More stories

  • in

    Denitrifying bacterial communities in surface-flow constructed wetlands during different seasons: characteristics and relationships with environment factors

    Physicochemical properties of water
    Physicochemical properties of water and associated environmental factors according to the flow directions of surface flow wetlands are shown in Table 1. Analysis of variance for indexes with p values of less than 0.05 showed that all indexes exhibited large variations during different months.
    Table 1 Physicochemical characteristics of the surface-flow constructed wetlands in each unit.
    Full size table

    Some indexes exhibited large variations during different months according to the flow directions of surface flow wetlands. For example, DO was first reduced and then increased in May, but increased in August and showed differences compared with that in May and October. The salinity was first reduced and then increased in May but then remained stable from August to October. Some indexes showed similar changes according to the flow directions of surface flow wetlands. For example, ORP showed an initial decrease followed by an increase. At the same time, pH, SpCond, TDSs, and TN showed reduced variability over time. The changes in temperature were minimal, although the temperature was higher in the summer and autumn than in the spring.
    Surface flow wetlands are in direct contact with the environment and are greatly influenced by outside environmental factors17. Thus, most physicochemical factors of the water samples showed large variability.
    Denitrifying bacteria diversity and abundance
    For 10 samples from different seasons showing 97% similarity in clustering analysis, the numbers of OTUs differed in May, August, and October (575, 869, and 741, respectively), and the Fig. 2 showed that the denitrifying bacterial abundance indexes (ACEs) were 686.8, 996.2, and 887.3 in May, August, and October, respectively. Additionally, the Shannon-Weiner indexes (H′) were 3.718, 4.303, and 4.432, respectively, indicating that the abundance tended to increase initially, followed by a decrease, and diversity tended to increase. The different seasons affected both the denitrifying bacteria abundance and diversity. Abundance was the largest in August, but its diversity was lower than that in October. These data suggested that the main species became dominant during August, affecting the structure of the denitrifying bacteria.
    Figure 2

    Biodiversity and abundance of the surface-flow constructed wetland in each unit.

    Full size image

    For different processing units, the abundance and diversity of denitrifying bacteria varied slightly; both the ACE and H′ index showed low variability. The units F, H, and J showed greater declines than the initial values. In May, the ACE index peaked, with a value of 841 at location I. In August, the ACE index peaked at location E (1251), and that in October peaked at location G (1042). In different months, denitrifying bacteria abundances showed similar changes. Because bacterial diversity in the flowing water and static water were affected by different factors, the surface flow wetlands will be susceptible to various factors, and the bacterial community interactions with internal and external environmental factors will be important for bacterial survival18. Additionally, the number of constructed wetland bacteria decreases as the depth and distance increases19,20, suggesting that denitrifying bacteria may be affected by physical and chemical indicators of changes in water.
    Community structure of denitrifying bacteria
    Similar OTUs (97% similarity) were identified by sequencing. Database analysis of sequence alignment results revealed that there were many bacteria in the environmental samples that could not be cultivated but that showed high similarity; thus, the denitrifying bacteria were mostly present in the surface flow wetlands and were not cultured. Figure 3 shows statistical analysis of the denitrifying bacterial categories in a histogram format. During the different months, OTUs mainly belonged to seven genera: unclassified bacteria (37.12%), unclassified Proteobacteria (18.16%), Dechloromonas (16.21%), unranked environmental samples (12.51%), unclassified Betaproteobacteria (9.73%), unclassified Rhodocyclaceae (2.14%), Rhodanobacter (1.51%), and other genera (2.62%, representing less than 1% each). Several genera have also been found in surface flow wetlands21 and other types of constructed wetlands22,23,24, albeit with different proportions.
    Figure 3

    Community structure of the surface-flow constructed wetland in each unit.

    Full size image

    The same processing units showed different denitrifying bacterial community structures during different seasons and were always changing. Unclassified bacteria showed a greater weight during May for the A processing unit, although its weight was lower than that of Dechloromonas in August. In October, unclassified bacteria had become the most dominant group, and the proportion of Dechloromonas was extremely low. For the B processing unit, from May to October, the proportion of Dechloromonas was decreased, and the proportion of unclassified Proteobacteria was increased, overtaking Dechloromonas. For the C and D processing units, unclassified Proteobacteria were dominant in May, and unclassified bacteria were dominant in August and October. For the E, G, H, I, and J processing units, unclassified bacteria were dominant at all time points. For the F processing unit, the bacterial groups were similar to those of the B processing unit, with proportion of Dechloromonas decreasing and the proportion of unclassified bacteria increasing in October.
    Figure 4 shows the means and variances of denitrifying bacteria genus proportions among different processing units and seasons. The means and variances of the dominant genus were large at the same time during different seasons. Thus, the dominant genus often determined the changes in denitrifying bacteria community structures during different seasons in the same unit. However, the greatest variance was observed in the genus Dechloromonas, which was the second most dominant genus in May. This suggested that this genus showed greater changes in different processing units than others. In August, the largest variances were observed in the genus Dechloromonas and in unclassified Proteobacteria, which had lower means than unclassified bacteria. Similar results were observed in October. The largest variance was observed in unclassified Proteobacteria, indicating that the denitrifying bacterial community structures were affected by the second dominant genus over time in the different processing units.
    Figure 4

    Mean and variance of different denitrifying bacterial taxa in the surface-flow constructed wetland (May, August, and October).

