More stories

  • in

    Variable crab camouflage patterns defeat search image formation

    Photographs of crabs and backgrounds
    We sampled crabs and backgrounds to obtain images for the game. The population used was located in Falmouth (50.141888, −5.063811) on the south coast of the UK, comprising a stretch of shoreline encompassing neighbouring Castle and Gyllyngvase beaches. The crab habitats at the site comprise rock pools with rocky crevices with stony or gravel substrates in the pools and, lower down on the shore, increasing abundance of seaweed21. Together these create visually variable textures and heterogeneity in crab habitat types.
    Photographs of natural backgrounds (rock pools) were taken by Samsung NX1000 digital camera converted to full spectrum and attached with a Nikon EL 80 mm lens. Background sampling was conducted along three ~100 m long transects placed parallel to the shoreline across different tide-zones (i.e. low, middle, high) spaced evenly down the beach (following21). Each of the backgrounds photographed were at least 5 m apart from each other (i.e. transect was subdivided approximately into 5-m-intervals) ensuring the variability in background types across transect. These sampling quadrats were photographed during low-tide to avoid specular light reflecting back from the water. To obtain images that capture naturalistic colour variation, the images were taken in RAW format with manual white balance and a fixed aperture setting. For human visible photos as used here, we placed a UV and infra-red (IR) blocking filter in front of the lens, which transmits wavelengths only between 400–680 nm (Baader UV/IR Cut Filter). We have previously characterised the spectral sensitivity of our cameras39. For calibration purposes, each photograph included a grey reflectance standard, which reflects light equally at 7 and 93% between 300 and 750 nm.
    Quadrats were searched for shore crabs for a period of ~5 min. We searched for crabs by raking gravel by hand, moving small boulders aside, turning seaweed over and checking crevices to ensure any crabs were unlikely to be missed. After crabs were found we transported them to laboratory facilities at the University of Exeter Penryn campus for standardised photography. During the transportation all crabs were kept on standard average grey buckets. Photographs of crabs were taken with the same camera set up as above. In the laboratory a bulb simulating D65 illuminant (Iwasaki eyeColor bulb) was used while crabs were photographed against grey standard background. We included grey standards and scale bars in the photographs. Images were then calibrated and converted to normalised reflectance images (relative to the grey standard)39,40.
    Crab images were scaled into the same pixel/mm aspect ratio to show crabs against the background images in natural size with respect to the background scale. Following past work25, crab outlines were cut out from the image by custom software was designed (called ‘autocrab’) to automate the process of background subtraction. This software allowed us to step through hundreds of images, automatically loading, thresholding and flood filling background areas, saving them with an appropriate transparency channel in the correct format and resolution needed for the game. This created usable crab images for 80% of the photographs easily, with some additional cleaning up required for the rest using GIMP2 image manipulation software (https://zenodo.org/record/1101057; DOI for the source code: https://doi.org/10.5281/zenodo.1099634). The crab images were PNGs (portable network graphic) with a variable alpha level to ensure there were no jagged edges visible.
    Selection of crabs
    We aimed to ensure that we had an ecologically relevant range of crab phenotypes used in the game. We also sought to test how different types or ‘morphs’ of crab would affect search image formation and detection. Therefore, we used a procedure to categorise crabs into one of six categories prior the experiment. Note that, statistically crab variation may be more continuous rather than falling into true morphs, but there are a number of common crab patterns and features that frequently arise in the wild20, potentially reflecting ‘modules’ of development and pattern expression. We emphasise that our aim here was not to test specifically whether shore crabs occur in discrete morphs, but rather to capture some of the variation and common features that exist in this species in order to explore the effects of different pattern types on search image formation and whether effects differ among common categories of appearance.
    Game design
    The design of the experiment generally followed the approach of previous citizen science camouflage games24. Ethical approval was granted by Exeter University (ID: 2015/736). Subjects were recruited via social media and word of mouth. On loading the webpage, subjects were taken to a start screen and informed that the game was an experiment and that by playing they consented to their data being used. They were free to leave the game at any time and no personal or identifying data were collected. Subjects also asked if they had played the game before.
    The game was programmed in HTML5 (including JavaScript, CSS and PHP), and was available to play on all standard internet browsers. Upon loading the game each participant was shown a series of photographs of 24 natural rock pool backgrounds (randomly sampled from 105 natural background images) with a single crab (randomly sampled from 155 natural crab images) in each image (Fig. 1). Participants were asked to detect the crab (by clicking on it) as quickly as possible, which would progress them to the next slide. If the crab was not found within 15 s the crab was highlighted with a circle for 1 s, and then the participant progressed to the next slide. During the experiment, the probability of being shown the same individual crab phenotype in the next slide was always 80% (although the crab’s position and rotation, and the background image were all randomised), meaning that subjects were likely to have runs of the same individual crab in succession, often up to 10 encounters (the median run length for each crab being ~5 encounters). This approach mimicked a situation where there is no intraspecific variation in pattern, and allowed us to test which aspects of crab/morph appearance affected search image formation and switching.
    Analysis of crab appearance and camouflage
    Following our previous work testing how different types of camouflage metric predict detection26, we analysed a large number of metrics linked to camouflage efficacy, these include edge disruption, colour, luminance (lightness), and pattern metrics. The metrics included crab-only appearance measures (such as the crab’s intrinsic colour, brightness, and dominant marking size), and also comparative metrics where each crab is compared to its local surroundings (within a radius of one body-length, where body length is described as the diameter of a circle which best fits the crab’s outline), and also the crab compared to the entire background image. In total there were 45 metrics, all described in Supplementary Data 1. All image analysis was performed using ImageJ v1.5041, code available on request.
    Images were converted from sRGB to CIELAB colour space before measuring them given that humans were the participants used in this study. Each crab was measured by recreating its exact position and rotation on each background for image analysis.
    Luminance distribution difference was measured from the CIE L channel in 100 bins following the methods described in Troscianko et al.26, effectively the sum of absolute differences between the crab’s luminance histogram and the background or surrounding’s luminance histogram. The highly variable nature of the crab’s colour and background colours mean that calculating a mean colour for the background or crab may not be appropriate because it creates intermediate colours which do not represent the scene as a whole. Therefore, a colour equivalent of the luminance distribution difference method was also developed, where pixel CIE A and B values were plotted in a two-dimensional histogram to create a proportional frequency “map”. Each axis had 200 bins ranging from −100 to 100, meaning the bins are smaller than the human colour discrimination threshold in CIE LAB space. The absolute differences in the crab’s colour map and its background or surround colour maps were used as a non-parametric method for describing background colour matching. Edge disruption was also measured following the GabRat approach described in Troscianko et al. (2017), however in addition to measuring the CIE L image, the chromatic opponent channel images (CIE A and B images) were also measured (i.e. as a measure of chromatic edge disruption). Pattern energy difference was measured by creating a series of bandpass images, filtering each crab and surround into different spatial scales, then measuring the degree of “energy” standard deviation in pixel values) at each spatial scale to create an energy spectrum. Pattern energy difference calculates the absolute sum of energy differences at each spatial scale between the crab and its background following Troscianko et al.26.
    Statistics and reproducibility
    Survival models were used to determine how crab capture times were affected by experimental treatments and camouflage variables. Survival models offer the ability to count crabs reaching “timeout” (where participants still could not find the crab after 15 s) as surviving up to this point (termed censored in survival models). Mixed effects survival models (coxme version 2.2–1027) were used to reflect the fact that within-session data are not independent. All statistical analyses were performed in R (version 3.4.4), with the raw data and R script available as supplementary material (“Supplementary Data 2”, and “Supplementary Data 3” respectively). We used four different models to test each of our key predictions: (i) models ranking each of the camouflage metrics in order to find the best predictor of human performance, within each camouflage strategy the best predictor was selected and used in the subsequent tests; (ii) models testing the rate of improvement in capture time for each phenotype; (iii) models comparing the capture time and appearance of each crab relative to those of the previously encountered crab; (iv) models comparing the capture time of each crab given its morph, and the morph of the previous crab (i.e. interaction between individual phenotype and overall morph). We describe each in turn here:
    First, based on our metrics of camouflage, we worked out the best predictor of human performance within each of these metrics. An example of the survival model is:
    coxme(Surv(cTime, hit) ~ screenScale + playedBefore + poly(crab_circular_fit_centre_x,2) + poly(crab_circular_fit_centre_y,2) + L_GabRat_sig2.0 + crab_area + (1|sessionID), data).
    This model takes into account the screen resolution, whether subjects have played before, the slide number (learning within session), the screen coordinates of the crabs (crabs in the corners of the screen take longer to find), the camouflage metric (GabRat luminance edge disruption in this example), the size of the crab (bigger crabs are easier to find), and session ID as a random factor. From these models we could calculate the metrics that were most effective in predicting detection times26, and narrowed the metrics down to the best predictors of luminance, colour, pattern and edge disruption.
    Second, we tested how the number of previous encounters with the current crab phenotype affected capture times. This is testing for speed-of-improvement within each phenotype, and how different types of camouflage (determined above) affect this. An example survival model is:
    coxme(Surv(cTime, hit) ~ screenScale + playedBefore + slide + poly(crab_circular_fit_centre_x,2) + poly(crab_circular_fit_centre_y,2) + L_GabRat_sig2.0 * encounters + crab_area + (1|sessionID), data). Where ‘encounters’ codes for the number of previous encounters with the current phenotype.
    Third, we tested capture time differences when switching between crabs, comparing the camouflage of the previous crab with the current one (note the previously encountered crab was sometimes the same phenotype, and sometimes would switch to a new one). The dependent variable (timeDiff) was log(current crab capture time) – log(previous crab capture time). The camouflage variables are calculated in the same manner, e.g. the current level of disruption minus the previous level of disruption. Here, an interaction with the number of prior encounters with the current crab phenotype shows how switching is affected by prior experience of this camouflage type. An example model is:
    lmer(timeDiff ~ crab_area + pArea + playedBefore + slide + poly(crab_circular_fit_centre_x,2) + poly(crab_circular_fit_centre_y,2) + poly(pX,2) + poly(pY,2) + drpLDiff*novelCrab + (1|sessionID), diffData). The values pArea, pX and pY denote the size and screen location of the previous crab.
    Finally, we analysed capture time differences when switching between each of the six crab morphs (rather than comparing camouflage metric differences), using the timeDiff value as above. An example model is:
    lmer(timeDiff ~ crab_area + pArea + slide + poly(crab_circular_fit_centre_x,2) + poly(crab_circular_fit_centre_y,2) + poly(pX,2) + poly(pY,2) + slide + morphSwitch*novelCrab + (1|sessionID), morphData). Here ‘morphSwitch’ has two levels which describe whether a switch event was to the same, or a different morph. The random factor ‘sessionID’ explained almost zero variance in this dataset, and where this occurred the models were cross-validated with GLMs (see Supplementary Data 3).
    Selection of crab phenotypes
    We asked 10 naïve participants (who had no prior experience of crab phenotype discrimination) to subjectively sort images of crabs into distinct categories. People were not instructed on how many groups they should form – they were simply asked to group crabs based on their colour and patterning (i.e. phenotypic variation). This resulted in six categories (the actual numbers of the crab images representing that phenotype are given in brackets as follows): Black (22), Disruptive (15), Green (50), Mottled (28), Pale (20) and Spotted (20). Although this is subjective, we subsequently analysed the appearance of crabs from these categories and showed that ‘crab morph’ is a significant predictor of a range of appearance metrics, including colour, luminance, mean pattern energy, and dominant marking size (P  More

  • in

    18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific

    1.
    Tsukamoto, K. Discovery of the spawning area for Japanese eel. Nature 356, 789–791 (1992).
    ADS  Article  Google Scholar 
    2.
    Tsukamoto, K. Spawning of eels near a seamount. Nature 439, 929 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Chow, S. et al. Discovery of mature freshwater eels in the open ocean. Fish. Sci. 75, 257–259 (2009).
    CAS  Article  Google Scholar 

    4.
    Kurogi, H. et al. First capture of post-spawning female of the Japanese eel Anguilla japonica at the southern West Mariana Ridge. Fish. Sci. 77, 199–205 (2011).
    CAS  Article  Google Scholar 

    5.
    Tsukamoto, K. et al. Positive buoyancy in eel leptocephali: an adaptation for life in the ocean surface layer. Mar. Biol. 156, 835–846 (2009).
    Article  Google Scholar 

    6.
    Cheng, P. W. & Tzeng, W. N. Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Mar. Ecol. Prog. Ser. 131, 87–96 (1996).
    ADS  Article  Google Scholar 

    7.
    Chen, J. Z., Huang, S. L. & Han, Y. S. Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuar. Coast. Shelf Sci. 151, 361–369 (2014).
    ADS  CAS  Article  Google Scholar 

    8.
    Tanaka, E. Stock assessment of Japanese eels using Japanese abundance indices. Fish. Sci. 80, 1129–1144 (2014).
    CAS  Article  Google Scholar 

    9.
    Jacoby, D. & Gollock, M. Anguilla anguilla. The IUCN red list of threatened species, version 2014.2. IUCN 2014 e.T60344A45833138. https://doi.org/10.1108/ICS-04-2017-0025 (2014).

