Metabolomic signatures of coral bleaching history
1.
LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).
CAS PubMed Google Scholar
2.
Muscatine, L. & Porter, J. W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27, 454–460 (1977).
Google Scholar
3.
van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508–511 (2013).
Google Scholar
4.
National Academies of Sciences, Engineering, and Medicine A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs (The National Academies Press, 2019); https://doi.org/10.17226/25279
5.
Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).
CAS PubMed Google Scholar
6.
Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
CAS PubMed Google Scholar
7.
Bay, R. & Palumbi, S. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).
CAS PubMed PubMed Central Google Scholar
8.
Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).
PubMed PubMed Central Google Scholar
9.
Ziegler, M., Seneca, F., Yum, L. & P, S.-N. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).
CAS PubMed PubMed Central Google Scholar
10.
Hillyer, K. E. et al. 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics 14, 12 (2018).
Google Scholar
11.
Hillyer, K. E. et al. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs 36, 105–118 (2017).
Google Scholar
12.
Sogin, E. M., Putnam, H., Gates, R. D., Putnam, H. M. & Anderson, P. E. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral Pocillopora damicornis. Metablomics 12, 71 (2016).
Google Scholar
13.
Hillyer, K. E., Tumanov, S., Villas-Bô As, S. & Davy, S. K. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. https://doi.org/10.1242/jeb.128660 (2016).
14.
Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876 (2019).
Google Scholar
15.
Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).
PubMed PubMed Central Google Scholar
16.
Thomas, L. & Palumbi, S. R. The genomics of recovery from coral bleaching. Proc. R. Soc. B 284, 20171790 (2017).
PubMed Google Scholar
17.
Wall, C. B. et al. Shifting baselines: repeat bleaching drives coral physiotypes through environmental legacy and cellular memory. Preprint at bioRxiv https://doi.org/10.1101/2020.04.23.056457 (2020).
18.
Matsuda, S. et al. Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front. Ecol. Evol. 8, 178 (2020).
Google Scholar
19.
Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).
Google Scholar
20.
van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).
Google Scholar
21.
Anthony, K. R. N. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Change Biol. 21, 48–61 (2015).
Google Scholar
22.
da Silva, R. R., Lopes, N. P. & Silva, D. B. in Mass Spectrometry in Chemical Biology: Evolving Applications (eds da Silva, R. R. & Lopes, N. P.) 57–81 (Royal Society of Chemistry, 2017).
23.
Cunning, R., Ritson-Williams, R. & Gates, R. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).
CAS Google Scholar
24.
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).
CAS PubMed PubMed Central Google Scholar
25.
Rosset, S. et al. Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts. Coral Reefs 38, 1241–1253 (2019).
Google Scholar
26.
Li, Y. et al. Simultaneous structural identification of diacylglyceryl-N-trimethylhomoserine (DGTS) and diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) in microalgae using dual Li+/H+ adduct ion mode by ultra-performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom. 31, 457–468 (2017).
CAS PubMed Google Scholar
27.
Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian–dinoflagellate symbiosis. Proc. Natl Acad. Sci. USA 114, 13194–13199 (2017).
CAS PubMed Google Scholar
28.
Weis, V. M. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).
CAS PubMed Google Scholar
29.
Mansour, J. S., Pollock, F. J., Díaz-Almeyda, E., Iglesias-Prieto, R. & Medina, M. Intra- and interspecific variation and phenotypic plasticity in thylakoid membrane properties across two Symbiodinium clades. Coral Reefs 37, 841–850 (2018).
Google Scholar
30.
Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).
CAS PubMed Google Scholar
31.
Quinn, R. A. et al. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc. R. Soc. B 283, 20160469 (2016).
PubMed Google Scholar
32.
Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).
CAS PubMed PubMed Central Google Scholar
33.
Galtier d’Auriac, I. et al. Before platelets: the production of platelet-activating factor during growth and stress in a basal marine organism. Proc. R. Soc. B 285, 20181307 (2018).
PubMed Google Scholar
34.
Quistad, S. D. et al. Evolution of TNF-induced apoptosis reveals 550 My of functional conservation. Proc. Natl Acad. Sci. USA 111, 9567–9572 (2014).
CAS PubMed Google Scholar
35.
Williams, A. et al. Metabolomic shifts associated with heat stress in coral holobionts. Sci. Adv. 7, eabd4210 (2021).
PubMed Central Google Scholar
36.
Takahashi, N. Chemistry of Plant Hormones (CRC, 1986).
37.
Reyes, F., Martín, R. & Fernández, R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Nat. Prod. 69, 668–670 (2006).
CAS PubMed Google Scholar
38.
Hill, R., Larkum, A. W. & Kramer, D. Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching. Coral Reefs 31, 963–975 (2012).
Google Scholar
39.
Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).
CAS PubMed Google Scholar
40.
Martin, F. J. et al. A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).
PubMed PubMed Central Google Scholar
41.
Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).
CAS PubMed PubMed Central Google Scholar
42.
Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).
CAS PubMed Google Scholar
43.
Dixon, G., Abbott, E. & Matz, M. Meta-analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. https://doi.org/10.1111/mec.15535 (2020).
44.
Boström-Einarsson, L. et al. Coral restoration – a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).
PubMed PubMed Central Google Scholar
45.
Van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
PubMed Google Scholar
46.
Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).
PubMed PubMed Central Google Scholar
47.
Bay, R., Rose, N., Logan, C. & Palumbi, S. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).
PubMed PubMed Central Google Scholar
48.
Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).
PubMed Google Scholar
49.
Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).
Google Scholar
50.
Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).
CAS PubMed PubMed Central Google Scholar
51.
Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).
CAS PubMed Google Scholar
52.
Martin, C. et al. Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry. Sci. Rep. 9, 3019 (2019).
Google Scholar
53.
Cunning, R., Gillette, P., Capo, T., Galvez, K. & Baker, A. C. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34, 155–160 (2015).
Google Scholar
54.
Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).
Google Scholar More