casal, M. & Dequin, S. Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res. 7, 317–329. https://doi.org/10.1111/j.1567-1364.2006.00161.x (2007).
    CAS  Article  PubMed  Google Scholar 

    44.
    Blanco, P., Mirás-Avalos, J. M. & Orriols, I. Effect of must characteristics on the diversity of Saccharomyces strains and their prevalence in spontaneous fermentations. J. Appl. Microbiol. 112, 936–944. https://doi.org/10.1111/j.1365-2672.2012.05278.x (2012).
    CAS  Article  PubMed  Google Scholar 

    45.
    Garofalo, C., Tristezza, M., Grieco, F., Spano, G. & Capozzi, V. From grape berries to wine: Population dynamics of cultivable yeasts associated to “Nero di Troia” autochthonous grape cultivar. World J. Microbiol. Biotechnol. 32, 59. https://doi.org/10.1007/s11274-016-2017-4 (2016).
    CAS  Article  PubMed  Google Scholar 

    46.
    Schuller, D. et al. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS ONE 7, e32507. https://doi.org/10.1371/journal.pone.00325 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Martinez, M. C. & Perez, J. E. The forgotten vineyard of the Asturias Princedom (north of Spain) and ampelographic description of its grapevine cultivars (Vitis vinifera L.). Am. J. Enol. Vit. 51, 370–378 (2000).
    Google Scholar 

    48.
    Yuste, J. et al. Identification of autochthonous grapevine varieties in the germplasm collection at the ITA of “Castilla y León” in Zamadueñas Station, Valladolid. Spain. Spanish J. Agric. Res. https://doi.org/10.5424/sjar/2006041-175 (2006).
    Article  Google Scholar 

    49.
    Cabello, F., Saiz, R. & Muñoz, G. Estudio de variedades españolas minoritarias de vid. Acenologica. http://www.acenologia.com/cienciaytecnologia/variedades_minoritarias_cienc0213.htm (2013).

    50.
    Balda, P. & de Toda, F. M. Variedades minoritarias de vid en La Rioja. Consejería de Agricultura, Ganadería y Medio Ambiente. (2017).

    51.
    Martínez de Toda, F. Veinte nuevas variedades de vid, rescatadas de la desaparición, en la viticultura española y nuevos vinos. Acenologica. http://www.acenologia.com/dossier/dossier135.htm (2013).

    52.
    Arranz, C. et al. Variedades de vid cultivadas en la Sierra de Francia. Importancia, identificación, sinonimias y homonimias. La Semana Vitivinícola 3223, 1414–1420 (2008).
    Google Scholar 

    53.
    Ibáñez, J., Carreño, J., Yuste, J. & Martínez-Zapater, J. M. In Grapevine Breeding Programs for the Wine Industry (ed Reynolds, A.) 183–209 (Woodhead Publishing, 2015).

    54.
    Arranz Hernández, C., Barajas Tola, E., Yuste Bombín, J. & Rubio Cano, J. A. 45–58 (Comunidad de Madrid (España): Ministerio de Agricultura, Alimentación y Medio Ambiente, 2016).

    55.
    Esteve-Zarzoso, B., Belloch, C., Uruburu, F. & Querol, A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bact. 49, 329–337. https://doi.org/10.1099/00207713-49-1-329 (1999).
    CAS  Article  Google Scholar 

    56.
    Madden, T. L., Tatusov, R. L. & Zhang, J. Methods in Enzymology Vol. 266, 131–141 (Academic Press, London, 1996).
    Google Scholar 

    57.
    Legras, J.-L. & Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 221, 249–255. https://doi.org/10.1016/S0378-1097(03)00205-2 (2003).
    CAS  Article  PubMed  Google Scholar 

    58.
    Ness, F., Lavallée, F., Dubourdieu, D., Aigle, M. & Dulau, L. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62, 89–94. https://doi.org/10.1002/jsfa.2740620113 (1993).
    CAS  Article  Google Scholar 

    59.
    Lebart, L., Morineau, A. & Piron, M. Statistique Exploratoire Multidimensionnelle (Dunod Publishers, Paris, 1995).
    Google Scholar 

    60.
    Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L. & Maggio, R. M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 72, 83–90. https://doi.org/10.1016/j.tifs.2017.12.006 (2018).
    CAS  Article  Google Scholar 

    61.
    Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M. & Perona, I. An extensive comparative study of cluster validity indices. Pattern Recogn. 46, 243–256. https://doi.org/10.1016/j.patcog.2012.07.021 (2013).
    Article  Google Scholar 