    10.
    Onda, H. et al. Vertical distribution and assemblage structure of leptocephali in the North Equatorial Current region of the western Pacific. Mar. Ecol. Prog. Ser. 575, 119–136 (2017).
    ADS  Article  Google Scholar 

    11.
    Saijo, Y., Iizuka, S. & Asaoka, O. Chlorophyll maxima in Kuroshio and adjacent area. Mar. Biol. 4, 190–196 (1969).
    CAS  Article  Google Scholar 

    12.
    Furuya, K. Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: Vertical profiles of phytoplankton biomass and its relationship with chlorophylla and particulate organic carbon. Mar. Biol. 107, 529–539 (1990).
    CAS  Article  Google Scholar 

    13.
    Otake, T., Nogami, K. & Maruyama, K. Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar. Ecol. Prog. Ser. 92, 27–34 (1993).
    ADS  Article  Google Scholar 

    14.
    Mochioka, N. & Iwamizu, M. Diet of anguilloid larvae: Leptocephali feed selectively on larvacean houses and fecal pellets. Mar. Biol. 125, 447–452 (1996).
    Google Scholar 

    15.
    Miller, M. J., Otake, T. & Aoyama, J. Observations of gut contents of leptocephali in the North Equatorial current and Tomini Bay Indonesia. Coast. Mar. Sci. 35, 277–288 (2012).
    Google Scholar 

    16.
    Tomoda, T. et al. Observations of gut contents of anguilliform leptocephali collected in the western North Pacific. Nippon Suisan Gakkaishi 84, 32–44 (2018).
    Article  Google Scholar 

    17.
    Deibel, D., Parrish, C. C., Grønkjær, P., Munk, P. & GisselNielsen, T. Lipid class and fatty acid content of the leptocephalus larva of tropical eels. Lipids 47, 623–634 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Liénart, C. et al. Geographic variation in stable isotopic and fatty acid composition of anguilliform leptocephali and particulate organic matter in the South Pacific. Mar. Ecol. Prog. Ser. 544, 225–241 (2016).
    ADS  Article  CAS  Google Scholar 

    19.
    Miller, M. J. et al. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol. Lett. 9, 20120826 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Miyazaki, S. et al. Stable isotope analysis of two species of anguilliform leptocephali (Anguilla japonica and Ariosoma major) relative to their feeding depth in the North Equatorial Current region. Mar. Biol. 158, 2555–2564 (2011).
    CAS  Article  Google Scholar 

    21.
    Chow, S. et al. Japanese eel Anguilla japonica do not assimilate nutrition during the oceanic spawning migration: evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 402, 233–238 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Chow, S. et al. Onboard rearing attempts for the Japanese eel leptocephali using POM-enriched water collected in the Western North Pacific. Aquat. Living Resour. 30, 1–7 (2017).
    Article  CAS  Google Scholar 

    23.
    Miller, M. J., Hanel, R., Feunteun, E. & Tsukamoto, K. The food source of Sargasso Sea leptocephali. Mar. Biol. 167, 57 (2020).
    CAS  Article  Google Scholar 

    24.
    Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Wang, M. & Jeffs, A. G. Nutritional composition of potential zooplankton prey of spiny lobster larvae: a review. Rev. Aquac. 6, 270–299 (2014).
    Article  Google Scholar 

    26.
    Ho, T. W., Hwang, J. S., Cheung, M. K., Kwan, H. S. & Wong, C. K. Dietary analysis on the shallow-water hydrothermal vent crab Xenograpsus testudinatus using Illumina sequencing. Mar. Biol. 162, 1787–1798 (2015).
    CAS  Article  Google Scholar 

    27.
    Chow, S. et al. Molecular diet analysis of Anguilliformes leptocephalus larvae collected in the western North Pacific. PLoS ONE 14, e0225610 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Riemann, L. et al. Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biol. Lett. 6, 819–822 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Ayala, D. J. et al. Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci. Rep. 8, 6156 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Estrada, M. et al. Phytoplankton across tropical and subtropical regions of the Atlantic Indian and Pacific Oceans. PLoS ONE 11, e0151699 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Lundgreen, R. B. C. et al. Eukaryotic and cyanobacterial communities associated with marine snow particles in the oligotrophic Sargasso Sea. Sci. Rep. 9, 1–12 (2019).
    CAS  Article  Google Scholar 

    32.
    Ayala, D., Riemann, L. & Munk, P. Species composition and diversity of fish larvae in the Subtropical Convergence Zone of the Sargasso Sea from morphology and DNA barcoding. Fish. Oceanogr. 25, 85–104 (2016).
    Article  Google Scholar 

    33.
    Arai, M. N. Active and passive factors affecting aggregations of hydromedusae: a review. Sci. Mar. 56, 99–108 (1992).
    Google Scholar 

    34.
    Boero, F. et al. Gelatinous plankton: Irregularities rule the world (sometimes). Mar. Ecol. Prog. Ser. 356, 299–310 (2008).
    ADS  Article  Google Scholar 

    35.
    Purcell, J. E. Feeding and growth of the siphonophore Muggiaea atlantica (Cunningham 1893). J. Exp. Mar. Bio. Ecol. 62, 39–54 (1982).
    Article  Google Scholar 

    36.
    Alldredge, A. Particle aggregation dynamics. In Encyclopedia of Ocean Sciences, 2nd edn, 330–337 (Elsevier Inc., 2008). https://doi.org/10.1016/B978-012374473-9.00468-9

    37.
    Hosia, A. & Bamstedt, U. Seasonal abundance and vertical distribution of siphonophores in western Norwegian fjords. J. Plankton Res. 30, 951–962 (2008).
    Article  Google Scholar 

    38.
    Lo, W. T., Yu, S. F. & Hsieh, H. Y. Effects of summer mesoscale hydrographic features on epipelagic siphonophore assemblages in the surrounding waters of Taiwan, western North Pacific Ocean. J. Oceanogr. 69, 495–509 (2013).
    Article  Google Scholar 

    39.
    Lo, W.-T., Yu, S.-F. & Hsieh, H.-Y. Hydrographic processes driven by seasonal monsoon system affect siphonophore assemblages in tropical-subtropical waters (Western North Pacific Ocean). PLoS ONE 9, e100085 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Li, K. Z., Yin, J. Q., Huang, L. M. & Song, X. Y. Comparison of siphonophore distributions during the southwest and northeast monsoons on the northwest continental shelf of the South China Sea. J. Plankton Res. 34, 636–641 (2012).
    Article  Google Scholar 

    41.
    López-López, L., Molinero, J. C., Tseng, L.-C., Chen, Q.-C. & Hwang, J.-S. Seasonal variability of the gelatinous carnivore zooplankton community in Northern Taiwan. J. Plankton Res. 35, 677–683 (2013).
    Article  Google Scholar 

    42.
    Price, J. F. Upper ocean response to a hurricane. J. Phys. Ocean. 11, 153–175 (1981).
    ADS  Article  Google Scholar 

    43.
    Toratani, M. Primary production enhancement by typhoon Ketsana in 2003 in western North Pacific. In Remote Sensing of Inland, Coastal, and Oceanic Waters (eds. Frouin, R. J. et al.) 7150, 715013 (SPIE, 2008).

    44.
    Lin, I. I. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. Ocean. 117, C03039 (2012).
    ADS  Article  Google Scholar 

    45.
    Ishida, H., Furusawa, K., Makino, T., Ishizaka, J. & Watanabe, Y. The effect of typhoons on phytoplankton communities and settling particle flux in the western North Pacific subtropical region. Oceanogr. Jpn. 25, 17–41 (2016).
    Article  Google Scholar 

    46.
    Siswanto, E., Ishizaka, J., Yokouchi, K., Tanaka, K. & Tan, C. K. Estimation of interannual and interdecadal variations of typhoon-induced primary production: a case study for the outer shelf of the East China Sea. Geophys. Res. Lett. 34, L03604 (2007).
    ADS  Article  Google Scholar 

    47.
    Chen, Y. L. L., Houng-Yung, C., Jan, S. & Tuo, S. H. Phytoplankton productivity enhancement and assemblage change in the upstream Kuroshio after typhoons. Mar. Ecol. Prog. Ser. 385, 111–126 (2009).
    ADS  CAS  Article  Google Scholar 

    48.
    Tsuchiya, K. et al. Typhoon-induced response of phytoplankton and bacteria in temperate coastal waters. Estuar. Coast. Shelf Sci. 167, 458–465 (2015).
    ADS  CAS  Article  Google Scholar 

    49.
    Typhoon information. Japan Meteorological Agency. https://www.data.jma.go.jp/fcd/yoho/typhoon/index.html. Accessed 10 Dec 2020.

    50.
    Miller, M. J. et al. Morphology and gut contents of anguillid and marine eel larvae in the Sargasso Sea. Zool. Anz. 279, 138–151 (2019).
    Article  Google Scholar 

    51.
    Singh, P., Liu, Y., Li, L. & Wang, G. Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl. Microbiol. Biotechnol. 98, 5789–5805 (2014).
    CAS  PubMed  Article  Google Scholar 

    52.
    Tanaka, H., Kagawa, H., Ohta, H., Unuma, T. & Nomura, K. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol. Biochem. 28, 493–497 (2003).
    Article  Google Scholar 

    53.
    Stenly, W. et al. Ingestion by Japanese eel Anguilla japonica larvae on various minute zooplanktons. Aquac. Sci. 61, 341–347 (2013).
    Google Scholar 

    54.
    Butts, I. A. E., Sørensen, S. R., Politis, S. N. & Tomkiewicz, J. First-feeding by European eel larvae: a step towards closing the life cycle in captivity. Aquaculture 464, 451–458 (2016).
    Article  Google Scholar 

    55.
    Tsukamoto, K. & Miller, M. J. The mysterious feeding ecology of leptocephali: a unique strategy of consuming marine snow materials. Fish. Sci. 87, 11–29 (2020).
    Article  CAS  Google Scholar 

    56.
    Bouilliart, M., Tomkiewicz, J., Lauesen, P., De Kegel, B. & Adriaens, D. Musculoskeletal anatomy and feeding performance of pre-feeding engyodontic larvae of the European eel (Anguilla anguilla). J. Anat. 227, 325–340 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Westeberg, H. A proposal regarding the source of nutrition of leptocephalus larvae. Int. Rev. Hydrobiol. Hydrogr. 75, 863–864 (1990).
    Article  Google Scholar 

    58.
    Miller, M. Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua-BioScience Monogr. https://doi.org/10.1093/gbe/evy021 (2009).
    ADS  Article  Google Scholar 

    59.
    Strom, S., Bright, K., Fredrickson, K. & Brahamsha, B. The Synechococcus cell surface protein SwmA increases vulnerability to predation by flagellates and ciliates. Limnol. Oceanogr. 62, 784–794 (2017).
    ADS  Article  Google Scholar 

    60.
    Benner, R. & Kaiser, K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol. Oceanogr. 48, 118–128 (2003).
    ADS  CAS  Article  Google Scholar 

    61.
    Seymour, J., Ahmed, T., Durham, W. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).
    Article  Google Scholar 

    62.
    Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science (80-) 343, 183–186 (2014).
    ADS  CAS  Article  Google Scholar 

    63.
    Scanlan, D. Bacterial vesicles in the ocean. Science 343, 143–144 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Cisternas-Novoa, C., Lee, C. & Engel, A. Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP): Differences between their origin and vertical distributions in the ocean. Mar. Chem. 175, 56–71 (2015).
    CAS  Article  Google Scholar 

    65.
    Long, R. A. & Azam, F. Abundant protein-containing particles in the sea. Aquat. Microb. Ecol. 10, 213–221 (1996).
    Article  Google Scholar 

    66.
    Tanoue, E., Ishii, M. & Midorikawa, T. Discrete dissolved and particulate proteins in oceanic waters. Limnol. Oceanogr. 41, 1334–1343 (1996).
    ADS  CAS  Article  Google Scholar 

    67.
    Simon, M., Alldredge, A. L. & Azam, F. Bacterial carbon dynamics on marine snow. Mar. Ecol. Prog. Ser. 65, 205–211 (1990).
    ADS  CAS  Article  Google Scholar 

    68.
    Godhe, A. et al. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl. Environ. Microbiol. 74, 7174–7182 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219 (2019).
    Article  Google Scholar 

    71.
    Furuya, K. & Marumo, R. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. J. Plankton Res. 5, 393–406 (1983).
    Article  Google Scholar 

    72.
    Kuroki, M., Okamura, A., Yamada, Y., Hayasaka, S. & Tsukamoto, K. Evaluation of optimum temperature for the early larval growth of Japanese eel in captivity. Fish. Sci. 85, 801–809 (2019).
    CAS  Article  Google Scholar 

    73.
    Okamura, A. et al. Effects of water temperature on early development of Japanese eel Anguilla japonica. Fish. Sci. 73, 1241–1248 (2007).
    CAS  Google Scholar 

    74.
    Kurokawa, T. et al. Influence of water temperature on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. J. World Aquac. Soc. 39, 726–735 (2008).
    Article  Google Scholar 

    75.
    Tsukamoto, K. et al. Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat. Commun. 2, 179 (2011).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Shirai, K. et al. Temperature and depth distribution of Japanese eel eggs estimated using otolith oxygen stable isotopes. Geochim. Cosmochim. Acta 236, 373–383 (2018).
    ADS  CAS  Article  Google Scholar 

    77.
    Ichikawa, T. Particulate organic carbon and nitrogen in the adjacent seas of the Pacific Ocean. Mar. Biol. 68, 49–60 (1982).
    CAS  Article  Google Scholar 

    78.
    Hebel, D. V. & Karl, D. M. Seasonal, interannual and decadal variations in particulate matter concentrations and composition in the subtropical North Pacific Ocean. Deep Sea Res Part II Top. Stud. Oceanogr. 48, 1669–1695 (2001).
    ADS  CAS  Article  Google Scholar 

    79.
    MacIntyre, S., Alldredge, A. L. & Gotschalk, C. C. Accumulation of marines now at density discontinuities in the water column. Limnol. Oceanogr. 40, 449–468 (1995).
    ADS  Article  Google Scholar 

    80.
    Tomas, C. R. & Hasle, G. R. Identifying Marine Phytoplankton (Academic Press, New York, 1997).
    Google Scholar 

    81.
    Suzuki, K. et al. Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Prog. Oceanogr. 64, 167–187 (2005).
    ADS  Article  Google Scholar 

    82.
    Nagai, S. et al. Influences of diurnal sampling bias on fixed-point monitoring of plankton biodiversity determined using a massively parallel sequencing-based technique. Gene 576, 667–675 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Tanabe, A. S. et al. Comparative study of the validity of three regions of the 18S-rRNA gene for massively parallel sequencing-based monitoring of the planktonic eukaryote community. Mol. Ecol. Resour. 16, 402–414 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Dzhembekova, N., Moncheva, S., Ivanova, P., Slabakova, N. & Nagai, S. Biodiversity of phytoplankton cyst assemblages in surface sediments of the Black Sea based on metabarcoding. Biotechnol. Biotechnol. Equip. 32, 1507–1513 (2018).
    CAS  Article  Google Scholar 

    85.
    Dzhembekova, N., Urusizaki, S., Moncheva, S., Ivanova, P. & Nagai, S. Applicability of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black Sea. Harmful Algae 68, 40–51 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    86.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6, e27310 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Cheung, K. L. Y., Huen, J., Houry, W. A. & Ortega, J. Comparison of the multiple oligomeric structures observed for the Rvb1 and Rvb2 proteins. Biochem. Cell Biol. 88, 77–88 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
    Article  CAS  Google Scholar 

    91.
    Horton, T. et al. World register of marine species (WoRMS) (2018).

    92.
    R Core team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing , Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/ (2017). https://doi.org/10.2788/95827.