    Full size image

    For the denitrifying bacteria community structures in different months, we used nonmetric multidimensional scaling to determine the similarities between different processing units during the same months. As shown in Fig. 5, in May, A, B, C, and E showed high similarity, whereas other samples were more dispersed. The distances between D and H and between G and I were shorter than the other distances. F and J were alone in a group. Sample distributions were concentrated in August; C, D, E, F, G, H, and I were relatively similar, and D and E showed maximum similarity. A and B showed some similarity. In contrast, J was distinct. In October, distributions were more dispersed, and the distances between two points were not relatively similar, whereas the differences between the various processing units were higher.
    Figure 5

    Nonmetric multidimensional scaling map (May, August, and October).

    Full size image

    Relationships between denitrifying bacteria and environmental factors
    Next, we carried out PCA analysis to determine the main factors affecting denitrifying bacteria. After maximum variance orthogonal rotating (p = 0.05), there were two principal component eigenvalues that were greater than the average. The two top principal components contributed to 53.9% and 28.7% of the variance. The first principal component mainly reflected SpCond, TDSs, ORP, and salinity (factor loading was 0.409, 0.403, 0.398, and 0.403, respectively), and the second principal component reflected DO, TN, pH, and temperature (factor loading was 0.449, 0.449, 0.465, and 0.446, respectively). The load distribution characteristics of different environmental factors showed that the surface flow wetlands were affected by the main environmental factors, including temperature, SpCond, DO, pH, ORP, and TN (Fig. 6).
    Figure 6

    PCA of various environmental factors in the surface-flow constructed wetlands.

    Full size image

    Table 2 shows bacterial abundance indexes and H′ index for different external environmental factors, as analyzed by Pearson correlation analysis. The results showed that the bacterial abundance was strongly correlated with temperature, DO, and pH, and H′ was strongly correlated with all parameters except TN.
    Table 2 Relationships between biodiversity and environment factors.
    Full size table

    RDA was performed (Fig. 7) for analysis of community distributions and the relationships among environmental factors. For screening of the physicochemical factors of water and the proportions of denitrifying bacterial genera, standardization to center (Monte Carlo permutation) tests were used, and refinement of the information extracted from the first and second axes showed that the total explained variance rate was 80.94%. The results showed that all denitrifying bacterial genera were greatly affected by environmental factors, including temperature and pH, and that the effects of SpCond and ORP were similar. The predominance of unclassified bacteria and unclassified Proteobacter could be explained by positive correlations with temperature, pH, ORP, and SpCond and negative correlations with TN and DO. Dechloromonas showed the opposite trends. In contrast, unranked environmental samples were similar to unclassified Betaproteobacteria, with positive correlations for temperature and pH but negative correlations for TN and DO.
    Figure 7

    Relationships between denitrifying bacterial community structures and environment factors.

    Full size image

    Denitrifying bacterial diversity is affected by water nutrient elements and other environmental factors. Most denitrifying bacteria were heterotrophic bacteria. In this study, the autotrophic denitrifying bacteria Dechloromonas accounted for a large proportion in each processing unit25,26,these bacteria can accumulate phosphate and exhibit denitrification activity, partly explaining the lack of TOC removal in association with the observed TN removal. The SpCond of the water reflected its salinity and could be explained by positive correlations with a high proportion of unclassified Proteobacteria. However, SpCond was not generally correlated with denitrifying bacterial abundance. Our results showed that the water SpCond in surface-flow constructed wetlands affected salinity-related denitrifying bacteria but did not affect other denitrifying bacteria. The ORP was positively correlated with denitrifying bacterial genera that were suitable for survival in a strong oxidizing environment, such as unclassified Proteobacteria.
    Different physical and chemical properties can influence the structure of the bacterial community owing to the influence of different species on the living environment27,28. In this study, we assessed environmental factors that differed according to season and showed that denitrifying bacteria varied according to some environmental parameters. A comprehensive analysis of the trend of physical and chemical properties of water showed that all parameters except DO and salinity were not highly affected by season and that the trend of the abundances of denitrifying bacteria communities did not change with season along the flow direction of different processing units. However, environmental indicators have a more significant impact on different denitrifying bacteria, which also changes the diversity of denitrifying bacteria community. Accordingly, these results, combined with prediction models of the effects of environmental factors on nitrogen and phosphorus29,30,31, could be used to predict changes in the denitrifying bacterial community structure. More

  • in

    Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015

    1.
    Sanchez-Gonzalez, A. & Lopez-Mata, L. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Divers. Distrib. 11, 567–575 (2005).
    Article  Google Scholar 
    2.
    Dai, L., Feng, Y., Luo, G., Li, Y. & Xu, W. The relationship between soil, climate and forest development in the mid-mountain zone of the Sangong River watershed in the northern Tianshan Mountains, China. J. Arid Land 7, 63–72 (2014).
    Article  Google Scholar 

    3.
    Baiping, Z., Ya, T. & Senguo, M. O. Digital spectrum and analysis of altitudinal belts in the Tianshan Mountains. J. Mt. Res. 1, 18–28 (2004).
    Google Scholar 

    4.
    Pretzsch, H., Biber, P., Schutze, G., Uhl, E. & Rotzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).
    ADS  CAS  Article  Google Scholar 