    62.
    Orlić, S. et al. Diversity and oenological characterization of indigenous Saccharomyces cerevisiae associated with Žilavka grapes. World J. Microbiol. Biotechnol. 26, 1483–1489. https://doi.org/10.1007/s11274-010-0323-9 (2010).
    Article  Google Scholar 

    63.
    Tristezza, M. et al. Molecular and technological characterization of Saccharomyces cerevisiae strains isolated from natural fermentation of Susumaniello grape must in Apulia, Southern Italy. Int. J. Microbiol. 897428–897428, 2014. https://doi.org/10.1155/2014/897428 (2014).
    CAS  Article  Google Scholar 

    64.
    SchvarczovÁ, E. V. A., ŠtefáNiková, J., Jankura, E. & Kolek, E. Selection of autochthonous Saccharomyces cerevisiae strains for production of typical Pinot Gris wines. J. Food Nutr. Res. 56, 389–397 (2017).
    Google Scholar 

    65.
    Tristezza, M. et al. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 36, 335–342. https://doi.org/10.1016/j.fm.2013.07.001 (2013).
    CAS  Article  PubMed  Google Scholar 

    66.
    Sabate, J., Cano, J., Querol, A. & Guillamon, J. M. Diversity of Saccharomyces strains in wine fermentations: Analysis for two consecutive years. Lett. Appl. Microbiol. 26, 452–455. https://doi.org/10.1046/j.1472-765X.1998.00369.x (1998).
    CAS  Article  PubMed  Google Scholar 

    67.
    Bougreau, M., Ascencio, K., Bugarel, M., Nightingale, K. & Loneragan, G. Yeast species isolated from Texas High Plains vineyards and dynamics during spontaneous fermentations of Tempranillo grapes. PLoS ONE 14, e0216246–e0216246. https://doi.org/10.1371/journal.pone.0216246 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Martiniuk, J. T. et al. Impact of commercial strain use on Saccharomyces cerevisiae population structure and dynamics in Pinot Noir vineyards and spontaneous fermentations of a Canadian winery. PLoS ONE 11, e0160259. https://doi.org/10.1371/journal.pone.0160259 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Mercado, L., Jubany, S., Gaggero, C., Masuelli, R. W. & Combina, M. Molecular relationships between Saccharomyces cerevisiae strains involved in winemaking from Mendoza, Argentina. Curr. Microbiol. 61, 506–514. https://doi.org/10.1007/s00284-010-9645-y (2010).
    CAS  Article  PubMed  Google Scholar 

    70.
    de Celis, M. et al. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Lett. Appl. Microbiol. 68, 580–588. https://doi.org/10.1111/lam.13155 (2019).
    Article  PubMed  Google Scholar 

    71.
    Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 5, 14233. https://doi.org/10.1038/srep14233 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Álvarez-Pérez, J. M., Garzón-Jimeno, E. & Coque, J. J. R. Population of indigenous yeast strains from Prieto Picudo grapes in different growing areas of Denomination of Origin “Tierra de León”. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 72, 17–26. https://doi.org/10.15835/buasvmcn-hort:11013 (2015).
    Article  Google Scholar 

    73.
    Sabate, J., Cano, J., Esteve-Zarzoso, B. & Guillamón, J. M. Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol. Res. 157, 267–274. https://doi.org/10.1078/0944-5013-00163 (2002).
    CAS  Article  PubMed  Google Scholar 

    74.
    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259. https://doi.org/10.1016/j.ijfoodmicro.2011.11.025 (2012).
    CAS  Article  PubMed  Google Scholar 

    75.
    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS 111, E139–E148. https://doi.org/10.1073/pnas.1317377110 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    76.
    Russo, P. et al. Pesticide residues and stuck fermentation in Wine: New evidences indicate the urgent need of tailored regulations. Fermentation 5, 23. https://doi.org/10.3390/fermentation5010023 (2019).
    CAS  Article  Google Scholar 

    77.
    Agarbati, A., Canonico, L., Ciani, M. & Comitini, F. The impact of fungicide treatments on yeast biota of Verdicchio and Montepulciano grape varieties. PLoS ONE 14, e0217385. https://doi.org/10.1371/journal.pone.0217385 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    78.
    Kosel, J., Raspor, P. & Čadež, N. Maximum residue limit of fungicides inhibits the viability and growth of desirable non-Saccharomyces wine yeasts. Aust. J. Grape Wine Res. 25, 43–52. https://doi.org/10.1111/ajgw.12364 (2019).
    CAS  Article  Google Scholar 