    93.
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).
    Article  Google Scholar 

    94.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).
    Google Scholar 

    95.
    Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2. CRAN R (2018). ISBN 0-387-95457-0. More

  • in

    Prey removal in cotton crops next to woodland reveals periodic diurnal and nocturnal invertebrate predation gradients from the crop edge by birds and bats

    1.
    FAO. United Nations Food Agricultural Organisation. High Level Expert Forum (FAO, Rome, 2009).
    Google Scholar 
    2.
    Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: Linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245. https://doi.org/10.1016/j.mambio.2015.03.008 (2015).
    Article  Google Scholar 

    3.
    Cleveland, C. J. et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4, 238–243. https://doi.org/10.1890/1540-9295(2006)004[0238:Evotpc]2.0.Co;2 (2006).
    Article  Google Scholar 

    4.
    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Conservation. Economic importance of bats in agriculture. Science 332, 41–42. https://doi.org/10.1126/science.1201366 (2011).
    Article  PubMed  ADS  Google Scholar 

    5.
    Naylor, R. L. & Ehrlich, P. R. In Nature’s Services: Societal Dependence on Natural Ecosystems (ed. Daily, G. C.) 151–174 (Island Press, New York, 1997).
    Google Scholar 

    6.
    Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56[311:Tevoes]2.0.Co;2 (2006).
    Article  Google Scholar 

    7.
    Power, A. G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. Lond. B 365, 2959–2971. https://doi.org/10.1098/rstb.2010.0143 (2010).
    Article  Google Scholar 

    8.
    Maine, J. J. & Boyles, J. G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. U.S.A. 112, 12438–12443. https://doi.org/10.1073/pnas.1505413112 (2015).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    9.
    Tremblay, A., Mineau, P. & Stewart, R. K. Effects of bird predation on some pest insect populations in corn. Agric. Ecosyst. Environ. 83, 143–152. https://doi.org/10.1016/S0167-8809(00)00247-4 (2001).
    Article  Google Scholar 

    10.
    Van Bael, S. A. et al. Birds as predators in tropical agroforestry systems. Ecology 89, 928–934 (2008).
    Article  Google Scholar 

    11.
    Grass, I., Lehmann, K., Thies, C. & Tscharntke, T. Insectivorous birds disrupt biological control of cereal aphids. Ecology 98, 1583–1590. https://doi.org/10.1002/ecy.1814 (2017).
    Article  PubMed  Google Scholar 

    12.
    Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347. https://doi.org/10.1111/ele.12173 (2013).
    Article  PubMed  Google Scholar 

    13.
    Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. Camb. Philos. Soc. 91, 1081–1101. https://doi.org/10.1111/brv.12211 (2016).
    Article  PubMed  Google Scholar 

    14.
    Cohen, Y., Bar-David, S., Nielsen, M., Bohmann, K. & Korine, C. An appetite for pests: Synanthropic insectivorous bats exploit cotton pest irruptions and consume various deleterious arthropods. Mol. Ecol. 29, 1185–1198. https://doi.org/10.1111/mec.15393 (2020).
    Article  PubMed  Google Scholar 

    15.
    Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212. https://doi.org/10.1016/j.agee.2013.10.007 (2013).
    Article  Google Scholar 

    16.
    Speakman, J. R. & Thomas, D. W. In Bat ecology (eds Kunz, T. H. & Fenton, M. B.) 430–490 (University of Chicago Press, Chicago, 2003).
    Google Scholar 

    17.
    Norberg, U. M. Avian Energetics and Nutritional Ecology 199–249 (Springer, Berlin, 1996).
    Google Scholar 

    18.
    Nyffeler, M., Şekercioğlu, Ç. H. & Whelan, C. J. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 105, 47. https://doi.org/10.1007/s00114-018-1571-z (2018).
    CAS  Article  Google Scholar 

    19.
    Sekercioglu, C. H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471. https://doi.org/10.1016/j.tree.2006.05.007 (2006).
    Article  PubMed  Google Scholar 

    20.
    Mols, C. M. M. & Visser, M. E. Great tits can reduce caterpillar damage in apple orchards. J. Appl. Ecol. 39, 888–899. https://doi.org/10.1046/j.1365-2664.2002.00761.x (2002).
    Article  Google Scholar 

    21.
    Van Bael, S. A., Bichier, P. & Greenberg, R. Bird predation on insects reduces damage to the foliage of cocoa trees (Theobroma cacao) in western Panama. J. Trop. Ecol. 23, 715–719. https://doi.org/10.1017/s0266467407004440 (2007).
    Article  Google Scholar 

    22.
    Federico, P. et al. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecol. Appl. 18, 826–837. https://doi.org/10.1890/07-0556.1 (2008).
    Article  PubMed  Google Scholar 

    23.
    McCracken, G. F. et al. Bats track and exploit changes in insect pest populations. PLoS ONE 7, e43839. https://doi.org/10.1371/journal.pone.0043839 (2012).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    24.
    Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. 10, 371–388. https://doi.org/10.1002/ece3.5901 (2020).
    Article  PubMed  Google Scholar 

    25.
    Maas, B., Clough, Y. & Tscharntke, T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16, 1480–1487. https://doi.org/10.1111/ele.12194 (2013).
    Article  PubMed  Google Scholar 

    26.
    Kalka, M. B., Smith, A. R. & Kalko, E. K. Bats limit arthropods and herbivory in a tropical forest. Science 320, 71. https://doi.org/10.1126/science.1153352 (2008).
    CAS  Article  PubMed  ADS  Google Scholar 

    27.
    Williams-Guillen, K., Perfecto, I. & Vandermeer, J. Bats limit insects in a neotropical agroforestry system. Science 320, 70. https://doi.org/10.1126/science.1152944 (2008).
    CAS  Article  PubMed  ADS  Google Scholar 

    28.
    Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 1–38 (New York Academy of Sciences, New York, 2011).
    Google Scholar 

    29.
    Taylor, P. J., Grass, I., Alberts, A. J., Joubert, E. & Tscharntke, T. Economic value of bat predation services: A review and new estimates from macadamia orchards. Ecosyst. Serv. 30, 372–381. https://doi.org/10.1016/j.ecoser.2017.11.015 (2018).
    Article  Google Scholar 

    30.
    Redlich, S., Martin Emily, A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13126 (2018).
    Article  Google Scholar 

    31.
    Hooks, C., Pandey, R. R., & Johnson, M. W. Unlikely guardians of cropping systems: Can birds and spiders protect broccoli from caterpillar pests? Insect Pests (2007).

    32.
    Martin, E. A., Reineking, B., Seo, B. & Steffan-Dewenter, I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl. Acad. Sci. U.S.A. 110, 5534–5539. https://doi.org/10.1073/pnas.1215725110 (2013).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    33.
    Karp, D. S. & Daily, G. C. Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology 95, 1065–1074. https://doi.org/10.1890/13-1012.1 (2014).
    Article  PubMed  Google Scholar 

    34.
    Barbaro, L. et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. Appl. Ecol. 54, 500–508. https://doi.org/10.1111/1365-2664.12740 (2017).
    Article  Google Scholar 

    35.
    Rey Benayas, J. M., Meltzer, J., de las Heras-Bravo, D. & Cayuela, L. Potential of pest regulation by insectivorous birds in Mediterranean woody crops. PLoS ONE 12, 15. https://doi.org/10.1371/journal.pone.0180702 (2017).
    CAS  Article  Google Scholar 

    36.
    Morrison, E. B. & Lindell, C. A. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecol. Appl. 22, 1526–1534 (2012).
    Article  Google Scholar 

    37.
    Ndanganga, P. K., Njoroge, J. B. M. & Vickery, J. Quantifying the contribution of birds to the control of arthropod pests on kale, Brassica oleracea acephala, a key crop in East African highland farmland. Int. J. Pest Manage. https://doi.org/10.1080/09670874.2013.820005 (2013).
    Article  Google Scholar 

    38.
    Tschumi, M., Ekroos, J., Hjort, C., Smith, H. G. & Birkhofer, K. Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia 188, 863–873. https://doi.org/10.1007/s00442-018-4242-z (2018).
    Article  PubMed  PubMed Central  ADS  Google Scholar 

    39.
    Elkinton, J. S., Liebhold, A. M. & Muzika, R.-M. Effects of alternative prey on predation by small mammals on gypsy moth pupae. Popul. Ecol. 46, 171–178. https://doi.org/10.1007/s10144-004-0175-y (2004).
    Article  Google Scholar 

    40.
    Dyrcz, A. Breeding biology and behaviour of the willie wagtail (Rhipidura leucophrys) in the madang region Papua New Guinea. Emu 94, 17–26. https://doi.org/10.1071/MU9940017 (1994).
    Article  Google Scholar 

    41.
    Adriano, S. & Calver, M. C. Diet of breeding willie wagtails (Rhipidura leucophrys) in suburban Western Australia. Emu 95, 138–141. https://doi.org/10.1071/MU9950138 (1995).
    Article  Google Scholar 

    42.
    Razeng, E. & Watson, D. M. What do declining woodland birds eat? A synthesis of dietary records. Emu 112, 149–156. https://doi.org/10.1071/MU11099 (2012).
    Article  Google Scholar 

    43.
    Brandl, R., Kristín, A. & Leisler, B. Dietary niche breadth in a local community of passerine birds: An analysis using phylogenetic contrasts. Oecologia 98, 109–116. https://doi.org/10.1007/bf00326096 (1994).
    CAS  Article  PubMed  ADS  Google Scholar 

    44.
    Kaplan, G. Australian Magpie: Biology and Behaviour of an Unusual Songbird (CSIRO Publishing, Clayton, 2019).
    Google Scholar 

    45.
    Puckett, H. L., Brandle, J. R. & Johnson, R. J. Avian foraging patterns in crop field edges adjacent to woody habitat. Agric. Ecosyst. Environ. 131, 9–15 (2009).
    Article  Google Scholar 

    46.
    Best, L. B., Whitmore, R. C. & Booth, G. M. Use of cornfields by birds during the breeding season: the importance of edge habitat. Am. Midl. Nat. 123, 84–99. https://doi.org/10.2307/2425762 (1990).
    Article  Google Scholar 

    47.
    Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43. https://doi.org/10.1111/1365-2664.13269 (2019).
    Article  Google Scholar 

    48.
    Storch, I., Woitke, E. & Krieger, S. Landscape-scale edge effect in predation risk in forest-farmland mosaics of Central Europe. Landsc. Ecol. 20, 927–940. https://doi.org/10.1007/s10980-005-7005-2 (2005).
    Article  Google Scholar 

    49.
    Douglas, D. J. T., Vickery, J. A. & Benton, T. G. Improving the value of field margins as foraging habitat for farmland birds. J. Appl. Ecol. 46, 353–362. https://doi.org/10.1111/j.1365-2664.2009.01613.x (2009).
    Article  Google Scholar 

    50.
    Stephens, D. W. & Krebs, J. R. Foraging Theory (University Press, 1986).
    Google Scholar 

    51.
    Denzinger, A. & Schnitzler, H.-U. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 4, 164. https://doi.org/10.3389/fphys.2013.00164 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Schnitzler, H.-U. & Kalko, E. K. V. Echolocation by insect-eating bats. Vol. 51 (SPIE, 2001).

    53.
    Neuweiler, G. Foraging, echolocation and audition in bats. Naturwissenschaften 71, 446–455. https://doi.org/10.1007/BF00455897 (1984).
    Article  ADS  Google Scholar 

    54.
    Fenton, M. B. The foraging behaviour and ecology of animal-eating bats. Can. J. Zool. 68, 411–422. https://doi.org/10.1139/z90-061 (1990).
    Article  Google Scholar 

    55.
    Jantzen, M. K. & Fenton, M. B. The depth of edge influence among insectivorous bats at forest–field interfaces. Can. J. Zool. 91, 287–292. https://doi.org/10.1139/cjz-2012-0282 (2013).
    Article  Google Scholar 

    56.
    Estur, G. Cotton Exporter’s Guide. (International Trade Centre UNCTAD/WTO, 2007).

    57.
    RBG In State of the World’s Plants 2017 (ed. Willis, K.) 64–71 (Board of Trustees of the Royal Botanic Gardens, Kew, 2017).
    Google Scholar 

    58.
    Rencken, I. An Investigation of the Importance of Native and Non-Crop Vegetation to Beneficial Generalist Predators in Australian Cotton Agroecosystems PhD thesis, University of New England (2006).