    5.
    Li, W. J. et al. Effects of climate change on potential habitats of the cold temperate coniferous forest in Yunnan province, southwestern China. J. Mt. Sci. Engl. 13, 1411–1422 (2016).
    Article  Google Scholar 

    6.
    Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. Addendum: More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 7, 154–158 (2017).
    ADS  Article  Google Scholar 

    7.
    Sun, J., Qin, X. J. & Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 188, 20 (2016).
    Article  Google Scholar 

    8.
    Windmaisser, T. & Reisch, C. Long-term study of an alpine grassland: Local constancy in times of global change. Alpine Bot. 123, 1–6 (2013).
    Article  Google Scholar 

    9.
    Mahdavi, P., Akhani, H. & Van der Maarel, E. Species diversity and life-form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains, Iran. Folia Geobot. 48, 7–22 (2013).
    Article  Google Scholar 

    10.
    Rumpf, S. B. et al. Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10, 4293 (2019).
    ADS  Article  Google Scholar 

    11.
    Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M. & Pauli, H. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol. 220, 447–459 (2018).
    Article  Google Scholar 

    12.
    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).
    ADS  CAS  Article  Google Scholar 

    13.
    Kueppers, L. M. et al. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Glob. Change Biol. 23, 2383–2395 (2017).
    ADS  Article  Google Scholar 

    14.
    Sedmakova, D. et al. Growth-climate responses indicate shifts in the competitive ability of European beech and Norway spruce under recent climate warming in East-Central Europe. Dendrochronologia 54, 37–48 (2019).
    Article  Google Scholar 

    15.
    Fadrique, B. & Feeley, K. J. Commentary: Novel competitors shape species’ responses to climate change. Front. Ecol. Evol. 4, 33 (2016).
    Article  Google Scholar 

    16.
    Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).
    ADS  Article  Google Scholar 

    17.
    Li, B. F., Chen, Y. N., Chen, Z. S., Xiong, H. G. & Lian, L. S. Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010?. Atmos. Res. 167, 275–284 (2016).
    Article  Google Scholar 

    18.
    Peng, D. D. & Zhou, T. J. Why was the arid and semiarid northwest China getting wetter in the recent decades?. J. Geophys. Res. Atmos. 122, 9060–9075 (2017).
    ADS  Article  Google Scholar 

    19.
    Hong, C. P. et al. Impacts of climate change on future air quality and human health in China. Proc. Natl. Acad. Sci. U.S.A. 116, 17193–17200 (2019).
    ADS  CAS  Article  Google Scholar 

    20.
    Xu, C. C., Chen, Y. N., Chen, Y. P., Zhao, R. F. & Ding, H. Responses of surface runoff to climate change and human activities in the arid region of Central Asia: A case study in the Tarim River Basin, China. Environ Manag. 51, 926–938 (2013).
    ADS  Article  Google Scholar 

    21.
    Deng, H. J., Chen, Y. N., Wang, H. J. & Zhang, S. H. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Glob. Planet. Change 135, 28–37 (2015).
    ADS  Article  Google Scholar 

    22.
    Luo, M. et al. Identifying climate change impacts on water resources in Xinjiang, China. Sci. Total Environ. 676, 613–626 (2019).
    ADS  CAS  Article  Google Scholar 

    23.
    Yue, X. Y., Liu, G., Chen, J. M. & Zhou, C. Y. Synergistic regulation of the interdecadal variability in summer precipitation over the Tianshan mountains by sea surface temperature anomalies in the high-latitude Northwest Atlantic Ocean and the Mediterranean Sea. Atmos. Res. 233, UNSP 104717 (2020).
    Article  Google Scholar 

    24.
    Zhang, H. K. K. & Roy, D. P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 197, 15–34 (2017).
    ADS  Article  Google Scholar 

    25.
    Hu, Z. Y., Dietz, A. & Kuenzer, C. The potential of retrieving snow line dynamics from Landsat during the end of the ablation seasons between 1982 and 2017 in European mountains. Int. J. Appl. Earth Obs. 78, 138–148 (2019).
    Article  Google Scholar 

    26.
    Geng, L. Y., Che, T., Wang, X. F. & Wang, H. B. Detecting spatiotemporal changes in vegetation with the BFAST model in the Qilian Mountain region during 2000–2017. Remote Sens. Basel 11, 103 (2019).
    ADS  Article  Google Scholar 

    27.
    Pham, H. T., Marshall, L., Johnson, F. & Sharma, A. A method for combining SRTM DEM and ASTER GDEM2 to improve topography estimation in regions without reference data. Remote Sens. Environ. 210, 229–241 (2018).
    ADS  Article  Google Scholar 

    28.
    Piloyan, A. & Milan, K. Semi-automated classification of landform elements in Armenia based on SRTM DEM using K-means unsupervised classification. Quaest. Geogr. 36, 93–103 (2017).
    Article  Google Scholar 

    29.
    Gonzalez-Moradas, M. D. R. & Viveen, W. Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sens. Environ. 237, 111509 (2020).
    ADS  Article  Google Scholar 

    30.
    Florinsky, I., Skrypitsyna, T. & Luschikova, O. Comparative accuracy of the AW3D30DSM, ASTER GDEM, and SRTM1 DEM: A case study on the Zaoksky testing ground, Central European Russia. Remote Sens. Lett. 9, 706–714 (2018).
    Article  Google Scholar 