    79.
    Čadež, N., Zupan, J. & Raspor, P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10, 619–630. https://doi.org/10.1111/j.1567-1364.2010.00635.x (2010).
    CAS  Article  PubMed  Google Scholar 

    80.
    Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).
    CAS  Article  Google Scholar 

    81.
    Killham, K., Lindley, N. D. & Wainwright, M. Inorganic sulfur oxidation by Aureobasidium pullulans. Appl. Environ. Microbiol. 42, 629–631 (1981).
    CAS  Article  Google Scholar 

    82.
    Gadd, G. M. & de Rome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29, 610–617. https://doi.org/10.1007/BF00260993 (1988).
    CAS  Article  Google Scholar 

    83.
    Belda, I. et al. Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Front. Microbiol. 7, 12–12. https://doi.org/10.3389/fmicb.2016.00012 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    84.
    Lin, M.M.-H. et al. Evaluation of indigenous non-Saccharomyces yeasts isolated from a South Australian vineyard for their potential as wine starter cultures. Int. J. Food Microbiol. 312, 108373. https://doi.org/10.1016/j.ijfoodmicro.2019.108373 (2020).
    CAS  Article  PubMed  Google Scholar 

    85.
    Hranilovic, A., Bely, M., Masneuf-Pomarede, I., Jiranek, V. & Albertin, W. The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems. PLoS ONE 12, e0184652. https://doi.org/10.1371/journal.pone.0184652 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    86.
    Hranilovic, A. et al. Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Sci. Rep. 8, 14812. https://doi.org/10.1038/s41598-018-33105-7 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    87.
    Hu, K., Jin, G.-J., Mei, W.-C., Li, T. & Tao, Y.-S. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem. 239, 495–501. https://doi.org/10.1016/j.foodchem.2017.06.151 (2018).
    CAS  Article  PubMed  Google Scholar 

    88.
    Oro, L., Ciani, M. & Comitini, F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J. Appl. Microbiol. 116, 1209–1217. https://doi.org/10.1111/jam.12446 (2014).
    CAS  Article  PubMed  Google Scholar 

    89.
    Contreras, A., Curtin, C. & Varela, C. Yeast population dynamics reveal a potential ‘collaboration’ between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl. Microbiol. Biotechnol. 99, 1885–1895. https://doi.org/10.1007/s00253-014-6193-6 (2015).
    CAS  Article  PubMed  Google Scholar 

    90.
    Benito, S. The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl. Microbiol. Biotechnol. 102, 6775–6790. https://doi.org/10.1007/s00253-018-9117-z (2018).
    CAS  Article  PubMed  Google Scholar 

    91.
    Morata, A. et al. Lachancea thermotolerans applications in wine technology. Fermentation https://doi.org/10.3390/fermentation4030053 (2018).
    Article  Google Scholar 

    92.
    Belda, I. et al. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int. J. Food Microbiol. 223, 1–8. https://doi.org/10.1016/j.ijfoodmicro.2016.02.003 (2016).
    CAS  Article  PubMed  Google Scholar 

    93.
    Jolly, N., Augustyn, O. & Pretorius, I. The role and use of non-Saccharomyces yeasts in wine production. J. Enol. Vitic. 27. https://doi.org/10.21548/27-1-1475 (2006).

    94.
    Capozzi, V., Fragasso, M. & Russo, P. Microbiological safety and the management of microbial resources in artisanal foods and beverages: The need for a transdisciplinary assessment to conciliate actual trends and risks avoidance. Microorganisms 8, 306. https://doi.org/10.3390/microorganisms (2020).
    Article  PubMed Central  Google Scholar 

    95.
    Benito, S. The impact of Torulaspora delbrueckii yeast in winemaking. Appl. Microbiol. Biotechnol. 102, 3081–3094. https://doi.org/10.1007/s00253-018-8849-0 (2018).
    CAS  Article  PubMed  Google Scholar 

    96.
    Attila, K., Ján, M., Eva, I., Margarita, T. & Miroslava, K. Microorganisms of grape berries. In Proc. Latvian Acad. Sciences. Section B. Natural, Exact & Appl. Sci. Vol. 71, 502–508, https://doi.org/10.1515/prolas-2017-0087 (2017).