    59.
    Holloway, J. C., Furlong, M. J. & Bowden, P. I. Management of beneficial invertebrates and their potential role in integrated pest management for Australian grain systems. Aust. J. Exp. Agric. 48, 1531–1542. https://doi.org/10.1071/EA07424 (2008).
    Article  Google Scholar 

    60.
    Schellhorn, N. A., Bianchi, F. J. & Hsu, C. L. Movement of entomophagous arthropods in agricultural landscapes: Links to pest suppression. Annu. Rev. Entomol. 59, 559–581. https://doi.org/10.1146/annurev-ento-011613-161952 (2014).
    CAS  Article  PubMed  Google Scholar 

    61.
    Whitehouse, M. E. A., Wilson, L. J. & Fitt, G. P. A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ. Entomol. 34, 1224–1241 (2005).
    Article  Google Scholar 

    62.
    Smith, R., Reid, J., Scott-Morales, L., Green, S. & Reid, N. A baseline survey of birds in native vegetation on cotton farms in inland eastern Australia. Wildl. Res. 46, 304–316. https://doi.org/10.1071/WR18038 (2019).
    Article  Google Scholar 

    63.
    Ford, G. & Thomson, N. Birds on Cotton Farms: A Guide to Common Species and Habitat Management (Cotton Catchment Communities CRC, Boca Raton, 2006).
    Google Scholar 

    64.
    Whelan, C. J., Wenny, D. G. & Marquis, R. J. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 25–60 (Annals of the New York Academy of Sciences, New York, 2008).
    Google Scholar 

    65.
    Rodríguez, A., Andrén, H. & Jansson, G. Habitat-mediated predation risk and decision making of small birds at forest edges. Oikos 95, 383–396 (2001).
    Article  Google Scholar 

    66.
    Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161. https://doi.org/10.1007/s10336-012-0869-4 (2012).
    Article  Google Scholar 

    67.
    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782. https://doi.org/10.1002/ecy.2378 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Nelson, J. J. & Gillam, E. H. Selection of foraging habitat by female little brown bats (Myotis lucifugus). J. Mammal. 98, 222–231. https://doi.org/10.1093/jmammal/gyw181 (2016).
    Article  Google Scholar 

    69.
    Rohner, C. & Krebs, C. J. Owl predation on snowshoe hares: Consequences of antipredator behaviour. Oecologia 108, 303–310. https://doi.org/10.1007/bf00334655 (1996).
    Article  PubMed  ADS  Google Scholar 

    70.
    Rockwell, C., Gabriel, P. O. & Black, J. M. Bolder, older, and selective: Factors of individual-specific foraging behaviors in Steller’s jays. Behav. Ecol. 23, 676–683. https://doi.org/10.1093/beheco/ars015 (2012).
    Article  Google Scholar 

    71.
    Krebs, J. R. In Perspectives in Ethology (eds Bateson, P. P. G. & Klopfer, P. H.) 73–111 (Springer US, Berlin, 1973).
    Google Scholar 

    72.
    Lövei, G. L. & Ferrante, M. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 24, 528–542. https://doi.org/10.1111/1744-7917.12405 (2017).
    Article  PubMed  Google Scholar 

    73.
    Nagy, R. K., Schellhorn, N. A. & Zalucki, M. P. Fresh, frozen or fake: A comparison of predation rates measured by various types of sentinel prey. J. Appl. Entomol. 144, 407–416. https://doi.org/10.1111/jen.12745 (2020).
    Article  Google Scholar 

    74.
    Ravzanaadii, N., Kim, S.-H., Choi, W. H., Seong-Jin, H. & Kim, N. J. Nutritional value of mealworm, tenebrio molitor as food source. Int. J. Ind. Ergon. 25, 93–98 (2012).
    Google Scholar 

    75.
    Barbaro, L., Giffard, B., Charbonnier, Y., van Halder, I. & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: A transcontinental experiment. Divers. Distrib. 20, 149–159. https://doi.org/10.1111/ddi.12132 (2014).
    Article  Google Scholar 

    76.
    Environment Australia. Revision of the Interim Biogeographic Regionalisation of Australia (IBRA) and Development of Version 5.0: Summary Report. (Department of Environment and Heritage, Canberra, 2000).

    77.
    OEH. NSW (Mitchell) Landscapes. Vol. version 3.1 (State of New South Wales and Office of Environment and Heritage 2002).

    78.
    Keith, D. A. Ocean Shores to Desert Dunes: The Native Vegetation of NEW South Wales and the ACT (Department of Environment and Conservation, 2004).
    Google Scholar 

    79.
    R Core Team, R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, 2018).

    80.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 400. https://doi.org/10.3929/ethz-b-000240890 (2017).
    Article  Google Scholar 

    81.
    Lüdecke, D. ggeffects: Create Tidy Data Frames of Marginal Effects for ‘ggplot’ from Model Outputs (v0.16.0). https://CRAN.R-project.org/package=ggeffects. (2017).

    82.
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/mixed) Regression Models (v0.3.3). https://CRAN.R-project.org/package=DHARMa (2017).

    83.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Estimated Marginal Means, aka Least-Squares Means (v1.5.3). https://www.rdocumentation.org/packages/emmeans (2019).

    84.
    Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 19, 227–229 (2010).
    Article  Google Scholar  More

  • in

    Limited flexibility in departure timing of migratory passerines at the East-Mediterranean flyway

    1.
    Flato, G. & Boer, G. Warming asymmetry in climate change simulations. Geophys. Res. Lett. 28, 195–198 (2001).
    ADS  Article  Google Scholar 
    2.
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Jonzén, N. et al. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312, 1959–1961 (2006).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Tøttrup, A. P. et al. Avian migrants adjust migration in response to environmental conditions en route. Biol. Lett. 4, 685–688 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Moussus, J. P., Clavel, J., Jiguet, F. & Julliard, R. Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998 (2011).
    Article  Google Scholar 

    7.
    Maggini, I., Cardinale, M., Sundberg, J. H., Spina, F. & Fusani, L. Recent phenological shifts of migratory birds at a Mediterranean spring stopover site: Species wintering in the Sahel advance passage more than tropical winterers. PLoS ONE 15, e0239489 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105, 16195–16200 (2008).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B Biol. Sci. 278, 835–842 (2011).
    Article  Google Scholar 

    10.
    Jones, T. & Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).
    Article  Google Scholar 

    12.
    Lehikoinen, E., Sparks, T. H. & Zalakevicius, M. Arrival and departure dates. Adv. Ecol. Res. 35, 1–31 (2004).
    Article  Google Scholar 

    13.
    Usui, T., Butchart, S. H. & Phillimore, A. B. Temporal shifts and temperature sensitivity of avian spring migratory phenology: A phylogenetic meta-analysis. J. Anim. Ecol. 86, 250–261 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. 100, 12219–12222 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Tøttrup, A. P., Thorup, K. & Rahbek, C. Changes in timing of autumn migration in North European songbird populations. Ardea 94, 527 (2006).
    Google Scholar 

    16.
    Haest, B., Hüppop, O. & Bairlein, F. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds. Proc. Natl. Acad. Sci. 117, 17056–17062 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Tøttrup, A. P. et al. Drought in Africa caused delayed arrival of European songbirds. Science 338, 1307–1307 (2012).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    18.
    Biebach, H. Sahara stopover in migratory flycatchers: Fat and food affect the time program. Experientia 41, 695–697 (1985).
    Article  Google Scholar 

    19.
    Aharon-Rotman, Y., Bauer, S. & Klaassen, M. A chain is as strong as its weakest link: Assessing the consequences of habitat loss and degradation in a long-distance migratory shorebird. Emu-Aust. Ornithol. 116, 199–207 (2016).
    Article  Google Scholar 

    20.
    Berthold, P. Control of Bird Migration (Springer Science & Business Media, Berlin, 1996).
    Google Scholar 

    21.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Ramenofsky, M. Reconsidering the role of photoperiod in relation to effects of precipitation and food availability on spring departure of a migratory bird. Proc. R. Soc. B Biol. Sci. 279, 15–16 (2012).
    Article  Google Scholar 

    23.
    Goymann, W., Lupi, S., Kaiya, H., Cardinale, M. & Fusani, L. Ghrelin affects stopover decisions and food intake in a long-distance migrant. Proc. Natl. Acad. Sci. 114, 1946–1951 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Berthold, P. The endogenous control of bird migration: A survey of experimental evidence. Bird Study 31, 19–27 (1984).
    Article  Google Scholar 

    25.
    Gwinner, E. Circannual clocks in avian reproduction and migration. Ibis 138, 47–63 (1996).
    Article  Google Scholar 

    26.
    Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long-distance migrants, delays in short–distance migrants. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 1467–1471 (2003).
    Article  Google Scholar 

    27.
    Knudsen, E. et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86, 928–946 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Kovács, S., Fehérvári, P., Nagy, K., Harnos, A. & Csörgő, T. Changes in migration phenology and biometrical traits of Reed, Marsh and Sedge Warblers. Cent. Eur. J. Biol. 7, 115–125 (2012).
    Google Scholar 

    29.
    Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim. Res. 35, 135–146 (2007).
    Article  Google Scholar 

    30.
    Thorup, K., Tøttrup, A. P. & Rahbek, C. Patterns of phenological changes in migratory birds. Oecologia 151, 697–703 (2007).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).
    Article  Google Scholar 

    32.
    Briedis, M., Krist, M., Král, M., Voigt, C. C. & Adamík, P. Linking events throughout the annual cycle in a migratory bird–non-breeding period buffers accumulation of carry-over effects. Behav. Ecol. Sociobiol. 72, 93 (2018).
    Article  Google Scholar 

    33.
    Stanley, C. Q., MacPherson, M., Fraser, K. C., McKinnon, E. A. & Stutchbury, B. J. Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS ONE 7, e40688 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Bussière, E. M., Underhill, L. G. & Altwegg, R. Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change. Glob. Change Biol. 21, 2179–2190 (2015).
    ADS  Article  Google Scholar 

    35.
    Ahola, M. et al. Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob. Change Biol. 10, 1610–1617 (2004).
    ADS  Article  Google Scholar 

    36.
    Payevsky, V. A., Vysotsky, V. G. & Zelenova, N. P. Extinction of a Barred Warbler Sylvia nisoria population in Eastern Baltic: long-term monitoring, demography, and biometry. Avian Ecol. Behav 11, 89–105 (2003).
    Google Scholar 

    37.
    Newton, I. Population limitation in migrants. Ibis 146, 197–226 (2004).
    Article  Google Scholar 

    38.
    Ockendon, N., Johnston, A. & Baillie, S. R. Rainfall on wintering grounds affects population change in many species of Afro-Palaearctic migrants. J. Ornithol. 155, 905–917 (2014).
    Article  Google Scholar 

    39.
    Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).
    Article  Google Scholar 

    40.
    Walther, B. A. & Rahbek, C. Where do Palearctic migratory birds overwinter in Africa. Danks Orn Foren Tidsskr 96, 4–8 (2002).
    Google Scholar 

    41.
    Bairlein, F. The study of bird migrations—some future perspectives. Bird Study 50, 243–253 (2003).
    Article  Google Scholar 

    42.
    Altwegg, R. et al. Novel methods reveal shifts in migration phenology of barn swallows in South Africa. Proc. R. Soc. B Biol. Sci. 279, 1485–1490 (2012).
    Article  Google Scholar 

    43.
    Hüppop, O. & Ppop, K. H. North Atlantic oscillation and timing of spring migration in birds. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 233–240 (2003).
    Article  Google Scholar 

    44.
    Haest, B., Hüppop, O. & Bairlein, F. Challenging a 15-year-old claim: The North atlantic oscillation index as a predictor of spring migration phenology of birds. Glob. Change Biol. 24, 1523–1537 (2018).
    ADS  Article  Google Scholar 

    45.
    Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    MacMynowski, D. P. & Root, T. L. Climate and the complexity of migratory phenology: Sexes, migratory distance, and arrival distributions. Int. J. Biometeorol. 51, 361–373 (2007).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Milá, B., Wayne, R. K. & Smith, T. B. Ecomorphology of migratory and sedentary populations of the yellow-rumped warbler (Dendroica coronata). Condor 110, 335–344 (2008).
    Article  Google Scholar 

    48.
    Förschler, M. I. & Bairlein, F. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6, e18732 (2011).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Fiedler, W. Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Ann. N. Y. Acad. Sci. 1046, 253 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Tarka, M. et al. A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc. R. Soc. B Biol. Sci. 277, 2361–2369 (2010).
    Article  Google Scholar 

    51.
    Nowakowski, J. K., Szulc, J. & Remisiewicz, M. The further the flight, the longer the wing: Relationship between wing length and migratory distance in Old World reed and bush warblers (Acrocephalidae and Locustellidae). Ornis Fennica 91, 2 (2014).
    Google Scholar 

    52.
    Toews, D. P., Heavyside, J. & Irwin, D. E. Linking the wintering and breeding grounds of warblers along the Pacific Flyway. Ecol. Evol. 7, 6649–6658 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Pérez-Tris, J., Carbonell, R. & Tellería, J. L. A method for differentiating between sedentary and migratory Blackcaps Sylvia atricapilla in wintering areas of southern Iberia. Bird Study 46, 299–304 (1999).
    Article  Google Scholar 

    54.
    Kovács, S., Csörgő, T., Harnos, A., Fehérvári, P. & Nagy, K. Change in migration phenology and biometrics of two conspecific Sylvia species in Hungary. J. Ornithol. 152, 365–373 (2011).
    Article  Google Scholar 

    55.
    Lank, D. B. et al. Long term continental changes in wing length, but not bill length, of a long distance migratory shorebird. Ecol. Evol. 7, 3243–3256 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).
    Article  Google Scholar 

    57.
    Szekely, T., Lislevand, T. & Figuerola, J. Sexual size dimorphism in birds. Sex, size and gender roles: evolutionary studies of sexual size dimorphism, 27–37 (2007).