    31.
    Xu, M., Kang, S. C., Wu, H. & Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 203, 141–163 (2018).
    Article  Google Scholar 

    32.
    Wu, P., Ding, Y. H., Liu, Y. J. & Li, X. C. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China. Int. J. Climatol. 39, 5241–5255 (2019).
    Article  Google Scholar 

    33.
    Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change. 4, 587–592 (2014).
    ADS  Article  Google Scholar 

    34.
    Chen, Y. N., Li, W. H., Deng, H. J., Fang, G. H. & Li, Z. Changes in Central Asia’s water tower: Past, present and future. Sci. Rep. 6, 35458 (2016).
    ADS  CAS  Article  Google Scholar  More

  • in

    Fish heating tolerance scales similarly across individual physiology and populations

    1.
    Hutchinson, G. E. Cold spring harbor symposium on quantitative biology. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
    Article  Google Scholar 
    2.
    Chown, S., Gaston, K. & Robinson, D. Macrophysiology: large‐scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).
    Article  Google Scholar 

    3.
    Spicer, J. I., Morley, S. A. & Bozinovic, F. Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen. Philos. Trans. R. Soc. B 374 (2019).

    4.
    Chown, S. L. & Gaston, K. J. Macrophysiology—progress and prospects. Funct. Ecol. 30, 330–344 (2016).
    Article  Google Scholar 

    5.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Article  Google Scholar 

    6.
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105, 6668–6672 (2008).
    CAS  Article  Google Scholar 

    7.
    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).
    Article  Google Scholar 

    8.
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).
    Article  Google Scholar 

    9.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B. 278, 1823–1830 (2011).
    Article  Google Scholar 

    10.
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS 111, 5610–5615 (2014).
    CAS  Article  Google Scholar 

    11.
    Araujo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    Article  Google Scholar 

    12.
    Payne, N. L. & Smith, J. A. An alternative explanation for global trends in thermal tolerance. Ecol. Lett. 20, 70–77 (2017).
    Article  Google Scholar 

    13.
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).
    Article  Google Scholar 

    14.
    Rezende, E. L. & Bozinovic, F. Thermal performance across levels of biological organization. Philos. Trans. R. Soc. B 374, 20180549 (2019).
    CAS  Article  Google Scholar 

    15.
    Barnes, D. K., Peck, L. S. & Morley, S. A. Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Glob. Change Biol. 16, 3164–3169 (2010).
    Article  Google Scholar 

    16.
    Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782 (2013).
    Article  Google Scholar 

    17.
    Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 217, 244–251 (2014).
    Article  Google Scholar 

    18.
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
    Article  Google Scholar 

    19.
    Buckley, L. B. et al. Can mechanism inform species’ distribution models? Ecol. Lett. 13, 1041–1054 (2010).
    Article  Google Scholar 

    20.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    21.
    Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256 (2009).
    Article  Google Scholar 

    22.
    Richard, J., Morley, S. A., Thorne, M. A. & Peck, L. S. Estimating long-term survival temperatures at the assemblage level in the marine environment: towards macrophysiology. PLoS ONE 7, e34655 (2012).
    CAS  Article  Google Scholar 

    23.
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).
    CAS  Article  Google Scholar 

    24.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    CAS  Article  Google Scholar 

    25.
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).
    Article  Google Scholar 

    26.
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
    Article  Google Scholar 

    27.
    Martin, T. L. & Huey, R. B. Why “Suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).
    Article  Google Scholar 

    28.
    Pörtner, H.-O. et al. Cod and climate in a latitudinal cline: physiological analyses of climate effects in marine fishes. Clim. Res. 37, 253–270 (2008).
    Article  Google Scholar 

    29.
    Sylvestre, E.-L., Lapointe, D., Dutil, J.-D. & Guderley, H. Thermal sensitivity of metabolic rates and swimming performance in two latitudinally separated populations of cod, Gadus morhua L. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 177, 447–460 (2007).
    Article  Google Scholar 

    30.
    Claireaux, G., Webber, D., Lagardère, J.-P. & Kerr, S. Influence of water temperature and oxygenation on the aerobic metabolic scope of Atlantic cod (Gadus morhua). J. Sea Res. 44, 257–265 (2000).
    Article  Google Scholar 

    31.
    Björnsson, B. & Steinarsson, A. The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 59, 494–502 (2002).
    Article  Google Scholar 

    32.
    Morley, S., Peck, L., Sunday, J., Heiser, S. & Bates, A. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).
    Article  Google Scholar 

    33.
    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).
    Article  Google Scholar 

    34.
    Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 326, 119–157 (1989).
    CAS  Google Scholar 

    35.
    Orme, D., Freckleton, R., Thomas, G., Petzoldt, T. & Fritz, S. The caper package: comparative analysis of phylogenetics and evolution in R. R. Package Version 5, 1–36 (2013).
    Google Scholar 

    36.
    Halsey, L. G., Butler, P. J. & Blackburn, T. M. A phylogenetic analysis of the allometry of diving. Am. Nat. 167, 276–287 (2006).
    Article  Google Scholar 

    37.
    Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).
    Article  Google Scholar 