    97.
    Pretorius, I. S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 16, 675–729. https://doi.org/10.1002/1097-0061(20000615)16:8%3c675::AID-YEA585%3e3.0.CO;2-B (2000).
    CAS  Article  PubMed  Google Scholar 

    98.
    Clavijo, A., Calderón, I. L. & Paneque, P. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serranía de Ronda (Spain) vine-growing region. Int. J. Food Microbiol. 143, 241–245. https://doi.org/10.1016/j.ijfoodmicro.2010.08.010 (2010).
    CAS  Article  PubMed  Google Scholar 

    99.
    Capece, A. et al. Diversity of Saccharomyces cerevisiae strains isolated from two Italian wine-producing regions. Front Microbiol. 7, 1018. https://doi.org/10.3389/fmicb (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    100.
    Santamaría, P. et al. Biodiversity of Saccharomyces cerevisiae yeasts in spontaneous alcoholic fermentations: Typical cellar or zone strains? Advances in Grape and Wine Biotechnology. (ed. Morata, A. & Loira, I.) 1–15 (Intech Open, 2019). https://doi.org/10.5772/intechopen.84870

    101.
    Kurtzman, C., P., & Fell, J. W. The Yeasts, A Taxonomic Study. 4th edn, (Elsevier Science Publishers, 1998).

    102.
    Lõoke, M., Kristjuhan, K. & Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50, 325–328. https://doi.org/10.2144/000113672 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    103.
    Liu, Y., Wang, C., Joseph, C. M. L. & Bisson, L. F. Comparison of two PCR-based genetic fingerprinting methods for assessment of genetic diversity in Saccharomyces strains. Am. J. Enol. Vit. 65, 109. https://doi.org/10.5344/ajev.2013.13056 (2014).
    Article  Google Scholar 

    104.
    Dazy, F. & Le Barzic, J.-F. L’analyse des donnees evolutives: Methodes et applications (Technip Publishers, 1996). More

  • in

    Bacterial microbiota similarity between predators and prey in a blue tit trophic network

    1.
    Hooper LV, Bry L, Falk PG, Gordon JI. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays. 1998;20:336–43.
    CAS  PubMed  Article  Google Scholar 
    2.
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18.
    CAS  Article  Google Scholar 

    3.
    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–52.
    CAS  Article  Google Scholar 

    5.
    Erny D, de Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    van der Waaij D. The ecology of the human intestine and its consequences for overgrowth by pathogens such as clostridium difficile. Annu Rev Microbiol. 1989;43:69–87.
    PubMed  Article  Google Scholar 

    7.
    Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015;63:1–9.
    PubMed  Article  Google Scholar 

    8.
    Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8:1–10.
    Article  Google Scholar 

    9.
    Scupham AJ, Patton TG, Bent E, Bayles DO. Comparison of the cecal microbiota of domestic and wild turkeys. Micro Ecol. 2008;56:322–31.
    Article  Google Scholar 

    10.
    Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. Cross-species comparisons of host genetic associations with the microbiome. Science. 2016;352:532–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic brown-headed cowbird (Molothrus ater). PeerJ. 2014;2:1–21.
    Article  Google Scholar 

    12.
    Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci. 2019;107:18933–8.
    Article  Google Scholar 

    13.
    Musitelli F, Ambrosini R, Rubolini D, Saino N, Franzetti A, Gandolfi I. Cloacal microbiota of barn swallows from Northern Italy. Ethol Ecol Evol. 2018;30:362–72.
    Article  Google Scholar 

    14.
    Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 neotropical bird species. Front Microbiol. 2015;6:1403.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Bili M, Cortesero AM, Mougel C, Gauthier JP, Ermel G, Simon JC, et al. Bacterial community diversity harboured by interacting species. PLoS One. 2016;11:1–23.
    Article  CAS  Google Scholar 

    17.
    Sugio A, Dubreuil G, Giron D, Simon J. Plant – insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot. 2015;66:467–78.
    CAS  PubMed  Article  Google Scholar 

    18.
    Hannula SE, Zhu F, Heinen R, Bezemer TM. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat Commun. 2019;10:1–9.
    CAS  Article  Google Scholar 

    19.
    White J, Mirleau P, Danchin E, Mulard H, Hatch SA, Heeb P, et al. Sexually transmitted bacteria affect female cloacal assemblages in a wild bird. Ecol Lett. 2010;13:1515–24.
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Schlechter RO, Miebach M, Remus-Emsermann MNP. Driving factors of epiphytic bacterial communities: a review. J Adv Res. 2019;19:57–65.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Remus-Emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Remus-Emsermann MNP, Tecon R, Kowalchuk GA, Leveau JHJ. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 2012;6:756–65.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Rogers TJ, Leppanen C, Brown V, Fordyce JA, LeBude A, Ranney T, et al. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere. 2018;9:1–11.
    Article  Google Scholar 