    58.
    Spina, F., Massi, A. & Montemaggiori, A. Back from Africa: Who’s running ahead? Aspects of differential migration of sex and age classes in Palearctic-African spring migrants. Ostrich 65, 137–150 (1994).
    Article  Google Scholar 

    59.
    Izhaki, I. & Maitav, A. Blackcaps Sylvia atricapilla stopping over at the desert edge; inter-and intra sexual differences in spring and autumn migration. Ibis 140, 234–243 (1998).
    Article  Google Scholar 

    60.
    Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).
    Article  Google Scholar 

    61.
    Shneor, O., Perlman, G., Balaban, A. & Yom-Tov, Y. Origin of passerine migratory waves: Evidence from the blackcap at a stopover site. Israel J. Ecol. Evol. 56, 135–151 (2010).
    Article  Google Scholar 

    62.
    Porkert, J. et al. Variation and long-term trends in the timing of breeding of different Eurasian populations of Common Redstart Phoenicurus phoenicurus. J. Ornithol. 155, 1045–1057 (2014).
    Article  Google Scholar 

    63.
    BirdLife International and Handbook of the Birds of the World., 2019.

    64.
    Houborg, R., Soegaard, H. & Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 106, 39–58 (2007).
    ADS  Article  Google Scholar 

    65.
    Papeş, M., Peterson, A. T. & Powell, G. V. Vegetation dynamics and avian seasonal migration: Clues from remotely sensed vegetation indices and ecological niche modelling. J. Biogeogr. 39, 652–664 (2012).
    Article  Google Scholar 

    66.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Article  Google Scholar 

    67.
    Gersten, A. & Hahn, S. Timing of migration in Common Redstarts (Phoenicurus phoenicurus) in relation to the vegetation phenology at residence sites. J. Ornithol. 157, 1029–1036 (2016).
    Article  Google Scholar 

    68.
    Adole, T., Dash, J. & Atkinson, P. M. Characterising the land surface phenology of Africa using 500 m MODIS EVI. Appl. Geogr. 90, 187–199 (2018).
    Article  Google Scholar 

    69.
    Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar 

    70.
    Kiat, Y. & Sapir, N. Life-history trade-offs result in evolutionary optimization of feather quality. Biol. J. Lin. Soc. 125, 613–624 (2018).
    Google Scholar 

    71.
    Miles, W. T. et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long distance migratory birds. Glob. Change Biol. 23, 1400–1414 (2017).
    ADS  Article  Google Scholar 

    72.
    Geraci, M. & Bottai, M. Linear quantile mixed models. Stat. Comput. 24, 461–479 (2014).
    MathSciNet  MATH  Article  Google Scholar 

    73.
    Geraci, M. Linear quantile mixed models: The lqmm package for Laplace quantile regression. J. Stat. Softw. 57, 1–29 (2014).
    Article  Google Scholar 

    74.
    Koenker, R. & Bassett, G. J. Regression quantiles. Econometrica 2, 33–50 (1978).
    MathSciNet  MATH  Article  Google Scholar 

    75.
    Kokko, H., Gunnarsson, T. G., Morrell, L. J. & Gill, J. A. Why do female migratory birds arrive later than males?. J. Anim. Ecol. 75, 1293–1303 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Yosef, R. & Meissner, W. Seasonal age differences in weight and biometrics of migratory Dunlins (Calidris alpina) at Eilat Israel. Ostrich-J. Afr. Ornithol. 77, 67–72 (2006).
    Article  Google Scholar 

    77.
    Smith, R. J. & Moore, F. R. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 57, 231–239 (2005).
    Article  Google Scholar 

    78.
    R: A language and environment for statistical computing. ( Vienna, Austria. URL https://www.R-project.org/, 2019).

    79.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R-Core-Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–139 URL: https://CRAN.R-project.org/package=nlme (2020).

    80.
    Lenth, R. V. Least-square means: The R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).
    Article  Google Scholar 

    81.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, Berlin, 2009).
    Google Scholar 

    82.
    Hahn, S. et al. Longer wings for faster springs: Wing length relates to spring phenology in a long distance migrant across its range. Ecol. Evol. 6, 68–77 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360, 668 (1992).
    ADS  Article  Google Scholar 

    84.
    Hedlund, J. S., Jakobsson, S., Kullberg, C. & Fransson, T. Long-term phenological shifts and intra-specific differences in migratory change in the willow warbler Phylloscopus trochilus. J. Avian Biol. 46, 97–106 (2015).
    Article  Google Scholar 

    85.
    Tryjanowski, P., Kuźniak, S. & Sparks, T. What affects the magnitude of change in first arrival dates of migrant birds?. J. Ornithol. 146, 200–205 (2005).
    Article  Google Scholar 

    86.
    Newson, S. E. et al. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158, 481–495 (2016).
    Article  Google Scholar 

    87.
    Zalakevicius, M., Bartkeviciene, G., Raudonikis, L. & Janulaitis, J. Spring arrival response to climate change in birds: a case study from eastern Europe. J. Ornithol. 147, 326–343 (2006).
    Article  Google Scholar 

    88.
    Spottiswoode, C. N., Tøttrup, A. P. & Coppack, T. Sexual selection predicts advancement of avian spring migration in response to climate change. Proc. R. Soc. B Biol. Sci. 273, 3023–3029 (2006).
    Article  Google Scholar 

    89.
    Yosef, R. & Wineman, A. Differential stopover of blackcap (Sylvia atricapilla) by sex and age at Eilat Israel. J. Arid Environ. 74, 360–367 (2010).
    ADS  Article  Google Scholar 

    90.
    Kristensen, M. W., Tøttrup, A. P. & Thorup, K. Migration of the Common Redstart (Phoenicurus phoenicurus): A Eurasian songbird wintering in highly seasonal conditions in the West African Sahel. Auk 130, 258–264 (2013).
    Article  Google Scholar 

    91.
    Moreau, R. E. Palaearctic-African Bird Migration Systems (Academic Press, London, 1972).
    Google Scholar 

    92.
    Tryjanowski, P., Kuźniak, S. & Sparks, T. Earlier arrival of some farmland migrants in western Poland. Ibis 144, 62–68 (2002).
    Article  Google Scholar 

    93.
    Ożarowska, A., Zaniewicz, G. & Meissner, W. in Annales Zoologici Fennici. 45–54 (BioOne).

    94.
    Wisz, M. S., Walther, B. & Rahbek, C. Using potential distributions to explore determinants of Western Palaearctic migratory songbird species richness in sub-Saharan Africa. J. Biogeogr. 34, 828–841 (2007).
    Article  Google Scholar 

    95.
    Yosef, R. & Markovets, M. Spring bird migration phenology in Eilat Israel. ZooKeys 31, 193 (2009).
    Article  Google Scholar 

    96.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Wolff, C. et al. Reduced interannual rainfall variability in East Africa during the last ice age. Science 333, 743–747 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Metabolomics shows the Australian dingo has a unique plasma profile

    1.
    Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E. & Lundeberg, J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl. Acad. Sci. USA 101, 12387–12390. https://doi.org/10.1073/pnas.0401814101 (2004).
    CAS  Article  PubMed  ADS  Google Scholar 
    2.
    Smith, B. P. et al. Taxonomic status of the Australian dingo: The case for Canis dingo Meyer, 1793. Zootaxa 4564, 173–197. https://doi.org/10.11646/zootaxa.4564.1.6 (2019).
    Article  Google Scholar 

    3.
    Ballard, J. W. O. & Wilson, L. A. B. The Australian dingo: Untamed or feral?. Front. Zool. 16, 1–19. https://doi.org/10.1186/s12983-019-0300-6 (2019).
    Article  Google Scholar 

    4.
    Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413. https://doi.org/10.1111/j.1469-185X.2011.00203.x (2012).
    Article  PubMed  Google Scholar 

    5.
    Letnic, M., Crowther, M. & Koch, F. Does a top-predator provide an endangered rodent with refuge from an invasive mesopredator?. Anim. Conserv. 12, 302–312 (2009).
    Article  Google Scholar 

    6.
    Doherty, T. S. et al. Continental patterns in the diet of a top predator: Australia’s dingo. Mammal. Rev. 49, 31–44. https://doi.org/10.1111/mam.12139 (2019).
    Article  Google Scholar 

    7.
    Stephens, D., Wilton, A. N., Fleming, P. J. & Berry, O. Death by sex in an Australian icon: A continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol. Ecol. 24, 5643–5656 (2015).
    CAS  Article  Google Scholar 

    8.
    Spady, T. C. & Ostrander, E. A. Canine behavioral genetics: Pointing out the phenotypes and herding up the genes. Am. J. Hum. Genet. 82, 10–18. https://doi.org/10.1016/j.ajhg.2007.12.001 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Wayne, R. K. Consequences of domestication: Morphological diversity of the dog. In The Genetics of the Dog (ed. Ruvinsky, A.) 43–60 (CAB International, Wallingford, 2001).
    Google Scholar 

    10.
    Parker, H. G. et al. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep. 19, 697–708. https://doi.org/10.1016/j.celrep.2017.03.079 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Johannes, J. E. Basenji origin and migration: At Africa’s Doorstep. Off. Bull. Basenji Am. 38, 18–19 (2004).
    Google Scholar 

    12.
    Fuller, J. L. Photoperiodic control of estrus in the Basenji. J. Hered. 47, 179–180 (1956).
    Article  Google Scholar 

    13.
    Talenti, A. et al. Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution. Ecol. Evol. 8, 2911–2925. https://doi.org/10.1002/ece3.3842 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Field, M. A. et al. Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C. Gigascience 9, giaa027. https://doi.org/10.1093/gigascience/giaa027 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Pendleton, A. L. et al. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. Bmc Biol. 16, 64. https://doi.org/10.1186/s12915-018-0535-2 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Jackson, S. M. et al. The Dogma of Dingoes—Taxonomic status of the dingo: A reply to Smith et al. Zootaxa 4564, 198–212 (2019).
    Article  Google Scholar 

    17.
    Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. Plos Genet 10, e1004016. https://doi.org/10.1371/journal.pgen.1004016 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    18.
    Arendt, M., Cairns, K. M., Ballard, J. W., Savolainen, P. & Axelsson, E. Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity 117, 301–306. https://doi.org/10.1038/hdy.2016.48 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Beckmann, M. et al. Metabolite fingerprinting of urine suggests breed-specific dietary metabolism differences in domestic dogs. Br. J. Nutr. 103, 1127–1138. https://doi.org/10.1017/S000711450999300X (2010).
    CAS  Article  PubMed  Google Scholar 

    20.
    Clinquart, A., Van Eenaeme, C., Mayombo, A. P., Gauthier, S. & Istasse, L. Plasma hormones and metabolites in cattle in relation to breed (Belgian Blue vs Holstein) and conformation (double-muscled vs dual-purpose type). Vet. Res.Commun. 19, 185–194. https://doi.org/10.1007/BF01839297 (1995).
    CAS  Article  PubMed  Google Scholar 

    21.
    Viant, M. R., Ludwig, C., Rhodes, S., Gunther, U. L. & Allaway, D. Validation of a urine metabolome fingerprint in dog for phenotypic classification (vol 3, pg 453, 2007). Metabolomics 5, 517–517. https://doi.org/10.1007/s11306-009-0172-4 (2009).
    CAS  Article  Google Scholar 

    22.
    Gopalakrishnan, S. et al. Interspecific gene flow shaped the evolution of the genus Canis. Curr. Biol. 28, 3441–3449. https://doi.org/10.1016/j.cub.2018.08.041 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Gottelli, D. et al. Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol. Ecol. 3, 301–312. https://doi.org/10.1111/j.1365-294x.1994.tb00070.x (1994).
    CAS  Article  PubMed  Google Scholar 

    24.
    Galov, A. et al. First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers. R. Soc. Open Sci. 2, 150450. https://doi.org/10.1098/rsos.150450 (2015).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    25.
    Adams, J. R., Leonard, J. A. & Waits, L. P. Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes. Mol. Ecol. 12, 541–546. https://doi.org/10.1046/j.1365-294x.2003.01708.x (2003).
    CAS  Article  PubMed  Google Scholar 

    26.
    Roy, M. S., Geffen, E., Smith, D. & Wayne, R. K. Molecular genetics of pre-1940 red wolves. Conserv. Biol. 10, 1413–1424 (1996).
    Article  Google Scholar 

    27.
    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83 (1996).
    Article  Google Scholar 

    28.
    Fiehn, O. Metabolomics: The link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171. https://doi.org/10.1023/A:1013713905833 (2002).
    CAS  Article  PubMed  Google Scholar 

    29.
    Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459. https://doi.org/10.1038/nrm.2016.25 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    van Ravenzwaay, B. et al. The use of metabolomics for the discovery of new biomarkers of effect. Toxicol. Lett. 172, 21–28. https://doi.org/10.1016/j.toxlet.2007.05.021 (2007).
    CAS  Article  PubMed  Google Scholar 

    31.
    Hanhineva, K. et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J. Nutr. 145, 7–17. https://doi.org/10.3945/jn.114.196840 (2015).
    CAS  Article  PubMed  Google Scholar 

    32.
    Khamis, M. M., Adamko, D. J. & El-Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev. 36, 115–134. https://doi.org/10.1002/mas.21455 (2017).
    CAS  Article  PubMed  ADS  Google Scholar 

    33.
    Mamas, M., Dunn, W. B., Neyses, L. & Goodacre, R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol. 85, 5–17. https://doi.org/10.1007/s00204-010-0609-6 (2011).
    CAS  Article  PubMed  Google Scholar 

    34.
    Ferlizza, E. et al. Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease. J. Proteom. 222, 103795. https://doi.org/10.1016/j.jprot.2020.103795 (2020).
    CAS  Article  Google Scholar 

    35.
    Colyer, A., Gilham, M. S., Kamlage, B., Rein, D. & Allaway, D. Identification of intra- and inter-individual metabolite variation in plasma metabolite profiles of cats and dogs. Br. J. Nutr. 106(Suppl 1), S146-149. https://doi.org/10.1017/S000711451100081X (2011).
    CAS  Article  PubMed  Google Scholar 

    36.
    Lloyd, A. J. et al. Ultra high performance liquid chromatography-high resolution mass spectrometry plasma lipidomics can distinguish between canine breeds despite uncontrolled environmental variability and non-standardized diets. Metabolomics 13, 15. https://doi.org/10.1007/s11306-016-1152-0 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Carlos, G., Dos Santos, F. P. & Froehlich, P. E. Canine metabolomics advances. Metabolomics 16, 16. https://doi.org/10.1007/s11306-020-1638-7 (2020).
    CAS  Article  PubMed  Google Scholar 