    38.
    Freckleton, R. The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375 (2009).
    CAS  Article  Google Scholar 

    39.
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).
    CAS  Article  Google Scholar  More

  • in

    Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity

    1.
    Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).
    CAS  Article  Google Scholar 
    2.
    Kenchington, R. & Hutchings, P. Some implications of high biodiversity for management of tropical marine ecosystems—an Australian perspective. Diversity 10, 1 (2017).
    Article  Google Scholar 

    3.
    Field, C. et al. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 7, 3–14 (1998).
    Article  Google Scholar 

    4.
    Honda, K., Nakamura, Y., Nakaoka, M., Uy, W. H. & Fortes, M. D. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE 8, e65735 (2013).
    CAS  Article  Google Scholar 

    5.
    Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).
    Article  Google Scholar 

    6.
    Unsworth, R. K. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Prog. Ser. 353, 213–224 (2008).
    Article  Google Scholar 

    7.
    Hoeksema, B. W. in Biogeography, Time, and Place: Distributions, Barriers, and Islands. Topics in Geobiology (ed. Renema, W.) 117–178 (Springer, 2007).

    8.
    Pitcher, C. R. et al. Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area AIMS/CSIRO/QM/QDPI Final Report to CRC Reef Research (CSIRO Marine and Atmospheric Research, 2007); http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2003-021-DLD.pdf

    9.
    Richards, Z. T. & Day, J. C. Biodiversity of the Great Barrier Reef—how adequately is it protected? PeerJ 6, e4747 (2018).
    Article  Google Scholar 

    10.
    Harris, P. T. et al. Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J. Mar. Sci. 70, 284–293 (2013).
    Article  Google Scholar 

    11.
    Chin, A. in State of the Great Barrier Reef Report 2003 (ed. Chin, A.) 1–16 (Great Barrier Reef Marine Park Authority, 2003); https://hdl.handle.net/11017/669

    12.
    Whiteway, T., Smithers, S., Potter, A. & Brooke, B. Geological and Geomorphological Features of Outstanding Universal Value in the Great Barrier Reef World Heritage Area. Report prepared for SEWPaC (Coastal Marine and Climate Change Group, Geoscience Australia and School of Earth and Environmental Sciences, James Cook Univ., 2013).

    13.
    Mathews, E., Heap, A. & Woods, M. Inter-Reefal Seabed Sediments and Geomorphology of the Great Barrier Reef: A Spatial Analysis (Geoscience Australia, 2007).

    14.
    Huang, Z. et al. A conceptual surrogacy framework to evaluate the habitat potential of submarine canyons. Prog. Oceanogr. 169, 199–213 (2018).
    Article  Google Scholar 

    15.
    McNeil, M. A., Webster, J. M., Beaman, R. J. & Graham, T. L. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35, 1343–1355 (2016).
    Article  Google Scholar 

    16.
    Cumings, E. R. Reefs or bioherms? Geol. Soc. Am. Bull. 43, 331–352 (1932).
    Article  Google Scholar 

    17.
    Klement, K. W. Practical classification of reefs and banks, bioherms and biostromes. Am. Assoc. Pet. Geol. Bull. 51, 167–168 (1967).

    18.
    Beaman, R. J. High-Resolution Depth Model for the Great Barrier Reef—30 m (Geoscience Australia 2017); https://doi.org/10.4225/25/5a207b36022d2

    19.
    Orme, G. The sedimentological importance of Halimeda in the development of back reef lithofacies, northern Great Barrier Reef (Australia). In Proc. 5th International Coral Reef Symposium 31–37 (1985).

    20.
    Orme, G. R. & Salama, M. S. Form and seismic stratigraphy of Halimeda banks in part of the northern Great Barrier Reef Province. Coral Reefs 6, 131–137 (1988).
    Article  Google Scholar 

    21.
    Davies, P. in Encyclopaedia of Modern Coral Reefs—Structure, Form and Process (ed. Hopley, D.) 539–549 (Springer, 2011).

    22.
    Marshall, J. F. & Davies, P. J. Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6, 139–148 (1988).
    Article  Google Scholar 

    23.
    McNeil, M. A., Nothdurft, L. D., Dyriw, N. J., Webster, J. M. & Beaman, R. J. Morphotype differentiation in the Great Barrier Reef Halimeda bioherm carbonate factory: internal architecture and surface geomorphometrics. Depos. Rec. https://doi.org/10.1002/dep2.122 (2020).

    24.
    Great Barrier Reef Outlook Report 2009 (Great Barrier Reef Marine Park Authority, 2009).

    25.
    Great Barrier Reef Outlook Report 2014 (Great Barrier Reef Marine Park Authority, 2014).

    26.
    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2017).
    Article  Google Scholar 

    27.
    Ferrari, R. et al. Quantifying the response of structural complexity and community composition to environmental change in marine communities. Glob. Change Biol. 22, 1965–1975 (2016).
    Article  Google Scholar 

    28.
    Dustan, P., Doherty, O. & Pardede, S. Digital reef rugosity estimates coral reef habitat complexity. PLoS ONE 8, e57386 (2013).
    CAS  Article  Google Scholar 

    29.
    Pyle, R. L. & Copus, J. M. in Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019).

    30.
    Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change (Cambridge Univ. Press, 2007).