    24.
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Laforest-Lapointe I, Messier C, Kembel SW. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome. 2016;4:1–10.
    Article  Google Scholar 

    26.
    Kembel SW, Mueller RC. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany. 2014;92:303–11.
    Article  Google Scholar 

    27.
    Appel MH. The chewing herbivore gut lumen: Physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens. In: Bernays EA (ed.). Insect-plant interactions, 1st ed. 1994. CRC Press, Boca Raton, pp 209–23.

    28.
    Shannon AL, Attwood G, Hopcroft DH, Christeller JT. Characterization of lactic acid bacteria in the larval midgut of the keratinophagous lepidopteran, Hofmannophila pseudospretella. Lett Appl Microbiol. 2001;32:36–41.
    CAS  PubMed  Article  Google Scholar 

    29.
    Kukal O, Dawson TE, Kukal O, Dawson TE. Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia. 1989;79:526–32.
    PubMed  Article  Google Scholar 

    30.
    Vilanova C, Baixeras J, Latorre A, Porcar M. The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front Microbiol. 2016;7:1–8.
    Article  Google Scholar 

    31.
    Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One. 2012;7:1–10.
    Google Scholar 

    32.
    Jones AG, Mason CJ, Felton GW, Hoover K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep. 2019;9:1–11.
    Article  CAS  Google Scholar 

    33.
    Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. Caterpillars lack a resident gut microbiome. PNAS. 2017;114:9641–6.
    CAS  PubMed  Article  Google Scholar 

    34.
    Whitaker MRL, Salzman S, Sanders JG, Kaltenpoth M, Pierce NE. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front Microbiol. 2016;7:1–13.
    Article  Google Scholar 

    35.
    Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One. 2013;8:6–13.
    Google Scholar 

    36.
    Azcárate-García M, Ruiz-Rodríguez M, Díaz-Lora S, Ruiz-Castellano C, Soler JJ. Experimentally broken faecal sacs affect nest bacterial environment, development and survival of spotless starling nestlings. J Avian Biol. 2019;50:1–10.
    Article  Google Scholar 

    37.
    Devaynes A, Antunes A, Bedford A, Ashton P. Progression in the bacterial load during the breeding season in nest boxes occupied by the Blue Tit and its potential impact on hatching or fledging success. J Ornithol. 2018;159:1009–17.
    Article  Google Scholar 

    38.
    Janczyk P, Hall B, Souffrant WB. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poult Sci. 2009;88:2324–32.
    CAS  PubMed  Article  Google Scholar 

    39.
    Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol. 2015;6:1–12.
    Article  Google Scholar 

    40.
    Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 2014;5:108–19.
    PubMed  Article  Google Scholar 

    41.
    Lewis WB, Moore FR, Wang S. Changes in gut microbiota of migratory passerines during stopover after crossing an ecological barrier. Auk. 2017;134:137–45.
    Article  Google Scholar 

    42.
    Kulkarni S, Heeb P. Social and sexual behaviours aid transmission of bacteria in birds. Behav Process. 2007;74:88–92.
    Article  Google Scholar 

    43.
    Dawkins R. The extended phenotype. Oxford: Oxford University Press; 1982.
    Google Scholar 

    44.
    Fisher DN, Haines JA, Boutin S, Dantzer B, Lane JE, Coltman DW, et al. Indirect effects on fitness between individuals that have never met via an extended phenotype. Ecol Lett. 2019;22:697–706.
    PubMed  Article  Google Scholar 

    45.
    Mennerat A, Perret P, Lambrechts MM. Local individual preferences for nest materials in a passerine bird. PLoS One. 2009;4:1–6.
    Article  CAS  Google Scholar 

    46.
    Blondel J, Thomas DW, Charmantier A, Perret P, Bourgault P, Lambrechts MM. A thirty-year study of phenotypic and genetic variation of blue tits in mediterranean habitat mosaics. Bioscience. 2006;56:661–73.
    Article  Google Scholar 

    47.
    Blondel J, Dias PC, Maistre M, Perret P. Habitat heterogeneity and life-history variation of mediterranean blue tits (Parus caeruleus). Auk. 1993;110:511–20.
    Article  Google Scholar 

    48.
    Visser ME, Van Noordwijk AJ, Tinbergen JM, Lessells CM. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc B Biol Sci. 1998;265:1867–70.
    Article  Google Scholar 

    49.
    Stenning M. The Blue Tit, 1st ed. (T. & A. D. Poyser, London, UK. 2018) pp 69–109.

    50.
    Blondel J, Aronson J, Bodiou J-Y, Boeuf G. The mediterranean region: biological diversity in space and time, 2nd ed. 2010. Oxford University Press, Oxford.