    38.
    Carthey, A. J. R., Bucknall, M. P., Wierucka, K. & Banks, P. B. Novel predators emit novel cues: A mechanism for prey naivety towards alien predators. Sci. Rep. 7, 16377. https://doi.org/10.1038/s41598-017-16656-z (2017).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    39.
    Nicholson, G. et al. Human metabolic profiles are stably controlled by genetic and environmental variation. Mol. Syst. Biol. 7, 525. https://doi.org/10.1038/msb.2011.57 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Suhre, K. & Gieger, C. Genetic variation in metabolic phenotypes: study designs and applications. Nat. Rev. Genet. 13, 759–769. https://doi.org/10.1038/nrg3314 (2012).
    CAS  Article  PubMed  Google Scholar 

    41.
    Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276. https://doi.org/10.1038/ng.1073 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Fujisaka, S. et al. Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell. Rep. 22, 3072–3086. https://doi.org/10.1016/j.celrep.2018.02.060 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Söder, J. et al. Plasma metabolomics reveals lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Vet. Scand. 61, 1–12 (2019).
    Article  ADS  Google Scholar 

    44.
    Boretti, F. S. et al. Serum lipidome analysis of healthy beagle dogs receiving different diets. Metabolomics 16, 1 (2020).
    CAS  Article  Google Scholar 

    45.
    Lyu, T. S. et al. Changes in feeding habits promoted the differentiation of the composition and function of gut microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus). Amb. Express 8, 1–12. https://doi.org/10.1186/s13568-018-0652-x (2018).
    Article  Google Scholar 

    46.
    Zhang, S. J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 671. https://doi.org/10.1038/s41467-020-14515-6 (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    47.
    Lee, R. K., Wurtman, R. J., Cox, A. J. & Nitsch, R. M. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 92, 8083–8087. https://doi.org/10.1073/pnas.92.17.8083 (1995).
    CAS  Article  PubMed  ADS  Google Scholar 

    48.
    Li, Q., Chen, J., Yu, X. & Gao, J. M. A mini review of nervonic acid: Source, production, and biological functions. Food Chem. 301, 125286. https://doi.org/10.1016/j.foodchem.2019.125286 (2019).
    CAS  Article  PubMed  Google Scholar 

    49.
    Schauer, R. Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499. https://doi.org/10.1023/a:1011062223612 (2000).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Wang, G. D. et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26, 21–33. https://doi.org/10.1038/cr.2015.147 (2016).
    Article  PubMed  Google Scholar 

    51.
    Pavlova, T. et al. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal. Chim. Acta 987, 72–80. https://doi.org/10.1016/j.aca.2017.08.022 (2017).
    CAS  Article  PubMed  Google Scholar 

    52.
    Webster, P. M., Hoover, W. H. & Miller, T. K. Determination of 2,6 Diaminopimelic acid in biological-materials using high-performance liquid-chromatography. Anim. Feed Sci. Technol. 30, 11–20. https://doi.org/10.1016/0377-8401(90)90048-D (1990).
    CAS  Article  Google Scholar 

    53.
    Vranova, V., Lojkova, L., Rejsek, K. & Formanek, P. Significance of the natural occurrence of L- versus D-pipecolic acid: A review. Chirality 25, 823–831. https://doi.org/10.1002/chir.22237 (2013).
    CAS  Article  PubMed  Google Scholar 

    54.
    Lin, C., Wan, J., Su, Y. & Zhu, W. Effects of early intervention with maternal fecal microbiota and antibiotics on the gut microbiota and metabolite profiles of piglets. Metabolites 8, 89. https://doi.org/10.3390/metabo8040089 (2018).
    CAS  Article  PubMed Central  Google Scholar 

    55.
    Sawada, S. & Yamamoto, C. Gamma-D-glutamylglycine and cis-2,3-piperidine dicarboxylate as antagonists of excitatory amino-acids in the hippocampus. Exp. Brain Res. 55, 351–358 (1984).
    CAS  Article  Google Scholar 

    56.
    Lewis, E. D., Meydani, S. N. & Wu, D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life 71, 487–494. https://doi.org/10.1002/iub.1976 (2019).
    CAS  Article  PubMed  Google Scholar 

    57.
    D’Arrigo, P. & Servi, S. Synthesis of lysophospholipids. Molecules 15, 1354–1377. https://doi.org/10.3390/molecules15031354 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Birgbauer, E. & Chun, J. New developments in the biological functions of lysophospholipids. Cell Mol. Life Sci. 63, 2695–2701. https://doi.org/10.1007/s00018-006-6155-y (2006).
    CAS  Article  PubMed  Google Scholar 

    59.
    Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. & Kluk, M. J. Lysophospholipids: Receptor revelations. Science 294, 1875–1878. https://doi.org/10.1126/science.1065323 (2001).
    CAS  Article  PubMed  ADS  Google Scholar 

    60.
    Li, Z. & Vance, D. E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49, 1187–1194. https://doi.org/10.1194/jlr.R700019-JLR200 (2008).
    CAS  Article  PubMed  Google Scholar 

    61.
    van der Veen, J. N. et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. BBA https://doi.org/10.1016/j.bbamem.2017.04.006 (2017).
    Article  Google Scholar 

    62.
    Vance, D. E. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr. Opin. Lipidol. 19, 229–234. https://doi.org/10.1097/MOL.0b013e3282fee935 (2008).
    CAS  Article  PubMed  Google Scholar 

    63.
    Segal, S. Defective galactosylation in galactosemia: Is low cell UDPgalactose an explanation?. Eur. J. Pediatr. 154, S65–S71 (1995).
    CAS  Article  Google Scholar 

    64.
    Ollivier, M. et al. Amy2B copy number variation reveals starch diet adaptations in ancient European dogs. R. Soc. Open Sci. 3, 160449 (2016).
    Article  ADS  Google Scholar 

    65.
    Arendt, M., Fall, T., Lindblad-Toh, K. & Axelsson, E. Amylase activity is associated with AMY 2B copy numbers in dog: Implications for dog domestication, diet and diabetes. Anim. Genet. 45, 716–722 (2014).
    CAS  Article  Google Scholar 

    66.
    Hoenig, M. Progress in Molecular Biology and Translational Science Vol. 121, 377–412 (Elsevier, Amstredam, 2014).
    Google Scholar 

    67.
    Bradshaw, J. W. The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). J. Nutr. 136, 1927S-1931S. https://doi.org/10.1093/jn/136.7.1927S (2006).
    CAS  Article  PubMed  Google Scholar 

    68.
    Surbakti, S. et al. New Guinea highland wild dogs are the original New Guinea singing dogs. Proc. Natl. Acad. Sci. USA 117, 24369–24376. https://doi.org/10.1073/pnas.2007242117 (2020).
    CAS  Article  PubMed  Google Scholar 

    69.
    Wilton, A. N. In A Symposium on the Dingo’ 49–56.

    70.
    Mackay, G. M., Zheng, L., Van Den Broek, N. J. & Gottlieb, E. Methods in Enzymology Vol. 561, 171–196 (Elsevier, Amsterdam, 2015).
    Google Scholar 

    71.
    Zhang, T., Creek, D. J., Barrett, M. P., Blackburn, G. & Watson, D. G. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine. Anal. Chem. 84, 1994–2001. https://doi.org/10.1021/ac2030738 (2012).
    CAS  Article  PubMed  Google Scholar 

    72.
    Team, R. C. & DC, R. A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2012). https://www.R-project.org (2019).

    73.
    Fox, J. et al. Package ‘car’ (R Foundation for Statistical Computing, Vienna, 2012).
    Google Scholar 

    74.
    Champely, S. et al. Package ‘pwr’. R package version 1 (2018). More

  • in

    Continental-scale analysis of shallow and deep groundwater contributions to streams

    1.
    Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).
    ADS  Article  Google Scholar 
    2.
    Boulton, A. & Hancock, P. Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust. J. Bot. 54, (2006).

    3.
    Tesoriero, A. J., Duff, J. H., Saad, D. A., Spahr, N. E. & Wolock, D. M. Vulnerability of streams to legacy nitrate sources. Environ. Sci. Technol. 47, 3623–3629 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Briggs, M. A. et al. Hillslope groundwater discharges provide localized stream ecosystem buffers from regional per- and polyfluoroalkyl substances contamination. Hydrol. Process. 34, 2281–2291 (2020).
    ADS  CAS  Article  Google Scholar 

    5.
    Ward, J. V. & Stanford, J. A. Thermal responses in the evolutionary ecology of aquatic insects. Annu. Rev. Entomol. 27, 97–117 (1982).
    Article  Google Scholar 

    6.
    Baird, O. E. & Krueger, C. C. Behavioral thermoregulation of brook and rainbow trout: comparison of summer habitat use in an Adirondack river, New York. Trans. Am. Fish. Soc. 132, 1194–1206 (2003).
    Article  Google Scholar 

    7.
    Torgersen, C., Ebersole, J. & Keenan, D. Primer for identifying cold-water refuges to protect and restore thermal diversity in riverine landscapes. EPA Sci. Guid. Handb. p. 91 (2012).

    8.
    Briggs, M. A. et al. Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals. Sci. Total Environ. 636, 1117–1127 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Kaushal, S. S. et al. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8, 451–466 (2010).
    Article  Google Scholar 

    10.
    Isaak, D. J., Wollrab, S., Horan, D. & Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 113, 499–524 (2012).
    ADS  Article  Google Scholar 

    11.
    Luce, C. et al. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest. Water Resour. Res. 50, 3428–3443 (2014).
    ADS  Article  Google Scholar 

    12.
    Leach, J. A. & Moore, R. D. Empirical stream thermal sensitivities may underestimate stream temperature response to climate warming. Water Resour. Res. 55, 5453–5467 (2019).
    ADS  Article  Google Scholar 

    13.
    Bundschuh, J. Modeling annual variations of spring and groundwater temperatures associated with shallow aquifer systems. J. Hydrol. 142, 427–444 (1993).
    ADS  Article  Google Scholar 

    14.
    Snyder, C. D., Hitt, N. P. & Young, J. A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 25, 1397–1419 (2015).
    PubMed  Article  Google Scholar 

    15.
    Barclay, J. R., Starn, J. J., Briggs, M. A. & Helton, A. M. Improved prediction of management-relevant groundwater discharge characteristics throughout river networks. Water Resour. Res. 56, e2020WR028027 (2020).
    ADS  Article  Google Scholar 

    16.
    Kurylyk, B. L., MacQuarrie, K. T. B., Caissie, D. & McKenzie, J. M. Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling. Hydrol. Earth Syst. Sci. 19, 2469–2489 (2015).
    ADS  Article  Google Scholar 

    17.
    Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 44, 1–20 (2008).
    Article  CAS  Google Scholar 

    18.
    Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S. & Slater, L. Multiscale geophysical imaging of the critical zone. Rev. Geophys. 53, 1–26 (2015).
    ADS  Article  Google Scholar 

    19.
    Maxwell, R. M. & Kollet, S. J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 1, 665–669 (2008).
    ADS  CAS  Article  Google Scholar 

    20.
    Eggleston, J. & McCoy, K. J. Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA. Hydrogeol. J. 23, 105–120 (2015).
    ADS  Article  Google Scholar 

    21.
    Williams, M. R. et al. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment. J. Hydrol. 511, 870–879 (2014).
    ADS  CAS  Article  Google Scholar 

    22.
    Cozzarelli, I. M. et al. Geochemical and geophysical indicators of oil and gas wastewater can trace potential exposure pathways following releases to surface waters. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142909 (2020).
    Article  PubMed  Google Scholar 

    23.
    Thompson, T. J. et al. Groundwater discharges as a source of phytoestrogens and other agriculturally derived contaminants to streams. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142873 (2020).

    24.
    Condon, L. E. et al. Where is the bottom of a watershed? Water Resour. Res. 56, e2019WR026010 (2020).
    ADS  Article  Google Scholar 

    25.
    Barnes, R. T., Butman, D. E., Wilson, H. F. & Raymond, P. A. Riverine export of aged carbon driven by flow path depth and residence time. Environ. Sci. Technol. 52, 1028–1035 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Zhi, W. & Li, L. The shallow and deep hypothesis: subsurface vertical chemical contrasts shape nitrate export patterns from different land uses. Environ. Sci. Technol. 54, 11915–11928 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Essaid, H. I. & Caldwell, R. R. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed. Sci. Total Environ. 599–600, 581–596 (2017).
    ADS  PubMed  Article  CAS  Google Scholar 

    29.
    Burns, D. A., Murdoch, P. S., Lawrence, G. B. & Michel, R. L. Effect of groundwater springs on NO3/- concentrations during summer in Catskill Mountain streams. Water Resour. Res. 34, 1987–1996 (1998).
    ADS  CAS  Article  Google Scholar 

    30.
    Kalbus, E., Reinstorf, F. & Schirmer, M. Measuring methods for groundwater-surface water interactions: a review. Hydrol. Earth Syst. Sci. 10, 873–887 (2006).
    ADS  CAS  Article  Google Scholar 

    31.
    Kelleher, C. et al. Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrol. Process. 26, 771–785 (2012).
    ADS  Article  Google Scholar 

    32.
    Gustard, A., Bullock, A. & Dixon, J. M. Low flow estimation in the United Kingdom. Inst. Hydrol. 102, 1–292 (1992).
    Google Scholar 

    33.
    Essaid, H. I., Baker, N. T. & McCarthy, K. A. Contrasting nitrogen fate in watersheds using agricultural and water quality information. J. Environ. Qual. 45, 1616–1626 (2016).
    CAS  PubMed  Article  Google Scholar 

    34.
    Jasechko, S., Kirchner, J. W., Welker, J. M. & McDonnell, J. J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 9, 126–129 (2016).
    ADS  CAS  Article  Google Scholar 

    35.
    Letcher, B. H. et al. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags. PeerJ https://doi.org/10.7717/peerj.1727 (2016).