    31.
    Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci 345, 101–118 (1994).
    CAS  Article  Google Scholar 

    32.
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
    Article  Google Scholar 

    33.
    Chao, A. Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43, 783–791 (1987).
    CAS  Article  Google Scholar 

    34.
    IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org

    35.
    Obura, D., Fenner, D., Hoeksema, B., Devantier, L. & Sheppard, C. Tubipora musica. IUCN Red List of Threatened Species 2008: e.T133065A3589084 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133065A3589084.en

    36.
    Turak, E., Sheppard, C. & Wood, E. Catalaphyllia jardinei. IUCN Red List of Threatened Species 2008: e.T132890A3479919 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T132890A3479919.en

    37.
    Cappo, M. & Kelley, R. in Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef (ed. Wolanski, E.) 161–187(CRC Press, 2000).

    38.
    Cappo, M., De’ath, G. & Speare, P. Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Mar. Ecol. Prog. Ser. 350, 209–221 (2007).
    Article  Google Scholar 

    39.
    Sambrook, K. et al. Beyond the reef: the widespread use of non-reef habitats by coral reef fishes. Fish Fish. (Oxf.) 20, 903–920 (2019).
    Article  Google Scholar 

    40.
    Hurrey, L. P., Pitcher, C. R., Lovelock, C. E. & Schmidt, S. Macroalgal species richness and assemblage composition of the Great Barrier Reef seabed. Mar. Ecol. Prog. Ser. 492, 69–83 (2013).
    Article  Google Scholar 

    41.
    Kämpf, J. & Chapman, P. Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems (Springer International Publishing, 2016).

    42.
    Wolanski, E., Drew, E., Abel, K. M. & O’Brien, J. Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef. Estuar. Coast. Shelf Sci. 26, 169–201 (1988).
    CAS  Article  Google Scholar 

    43.
    Andrews, J. C. & Gentien, P. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin’s question?. Mar. Ecol. Prog. Ser. 8, 257–269 (1982).
    Article  Google Scholar 

    44.
    Benthuysen, J. A., Tonin, H., Brinkman, R., Herzfeld, M. & Steinberg, C.Intrusive upwelling in the Central Great Barrier Reef. J. Geophys. Res. Oceans 121, 8395–8416 (2016).
    Article  Google Scholar 

    45.
    Berkelmans, R., Weeks, S. J. & Steinberg, C. R. Upwelling linked to warm summers and bleaching on the Great Barrier Reef. Limnol. Oceanogr. 55, 2634–2644 (2010).
    Article  Google Scholar 

    46.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
    CAS  Article  Google Scholar 

    47.
    Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).
    Article  Google Scholar 

    48.
    Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J.Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41(2011).
    Article  Google Scholar 

    49.
    Campbell, J. E., Fisch, J., Langdon, C. & Paul, V. J. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35, 357–368 (2016).
    Article  Google Scholar 

    50.
    Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat. Commun. 7, 10732 (2016).
    CAS  Article  Google Scholar 

    51.
    Price, N. N., Hamilton, S. L., Tootell, J. S. & Smith, J. E. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar. Ecol. Prog. Ser. 440, 67–78 (2011).
    CAS  Article  Google Scholar 

    52.
    Sinutok, S., Hill, R., Doblin, M. A., Kühl, M. & Ralph, P. J. Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31, 1201–1213 (2012).
    Article  Google Scholar 

    53.
    Wizemann, A., Meyer, F. W., Hofmann, L. C., Wild, C. & Westphal, H. Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs 34, 941–954 (2015).
    Article  Google Scholar 

    54.
    Smithers, S., Harvey, N., Hopley, D. & Woodroffe, C. D. in Climate Change and the Great Barrier Reef: A Vulnerability Assessment (eds Johnson, J. E. & Marshall, P. A.) 667–716 (Great Barrier Reef Marine Park Authority, 2007).

    55.
    Cappo, M., Speare, P. & De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).
    Article  Google Scholar 

    56.
    Pitcher, C. R. GBR Seabed Biodiversity Mapping Project: Phase 1. Draft Report to CRC-Reef (Australian Institute of Marine Science, 2002).

    57.
    Ugland, K. I., Gray, J. S. & Ellingsen, K. E. The species–accumulation curve and estimation of species richness. J. Anim. Ecol. 72, 888–897 (2003).
    Article  Google Scholar 

    58.
    Clarke, K. & Gorley, R. PRIMER v7: User Manual/Tutorial (PRIMER-e, 2015).

    59.
    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 3rd edn (PRIMER-e, 2014).

    60.
    Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).
    Article  Google Scholar  More

  • in

    Fine-scale metabolic discontinuity in a stratified prokaryote microbiome of a Red Sea deep halocline

    1.
    Merlino G, Barozzi A, Michoud G, Ngugi DK, Daffonchio D. Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiol Ecol. 2018;94:1–15.
    Article  CAS  Google Scholar 
    2.
    Antunes A, Ngugi DK, Stingl U. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep. 2011;3:416–33.
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, et al. Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol. 2011;13:2250–68.
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, et al. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature. 2006;440:203–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, et al. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science. 2005;307:121–3.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    6.
    Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, et al. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA. 2009;106:9151–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Joye SB, Samarkin VA, Orcutt BN, MacDonald IR, Hinrichs K-U, Elvert M, et al. Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci. 2009;2:349–54.
    CAS  Article  Google Scholar 