    51.
    Charmantier A, Doutrelant C, Dubuc-messier G, Fargevieille A, Szulkin M. Mediterranean blue tits as a case study of local adaptation. Evol Appl. 2016;9:135–52.
    PubMed  Article  Google Scholar 

    52.
    Dubuc-Messier G, Réale D, Perret P, Charmantier A. Environmental heterogeneity and population differences in blue tits personality traits. Behav Ecol. 2017;28:448–59.
    PubMed  Google Scholar 

    53.
    Bańbura J, Blondel J, de Wilde-Lambrechts H, Galan M-J, Maistre M. Nestling diet variation in an insular mediterranean population of blue tits Parus caeruleus: effects of years, territories and individuals. Oecologia. 1994;100:413–20.
    PubMed  Article  Google Scholar 

    54.
    Alda F, Rey I, Doadrio I. An improved method of extracting degraded DNA samples from birds and other species. Ardeola. 2007;54:331–4.
    Google Scholar 

    55.
    Oehm J, Juen A, Nagiller K, Neuhauser S, Traugott M. Molecular scatology: how to improve prey DNA detection success in avian faeces? Mol Ecol Resour. 2011;11:620–8.
    PubMed  Article  Google Scholar 

    56.
    Eriksson P, Mourkas E, González-Acuna D, Olsen B, Ellström P. Evaluation and optimization of microbial DNA extraction from fecal samples of wild Antarctic bird species. Infect Ecol Epidemiol. 2017;7:1–9.
    Google Scholar 

    57.
    Chelius MK, Triplett EW. The diversity of archaea and bacteria in association with the roots of Zea mays L. Micro Ecol. 2001;41:252–63.
    CAS  Article  Google Scholar 

    58.
    Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Davis NM, Proctor D, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2017;6:1–8.
    Google Scholar 

    61.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:1–11.
    Article  CAS  Google Scholar 

    62.
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 

    63.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. R package version 2.5-7. 2020.

    64.
    Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.
    CAS  PubMed  Article  Google Scholar 

    66.
    Müller T, Ruppel S. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol. 2014;87:2–17.
    PubMed  Article  CAS  Google Scholar 

    67.
    Chaturvedi S, Rego A, Lucas LK, Gompert Z. Sources of variation in the gut microbial community of Lycaeides melissa caterpillars. Sci Rep. 2017;7:1–13.
    Article  CAS  Google Scholar 

    68.
    Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis CK. Measuring the gut microbiome in birds: comparison of faecal and cloacal sampling. Mol Ecol Resour. 2017;18:424–34.
    PubMed  Article  CAS  Google Scholar 

    69.
    Lewis WB, Moore FR, Wang S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J Avian Biol. 2016;47:659–68.
    Article  Google Scholar 

    70.
    Sun CH, Liu H-Y, Zhang Y, Lu C-H. Comparative analysis of the gut microbiota of hornbill and toucan in captivity. Microbiologyopen. 2019;8:1–7.
    CAS  Article  Google Scholar 

    71.
    Teyssier A, Lens L, Matthysen E, White J. Dynamics of gut microbiota diversity during the early development of an avian host: evidence from a cross-foster experiment. Front Microbiol. 2018;9:1–12.
    Article  Google Scholar 

    72.
    Ambrosini R, Corti M, Franzetti A, Caprioli M, Rubolini D, Motta VM, et al. Cloacal microbiomes and ecology of individual barn swallows. FEMS Microbiol Ecol. 2019;95:1–13.
    Article  CAS  Google Scholar 

    73.
    Minard G, Tikhonov G, Ovaskainen O, Saastamoinen M. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environ Microbiol. 2019;21:4253–69.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Godoy-Vitorino F, Leal SJ, Díaz WA, Rosales J, Goldfarb KC, García-Amado MA, et al. Differences in crop bacterial community structure between hoatzins from different geographical locations. Res Microbiol. 2012;163:211–20.
    PubMed  Article  Google Scholar 

    75.
    Lucas FS, Heeb P. Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J Avian Biol. 2005;36:510–6.
    Article  Google Scholar  More