    36.
    Kędra, M. & Wiejaczka, Ł. Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Sci. Total Environ. 626, 1474–1483 (2018).
    ADS  PubMed  Article  CAS  Google Scholar 

    37.
    Tague, C., Grant, G., Farrell, M., Choate, J. & Jefferson, A. Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades. Clim. Change 86, 189–210 (2008).
    ADS  Article  Google Scholar 

    38.
    Bense, V., Kurylyk, B. L., van Daal, J., van der Ploeg, M. J. & Carey, S. K. Interpreting repeated temperature-depth profiles for groundwater flow. Water Resour. Res. 53, 8639–8647 (2017).
    ADS  Article  Google Scholar 

    39.
    Burns, E. R. et al. Thermal effect of climate change on groundwater-fed ecosystems. Water Resour. Res. 53, 3341–3351 (2017).
    ADS  Article  Google Scholar 

    40.
    Johnson, Z. C. et al. Paired air-water annual temperature patterns reveal hydrogeological controls on stream thermal regimes at watershed to continental scales. J. Hydrol. 587, 124929 (2020).
    Article  Google Scholar 

    41.
    Briggs, M. A. et al. Shallow bedrock limits groundwater seepage-based headwater climate refugia. Limnologica 68, 142–156 (2018).
    Article  Google Scholar 

    42.
    Land, M., Ingri, J., Andersson, P. S. & Ohlander, B. Ba/Sr, Ca/Sr and Sr-87/Sr-86 ratios in soil water and groundwater: implications for relative contributions to stream water discharge. Appl. Geochem. 15, 311–325 (2000).
    CAS  Article  Google Scholar 

    43.
    Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground water and surface water: a single resource. U.S. Geological Survey circular: 1139 (1998).

    44.
    Briggs, M. A. et al. Hydrogeochemical controls on brook trout spawning habitats in a coastal stream. Hydrol. Earth Syst. Sci. 22, 6383–6398 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Johnson, Z. C., Snyder, C. D. & Hitt, N. P. Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams. Water Resour. Res. 53, 5788–5812 (2017).
    ADS  Article  Google Scholar 

    46.
    Jencso, K. G., Mcglynn, B. L., Gooseff, M. N., Bencala, K. E. & Wondzell, S. M. Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources. 46, 1–18 (2010).

    47.
    Helton, A. M., Poole, G. C., Payn, R. A., Izurieta, C. & Stanford, J. A. Relative influences of the river channel, floodplain surface, and alluvial aquifer on simulated hydrologic residence time in a montane river floodplain. Geomorphology 205, 17–26 (2012).
    ADS  Article  Google Scholar 

    48.
    Idaho Department of Environmental Quality Technical Services Division. Upper North Fork Clearwater River Subbasin Assessment and Total Maximum Daily Loads. 2017 Lake Creek Temperature TMDL (2018).

    49.
    Ledford, S. H., Lautz, L. K. & Stella, J. C. Hydrogeologic processes impacting storage, fate, and transport of chloride from road salt in urban riparian aquifers. Environ. Sci. Technol. 50, 4979–4988 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Hill, R. A., Weber, M. H., Leibowitz, S. G., Olsen, A. R. & Thornbrugh, D. J. The stream-catchment (StreamCat) dataset: a database of watershed metrics for the conterminous United States. J. Am. Water Resour. Assoc. 52, 120–128 (2016).
    ADS  Article  Google Scholar 

    51.
    Falcone, J. A., Carlisle, D. M. & Weber, L. C. Quantifying human disturbance in watersheds: variable selection and performance of a GIS-based disturbance index for predicting the biological condition of perennial streams. Ecol. Indic. 10, 264–273 (2010).
    Article  Google Scholar 

    52.
    U.S. Geological Survey. GAGES-II—Geospatial attributes of gages for evaluating streamflow: U.S. Geological Survey database. https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml (2011).

    53.
    de Graaf, I. E. M., Gleeson, T., (Rens) van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).
    ADS  PubMed  Article  CAS  Google Scholar 

    54.
    Ledford, S. H., Zimmer, M. & Payan, D. Anthropogenic and biophysical controls on low flow hydrology in the Southeastern United States. Water Resour. Res. 56, 1–19 (2020).
    Article  Google Scholar 

    55.
    Kurylyk, B. L., Macquarrie, K. T. B. & Voss, C. I. Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resour. Res. 50, 3253–3274 (2014).
    ADS  Article  Google Scholar 

    56.
    Arismendi, I., Johnson, S. L., Dunham, J. B., Haggerty, R. & Hockman-Wert, D. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States. Geophys. Res. Lett. 39, 1–7 (2012).
    Article  Google Scholar 

    57.
    Luce, C. H., Abatzoglou, J. T. & Holden, Z. A. The missing mountain water: slower westerlies decrease orographic enhancement in the pacific northwest USA. Science 342, 1360–1365 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Johnson, Z. C. et al. Heed the data gap: guidelines for using incomplete datasets in annual stream temperature analyses. Ecol. Indic. 122, 107229 (2021).
    Article  Google Scholar 

    59.
    U.S. Geological Survey. USGS water data for the Nation: U.S. Geological Survey National Water Information System database. (2019).

    60.
    Isaak, D. J. et al. The NorWeST summer stream temperature model and scenarios for the Western U.S.: a crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 53, 9181–9205 (2017).
    ADS  Article  Google Scholar 

    61.
    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. (2012)

    62.
    Chamberlain, S. rnoaa: ‘NOAA’ Weather Data from R. R package version 0.8.4. (2019).

    63.
    Falcone, J. A. U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences: U.S. Geological Survey data release (2017).

    64.
    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods https://doi.org/10.1038/s41592-019-0686-2 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    Rosenberry, D. O., Briggs, M. A., Delin, G. & Hare, D. K. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream. Water Resour. Res. 52, 1–18 (2016).
    Article  Google Scholar 

    66.
    Barlow, P. M. & Hess, K. M. Simulated Hydrologic Responses of the Quashnet River Stream-Aquifer System to Proposed Ground-Water Withdrawals, Cape Cod, Massachusetts. U.S. Geological Survey, Water-Resources Investigations Report 93-4-64, Marlborough (1993).

    67.
    Herberich, E., Sikorski, J. & Hothorn, T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS One 5, 1–8 (2010).
    Article  CAS  Google Scholar 

    68.
    Carslaw, D. C. & Ropkins, K. Openair – an r package for air quality data analysis. Environ. Model. Softw. 27–28, 52–61 (2012).
    Article  Google Scholar 

    69.
    Hare, D. K. Continental-scale analysis of shallow and deep groundwater contributions to streams. Haredkb/PairedAir-StreamAnnualTSignals https://doi.org/10.5281/zenodo.4313244 (2020).
    Article  Google Scholar 

    70.
    U.S. Geological Survey. USGS TNM Hydrography (NHD). https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer (2016). More

  • in

    High resolution biologging of breaching by the world’s second largest shark species

    In the present study, we used accelerometer enabled animal-borne biologging tags (recording temperature, pressure and three-axis accelerometry) to describe in high temporal resolution the variability and repeatability of 67 breaches made by three sharks over 41 cumulative days (Fig. 1; shark 5 m length (n = 1) 678 kg estimated mass; and sharks 6 m length (n = 2) 160 kg estimated mass). Approximately half (n = 28) of all breaches were single breaches, but we also recorded 13 double breaches, three triple breaches and one shark that breached four times in 47 s (Fig. 2A-D). Consecutive breaches were 18 s apart (mean value ± 6 s.d, range 12–47 s); i.e. sharks ascend from depth to the surface, propel themselves out of the water and swim to depth before commencing the subsequent ascent. Breaching frequency varied among individuals. Shark 1 breached 0.4 ± 0.9 times per day (mean ± 1 s.d.; range 0–2, n = 2 breaches), shark 3 breached 0.9 per day (± 0.9 s.d, range 0–2, n = 5) and shark 2 breached 1.9 times per day (± 1.8 s.d, range 0–6, N = 60) over 4.8, 4.9 and 31.8 tracking days respectively), during both day and night (peak hour of breaching 04:00 am). Multiple breaches by the same sharks have never been empirically demonstrated before, and breaching has not been described to take place at night.
    Figure 1

    Basking shark breaching. Breaching recorded by a towed camera tag deployed in 2018. These data are from a shark that was not instrumented with an accelerometer, they are included to aid visualisation of the breaching process from a point-of-view perspective. For sharks instrumented with accelerometers in 2017, tags where attached flush to the surface of the animal at the base of the dorsal fin. (A) Basking shark breaching (photo: Youen Jacob). The timing and depth associated with each image (C–H) are identified on the breaching depth profile (B). (C,D) the shark starts to ascend from 72 m depth at 0.94 m of vertical gain per second, reaching the surface (in view, E) in 77 s. The shark can be seen completely out of the water (F), before descending (G,H) to depth again.

    Full size image

    Figure 2

    Characteristics of breaching. (A–D) A quadruple breach by a six-metre basking shark over 47 s showing changes in depth (A), tail beat amplitude (B), VeDBA (C) and speed (D) over the series of breaches. (E) Depth profiles of 16 single breaching events performed by a single shark, with time (in seconds) centred on the breach, overlaid on a common timescale showing repeatability of ascent angle and subsequent descent after breaching. (F) Dubai plot showing tri-axial acceleration data as a 3-dimensional histogram, with time spent by sharks in a particular posture on each facet of the sphere extruded as triangular bars, and colour scaling with the cumulative time in a given facet. Data show a right-handed breach of a single shark, where rapid rolling is indicated by short dark blue bars on the right face of the sphere.

    Full size image

    At the onset of a breach, sharks switched from slow swimming at 0.3 m.s-1 (mean value ± 0.16 s.d., range 0.17–0.4 m.s-1) at 14.8 m depth (± 5, range 4.6–28 m), to swimming towards the surface (Fig. 1C-E) at an angle of 38.9° (± 13.2, 23.08 to 81.6°), and an average (mean) ascent speed of 2.7 m.s-1 ± 0.5 (1.2–3.8 m.s-1). The peak ascent phase of a breach was observed when the rates of ascent and swimming speed rapidly increased. Breaching metrics were calculated separately for this peak ascent phase, where basking sharks reached the surface in 6 s (± 2.1, 2–17), before breaching near vertically at 76° (± 9, 43.3–87.9°), leaving the water at a mean exit speed of 3.9 m.s-1 ± 0.6. range: 2.2–5.6 m.s-1) (Fig. 1F). To contextualise our observations, an 8 m basking shark breached at 5.1 m.s-1 from 28 m depth10 and oceanic whitetip sharks (Carcharhinus longimanus)11 and great white sharks (Carcharodon carcharias)11,12 ambush-breach their prey at 4 and up to 6.5 m s−1 respectively, but from considerably deeper ( > 100 m11) and are smaller sharks. The peak forces generated by the three tagged basking sharks (which were estimated to weigh up to 1160 kg) were 20 G at the peak of breaching. Breaches could be further characterised by whether sharks exited the water on a particular side of their body. Sharks rolled to their right side in 45 of the 67 breaches (representing 67% of breaches), which may be suggestive of lateralisation (Fig. 2F), the preference for breaching on one side consistently across events13,14. Dynamic body acceleration (VeDBA) (linear mixed effects model; χ2 7.6, p = 0.006) along with tailbeat amplitude (linear mixed effects model; χ2 5.54, p = 0.019) increased with the sharks’ ascent pitch towards the surface. Breaching events were highly repeatable, both among and between sharks, following a similar ascent rate, speed and angle, and from a similar starting depth (Fig. 2E). Breaching was more energetically demanding than routine swimming (breaching VeDBA 7.7 m s−2 ± 4.5, range 0.4–14.7 vs routine swimming VeDBA 0.24 m.s-2 ± 0.04, 0.2–0.27), requiring double the tail beat frequency (breaching 0.49 Hz ± 0.12 vs routine swimming 1.08 Hz ± 0.51) and 15 times the tail beat amplitude (breaching 1.5 ± 1.1 Hz vs. routine swimming 0.1 ± 0.05 Hz). During multiple breaching events, the ascent rate, swimming speed and acceleration were similar for every subsequent breach, although the ascent starting depth was often shallower than for the initial breach. The relatively low field metabolic rate that comes with being ectothermic makes energetically demanding behaviour relatively more expensive for sharks. Therefore, the costs of performing multiple breaches may accumulate more rapidly compared to endothermic whales, such as humpback whales (Megaptera novaeangliae), which have been recorded breaching 17 times in a 6.5 h deployment15. On average, sharks required an estimated 11.5 kJ (range 3–22 kJ) of mechanical energy (({E}_{m})) to perform a breach, and expended the same ({E}_{m}) for each breach, regardless of whether they breached once or several times (Wilcoxon rank sum test, W = 198.5, p = 0.87; ({E}_{m} single) = 11.5 to 11.8 kJ, ({E}_{m} multi) = 9.98 to 10.3 kJ). Comparatively, the energetic cost of breaching for an 8 m basking shark weighing 2700 kg was estimated six times greater (63 to 72 kJ10). These differences may be attributed to the sharks in the present study being smaller, with the cost of breaching found to increase with increasing body mass15. A breach likely constitutes approximately 0.05 to 0.09% of their daily metabolic cost, which ranged from 12.8 to 21.5 MJ per day16. For comparison, the relative cost of performing a single breach in a 7.8 m (7000 kg) humpback whale represents 0.08 to 0.5% of its daily field metabolic rate15.
    The question remains what the function of breaching is for basking sharks. We are still far from certain what the function of breaching is for many aquatic species, but spinner dolphins, blacktip sharks and humpback whales are known to breach to dislodge epiparasites17. Gore et al.9 noted that epiparasitic lampreys were not dislodged from basking sharks following breaching, suggesting that it may not function for parasite removal, or may require several breaches to dislodge such parasites. Breaching may be used to visually signal between spinner dolphins, and between humpback whales17. Basking sharks breached during the night-time as well as the daytime, and have small eyes, suggesting that breaching is unlikely to be a visual signal. However, breaching may play a role in acoustic communication between distant groups of sharks. Basking sharks can apparently detect weak electric signals produced by zooplankton18, and some elasmobranchs use electro-sensory cues during courtship19, suggesting that breaching could convey readiness to mate. It thus seems possible that the acoustic signal of breaching could be detectable and useful to basking sharks. We have no information in the present study about the presence of other sharks during breaching, although future work using animal-borne acoustic proximity receivers on large numbers of sharks, or aerial drones, could provide insight into the social networks of basking sharks, and whether they breach in proximity to conspecifics. We propose that in the absence of a better explanation and given the predictable and persistent aggregations of basking sharks in Scottish waters, that breaching may be more likely to be related to intra-specific signalling, than anything else yet described.
    We show using repeated direct measurements from three individuals, that the mechanical forces required for basking sharks to breach are considerable, but that basking sharks can breach repeatedly in quick succession. The role of breaching seems most likely to be related to intra-specific signalling and may add to a weight of evidence suggesting that Scottish waters may be an important site for breeding for the species. More