    8.
    Guan Y, Hikmawan T, Antunes A, Ngugi DK, Stingl U. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea. Res Microbiol. 2015;166:688–99.
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Pachiadaki MG, Yakimov M, LaCono V, Leadbetter E, Edgcomb V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME J. 2014;8:1–12.
    Article  CAS  Google Scholar 

    10.
    Borin S, Mapelli F, Rolli E, Song B, Tobias C, Schmid MC, et al. Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles. 2013;17:289–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Yakimov MM, La Cono V, Spada GL, Bortoluzzi G, Messina E, Smedile F, et al. Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ Microbiol. 2015;17:364–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, et al. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J. 2015;9:396–411.
    Article  CAS  Google Scholar 

    13.
    Ngugi DK, Blom J, Stepanauskas R, Stingl U. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME J. 2016;10:1383–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Zhang W, Ding W, Yang B, Tian RM, Gu S, Luo H, et al. Genomic and transcriptomic evidence for carbohydrate consumption among microorganisms in a cold seep brine pool. Front Microbiol. 2016;7:1825.
    PubMed  PubMed Central  Google Scholar 

    15.
    Bougouffa S, Yang JK, Lee OO, Wang Y, Batang Z, Al-Suwailem A, et al. Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol. 2013;79:3425–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, et al. Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol. 2014;5:1–16.
    Article  Google Scholar 

    17.
    Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev. 2009;33:855–69.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Yakimov M, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN, et al. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J. 2007;1:743–55.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Brune A, Frenzel P, Cypionka H. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev. 2000;24:691–710.
    CAS  PubMed  Article  Google Scholar 

    21.
    Oren A. Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol. 2011;13:1908–23.
    CAS  PubMed  Article  Google Scholar 

    22.
    Baumann A, Richter H, Schoell M. Suakin deep: brines and hydrothermal sediments in the deepest part of the Red Sea. Geol Rundsch. 1973;62:684–97.
    CAS  Article  Google Scholar 

    23.
    Backer H, Schoell M. New deeps with brines and metalliferous sediments in the red sea. Nat Phys Sci. 1972;240:153–8.
    Article  Google Scholar 

    24.
    Schmidt, M, Al-Farawati R, Botz R. Geochemical classification of brine-filled Red Sea Deeps. In: Rasul NMA, Stewart ICF, editors. The Red Sea. Springer; 2015. p. 219–233.

    25.
    Calleja ML, Al-Otaibi N, Morán XAG. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci Rep. 2019;9:4690.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Duarte CM, Røstad A, Michoud G, Barozzi A, Merlino G, Delgado-Huertas A, et al. Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. Sci Rep. 2020;10:910.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol. 2011;73:3–36.
    Article  Google Scholar 

    28.
    Salata GG, Roelke LA, Cifuentes LA. A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar Chem. 2000;69:153–61.
    CAS  Article  Google Scholar 

    29.
    McIlvin MR, Altabet MA. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem. 2005;77:5589–95.
    CAS  PubMed  Article  Google Scholar 

    30.
    Green MR, Sambrook J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb Protoc. 2017;2017:pdb.prot093450.

    31.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Bushnell B. BBMap short read aligner. https://sourceforge.net/projects/bbmap/. 2016. Accessed 03 Feb 2021.

    33.
    Andrews S. FastQC A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010. Accessed 30 Jan 2021.

    34.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Parks DH, Beiko RG. Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities. ISME J. 2013;7:173–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26:680–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Alam I, Antunes A, Kamau AA, Alawi WB, Kalkatawi M, Stingl U, et al. INDIGO – Integrated data warehouse of microbial genomes with examples from the red sea extremophiles. PLoS ONE. 2013;8:e82210.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Llorens-Marès T, Yooseph S, Goll J, Hoffman J, Vila-Costa M, Borrego CM, et al. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. ISME J. 2015;9:1648–61.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Lüke C, Speth DR, Kox MAR, Villanueva L, Jetten MSM. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. PeerJ. 2016;4:e1924.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Wickham H. ggplot2: elegant graphics for data analysis. Springer New York; 2016.

    46.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. https://github.com/vegandevs/vegan, https://cran.r-project.org/package=vegan. 2017. Accessed 28 November 2020.

    47.
    Blanchet FG, Legendre P, Borcard D. Forward selection of explanatory variables. Ecology. 2008;89:2623–32.
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    50.
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  Article  Google Scholar 

    54.
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 2010;11:538.
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–27.
    CAS  Google Scholar 

    56.
    Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Rambaut A. FigTree. http://tree.bio.ed.ac.uk/software/figtree/. 2009. Accessed 04 Jan 2011.

    60.
    Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: various r programming tools for plotting data. 2019. https://cran.r-project.org/package=gplots. Accessed 28 Nov 2020.

    63.
    Long A, Heitman J, Tobias C, Philips R, Song B. Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microbiol. 2013;79:168–76.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Shu D, He Y, Yue H, Wang Q. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems. Chem Eng J. 2016;290:21–30.
    CAS  Article  Google Scholar 

    65.
    Augustin N, Devey CW, van der Zwan FM. A Modern view on the Red Sea Rift: tectonics, volcanism and salt blankets. In: Rasul NMA, Stewart ICF, editors. Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer International Publishing, 2019. p. 37–52.