  • in

    Groundwater extraction reduces tree vitality, growth and xylem hydraulic capacity in Quercus robur during and after drought events

    1.
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
    Article  Google Scholar 
    2.
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
    Article  Google Scholar 

    3.
    Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).
    ADS  Article  Google Scholar 

    4.
    Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. PNAS 102, 15144–15148 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).
    ADS  Article  Google Scholar 

    6.
    Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
    ADS  Article  Google Scholar 

    8.
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Cunningham, S. C., Thomson, J. R., MacNally, R., Read, J. & Baker, P. J. Groundwater change forecasts widespread forest dieback across an extensive floodplain system. Freshw. Biol. 56, 1494–1508 (2011).
    Article  Google Scholar 

    10.
    Tockner, K. & Stanford, J. Riverine flood plains: Present state and future trends. Environ. Conserv. 29, 308–330 (2002).
    Article  Google Scholar 

    11.
    Kløve, B. et al. Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ. Sci. Policy 14, 782–793 (2011).
    Article  Google Scholar 

    12.
    Griebler, C. & Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 34, 355–367 (2015).
    Article  Google Scholar 

    13.
    Griebler, C., Avramov, M. & Hose, G. Groundwater ecosystems and their services: Current status and potential risks. In Atlas of Ecosystem Services (ed. Schröter, M.) 197–203 (Springer, 2019).
    Google Scholar 

    14.
    Kløve, B. et al. Groundwater dependent ecosystems part I: Hydroecological status and trends. Environ. Sci. Policy 14, 770–781 (2011).
    Article  Google Scholar 

    15.
    Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).
    ADS  Article  Google Scholar 

    16.
    Cuthbert, M. O. et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 9, 137–141 (2019).
    ADS  Article  Google Scholar 

    17.
    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).
    ADS  Article  Google Scholar 

    18.
    Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).
    ADS  Article  Google Scholar 

    19.
    Earman, S. & Dettinger, M. Potential impacts of climate change on groundwater resources—A global review. J. Water Clim. Change 2, 213–229 (2011).
    Article  Google Scholar 

    20.
    Skiadaresis, G., Schwarz, J. A. & Bauhus, J. Groundwater extraction in floodplain forests reduces radial growth and increases summer drought sensitivity of pedunculate oak trees (Quercus robur L.). Front. For. Glob. Change 2, 267 (2019).
    Article  Google Scholar 

    21.
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
    PubMed  Article  Google Scholar 

    22.
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
    CAS  PubMed  Article  Google Scholar 

    23.
    Martínez-Vilalta, J. The rear window: Structural and functional plasticity in tree responses to climate change inferred from growth rings. Tree physiol. 38, 155–158 (2018).
    PubMed  Article  Google Scholar 

    24.
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).
    Article  Google Scholar 

    25.
    McDowell, N. G., Brodribb, T. J. & Nardini, A. Hydraulics in the 21st century. New Phytol. 224, 537–542 (2019).
    PubMed  Article  Google Scholar 

    26.
    Anderegg, W. R. L. & Meinzer, F. C. Wood anatomy and plant hydraulics in a changing climate. In Functional and Ecological Xylem Anatomy (ed. Hacke, U.) 235–253 (Springer, 2015).
    Google Scholar 

    27.
    Fonti, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New phytol. 185, 42–53 (2010).
    PubMed  Article  Google Scholar 

    28.
    Tulik, M. The anatomical traits of trunk wood and their relevance to oak (Quercus robur L.) vitality. Eur. J. For. Res. 133, 845–855 (2014).
    Article  Google Scholar 

    29.
    Fonti, P. & Jansen, S. Xylem plasticity in response to climate. New Phytol. 195, 734–736 (2012).
    PubMed  Article  Google Scholar 

    30.
    Brodribb, T. J. Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity. Plant Sci. 177, 245–251 (2009).
    CAS  Article  Google Scholar 

    31.
    He, P. et al. Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Change Biol. 26, 1833–1841 (2019).
    ADS  Article  Google Scholar 

    32.
    Barbaroux, C. & Bréda, N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 22, 1201–1210 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Bréda, N. & Granier, A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. For. Sci. 53, 521–536 (1996).
    Article  Google Scholar 

    34.
    Pérez-de-Lis, G., Rozas, V., Vázquez-Ruiz, R. A. & García-González, I. Do ring-porous oaks prioritize earlywood vessel efficiency over safety? Environmental effects on vessel diameter and tyloses formation. Agric. For. Meteorol. 248, 205–214 (2018).
    ADS  Article  Google Scholar 

    35.
    Tumajer, J. & Treml, V. Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. For. Ecol. Manag. 379, 185–194 (2016).
    Article  Google Scholar 

    36.
    Kniesel, B. M., Günther, B., Roloff, A. & von Arx, G. Defining ecologically relevant vessel parameters in Quercus robur L. for use in dendroecology: A pointer year and recovery time case study in Central Germany. Trees 29, 1041–1051 (2015).
    Article  Google Scholar 

    37.
    Gričar, J., de Luis, M., Hafner, P. & Levanič, T. Anatomical characteristics and hydrologic signals in tree-rings of oaks (Quercus robur L.). Trees 27, 1669–1680 (2013).
    Article  Google Scholar 

    38.
    Castagneri, D., Regev, L., Boaretto, E. & Carrer, M. Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environ. Exp. Bot. 133, 128–138 (2017).
    Article  Google Scholar 

    39.
    Fonti, P. & García-González, I. Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. J. Biogeogr. 35, 2249–2257 (2008).
    Article  Google Scholar 

    40.
    González, I. G. & Eckstein, D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 23, 497–504 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Pérez-de-Lis, G., Rossi, S., Vázquez-Ruiz, R. A., Rozas, V. & García-González, I. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytol. 209, 521–530 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    García-González, I., Souto-Herrero, M. & Campelo, F. Ring-porosity and earlywood vessels: A review on extracting environmental information through time. IAWA J. 37, 295–314 (2016).
    Article  Google Scholar 

    43.
    Friedrichs, D. A. et al. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23, 729–739 (2009).
    Article  Google Scholar 

    44.
    Büntgen, U. et al. Tree-ring indicators of German summer drought over the last millennium. Quat. Sci. Rev. 29, 1005–1016 (2010).
    ADS  Article  Google Scholar 

    45.
    Bhuyan, U., Zang, C. & Menzel, A. Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia 44, 1–8 (2017).
    Article  Google Scholar 

    46.
    Árvai, M., Morgós, A. & Kern, Z. Growth-climate relations and the enhancement of drought signals in pedunculate oak (Quercus robur L.) tree-ring chronology in Eastern Hungary. iForest 11, 267–274 (2018).
    Article  Google Scholar 

    47.
    Bramer, I. et al. Advances in monitoring and modelling climate at ecologically relevant scales. Adv. Ecol. Res. 58, 101–161 (2018).
    Article  Google Scholar 

    48.
    Sass-Klaassen, U., Sabajo, C. R. & den Ouden, J. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29, 171–175 (2011).
    Article  Google Scholar 

    49.
    Souto-Herrero, M., Rozas, V. & García-González, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manage. 425, 126–137 (2018).
    Article  Google Scholar 

    50.
    Fonti, P. & García-González, I. Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol. 163, 77–86 (2004).
    Article  Google Scholar 

    51.
    Jacobsen, A. L., Valdovinos-Ayala, J. & Pratt, R. B. Functional lifespans of xylem vessels: Development, hydraulic function, and post-function of vessels in several species of woody plants. Am. J. Bot. 105, 142–150 (2018).
    PubMed  Article  Google Scholar 

    52.
    Jia, X. et al. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agric. For. Meteorol. 228, 120–129 (2016).
    ADS  Article  Google Scholar 

    53.
    Carter, J. L. & White, D. A. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiol. 29, 1407–1418 (2009).
    PubMed  Article  Google Scholar 

    54.
    Zolfaghar, S., Villalobos-Vega, R., Zeppel, M. & Eamus, D. The hydraulic architecture of Eucalyptus trees growing across a gradient of depth-to-groundwater. Funct. Plant Biol. 42, 888–898 (2015).
    PubMed  Article  Google Scholar 

    55.
    Horton, J. L., Kolb, T. E. & Hart, S. C. Responses of riparian trees to interannual variation in ground water depth in a semi-arid river basin. Plant Cell Environ. 24, 293–304 (2001).
    Article  Google Scholar 

    56.
    Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).
    Article  Google Scholar 

    57.
    Garzón, M. B., Alía, R., Robson, T. M. & Zavala, M. A. Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr. 20, 766–778 (2011).
    Article  Google Scholar 

    58.
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Sperry, J. S., Meinzer, F. C. & McCulloh, K. A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 31, 632–645 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. New Phytol. 119, 345–360 (1991).
    Article  Google Scholar 

    61.
    Oosterbaan, A. & Nabuurs, G. J. Relationships between oak decline and groundwater class in The Netherlands. Plant Soil 136, 87–93 (1991).
    Article  Google Scholar 

    62.
    Leuschner, C. & Ellenberg, H. Ecology of Central European Forests (Springer, 2017).
    Google Scholar 

    63.
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).
    PubMed  Article  Google Scholar 

    64.
    McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).
    PubMed  Article  Google Scholar 

    65.
    Pellizzari, E., Camarero, J. J., Gazol, A., Sangüesa-Barreda, G. & Carrer, M. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Glob. Change Biol. 22, 2125–2137 (2016).
    ADS  Article  Google Scholar 

    66.
    McCarroll, D., Whitney, M., Young, G. H. F., Loader, N. J. & Gagen, M. H. A simple stable carbon isotope method for investigating changes in the use of recent versus old carbon in oak. Tree Physiol. 37, 1021–1027 (2017).
    CAS  PubMed  Article  Google Scholar 

    67.
    Hacke, U. G. Variable plant hydraulic conductance. Tree Physiol. 34, 105–108 (2014).
    PubMed  Article  Google Scholar 

    68.
    Hacke, U. G., Sperry, J. S., Wheeler, J. K. & Castro, L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26, 689–701 (2006).
    PubMed  Article  Google Scholar 

    69.
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
    ADS  Article  Google Scholar 

    71.
    Ehleringer, J. R. & Dawson, T. E. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ. 15, 1073–1082 (1992).
    CAS  Article  Google Scholar 

    72.
    Roloff, A. Baumkronen: Verständnis und praktische Bedeutung eines komplexen Naturphänomens [Tree crowns: comprehension and practical meaning of a complex phenomenon]. Ulmer, Stuttgart [original in German] (2001).

    73.
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).
    Article  Google Scholar 

    74.
    Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258 (2010).
    Article  Google Scholar 

    75.
    R Core Team. R: A language and environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    76.
    García-González, I. & Fonti, P. Ensuring a representative sample of earlywood vessels for dendroecological studies: An example from two ring-porous species. Trees 22, 237–244 (2008).
    Article  Google Scholar 

    77.
    Kolb, K. J. & Sperry, J. S. Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant Cell Environ. 22, 925–936 (1999).
    Article  Google Scholar 

    78.
    Sterck, F. J., Zweifel, R., Sass-Klaassen, U. & Chowdhury, Q. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol. 28, 529–536 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K. & Carrer, M. Quantitative wood anatomy-practical guidelines. Front. Plant Sci. 7, 781 (2016).
    Google Scholar 

    80.
    Speer, J. H. Fundamentals of tree-ring research (University of Arizona Press, 2010).

    81.
    Cook, E. R. & Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. (1981).

    82.
    Carrer, M., von Arx, G., Castagneri, D. & Petit, G. Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiol. 35, 27–33 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).
    ADS  Article  Google Scholar 

    84.
    Zink, M. et al. The German drought monitor. Environ. Res. Lett. 11, 74002 (2016).
    Article  Google Scholar 

    85.
    Samaniego, L., Kumar, R. & Zink, M. Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeor. 14, 47–68 (2013).
    ADS  Article  Google Scholar 

    86.
    Samaniego, L., Kumar, R. & Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46, 1–25 (2010).
    Google Scholar 

    87.
    Zang, C. & Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 38, 431–436 (2015).
    Article  Google Scholar 

    88.
    Schwarz, J. et al. Quantifying growth responses of trees to drought—A critique of commonly used resilience indices and recommendations for future studies. Curr. For. Rep. 6, 185–200 (2020).
    Google Scholar 

    89.
    Jacobsen, A. L., Pratt, R. B., Venturas, M. D., & Hacke, U. G. Large volume vessels are vulnerable to water-stress-induced embolism in stems of poplar. IAWA J. 40(1), 4–S4 (2019).

    90.
    Cai, J., & Tyree, M. T. (2010). The impact of vessel size on vulnerability curves: data and models for within‐species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ. 33(7), 1059–1069. More