    66.
    Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.
    CAS  PubMed  Article  Google Scholar 

    67.
    Ward BB, Kilpatrick KA. Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column. Cont Shelf Res. 1990;10:1193–208.
    Article  Google Scholar 

    68.
    Stedmon CA, Thomas DN, Papadimitriou S, Granskog MA, Dieckmann GS. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. J Geophys Res. 2011;116:G03027.
    Google Scholar 

    69.
    Taylor PG, Townsend AR. Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature. 2010;464:1178–81.
    CAS  PubMed  Article  Google Scholar 

    70.
    Granger J, Sigman DM, Lehmann MF, Tortell PD. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 2008;53:2533–45.
    CAS  Article  Google Scholar 

    71.
    Nigro LM, Hyde AS, MacGregor BJ. Teske A. Phylogeography, salinity adaptations and metabolic potential of the candidate division kb1 bacteria based on a partial single cell genome. Front Microbiol. 2016;7:1266.

    72.
    Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Anthony Kamau A, et al. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci Rep. 2016;6:19181.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Pereira AD, Leal CD, Dias MF, Etchebehere C, Chernicharo CAL, de Araújo JC. Effect of phenol on the nitrogen removal performance and microbial community structure and composition of an anammox reactor. Bioresour Technol. 2014;166:103–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Yamada T, Sekiguchi Y. Anaerolineaceae. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA et al, editors. Bergey’s manual of systematics of archaea and bacteria. Wiley, 2018. p. 1–5.

    76.
    Browne P, Tamaki H, Kyrpides N, Woyke T, Goodwin L, Imachi H, et al. Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments. ISME J. 2017;11:87–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Youssef NH, Ashlock-Savage KN, Elshahed MS. Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol. 2012;78:1332–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Sorokin DY, Merkel AY, Abbas B, Makarova KS, Rijpstra WIC, Koenen M, et al. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and ‘Candidatus Methanohalarchaeum thermophilum’, extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov. Int J Syst Evol Microbiol. 2018;68:2199–208.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome c proteins. J Bacteriol. 2008;190:708–17.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    80.
    Muck S, De Corte D, Clifford EL, Bayer B, Herndl GJ, Sintes E. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front Microbiol. 2019;10:2141.
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Jensen MM, Lam P, Revsbech NP, Nagel B, Gaye B, Jetten MS, et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J. 2011;5:1660–70.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Tian R, Ning D, He Z, Zhang P, Spencer SJ, Gao S, et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome. 2020;8:51.
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, et al. Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep. 2013;3:3554.
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Jayakumar A, Chang BX, Widner B, Bernhardt P, Mulholland MR, Ward BB. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean. ISME J. 2017;11:2356–67.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, et al. A microdiversity study of anammox bacteria reveals a novel Candidatus scalindua phylotype in marine oxygen minimum zones. Environ Microbiol. 2008;10:3106–19.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Speth DR, Lagkouvardos I, Wang Y, Qian P-Y, Dutilh BE, Jetten MSM. Draft genome of Scalindua rubra, obtained from the interface above the discovery deep brine in the red sea, sheds light on potential salt adaptation strategies in anammox bacteria. Micro Ecol. 2017;74:1–5.
    CAS  Article  Google Scholar 

    87.
    Ali M, Shaw DR, Saikaly PE. Application of an enrichment culture of the marine anammox bacterium “Ca. Scalindua” for nitrogen removal under moderate salinity and in the presence of organic carbon. Water Res. 2020;170:115345.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Awata T, Goto Y, Kindaichi T, Ozaki N, Ohashi A. Nitrogen removal using an anammox membrane bioreactor at low temperature. Water Sci Technol. 2015;72:2148–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Pappalardo RT. Seeking Europa’s ocean. Proc Int Astron Union. 2010;6:101–14.
    Article  Google Scholar 

    91.
    Martínez GM, Renno NO. Water and brines on mars: current evidence and implications for MSL. Space Sci Rev. 2013;175:29–51.
    Article  CAS  Google Scholar 

    92.
    Jokinen SA, Virtasalo JJ, Jilbert T, Kaiser J, Dellwig O, Arz HW, et al. A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century. Biogeosciences. 2018;15:3975–4001.
    CAS  Article  Google Scholar  More

  • in

    Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom

    1.
    Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, et al. Biospheric primary production during an ENSO transition. Science. 2001;291:2594–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Francis TB, Krüger K, Fuchs BM, Teeling H, Amann RI. CandidatusProsiliicoccus vernus, a spring phytoplankton bloom associated member of the Flavobacteriaceae. Syst Appl Microbiol. 2019;42:41–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Krüger K, Chafee M, Francis TB, Glavina del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Fernández-Gomez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide utilization loci: fueling microbial communities. J Bacteriol. 2017;199:e00860–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.
    CAS  PubMed  Article  Google Scholar 

    16.
    Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100.
    CAS  PubMed  Google Scholar 

    17.
    Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut Bacteroidetes: the food connection. Front Microbiol. 2011;2:93–93.
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Baslé A, Firbank SJ, et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature. 2017;541:407–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Joglekar P, Sonnenburg ED, Higginbottom SK, Earle KA, Morland C, Shapiro-Ward S, et al. Genetic variation of the SusC/SusD homologs from a polysaccharide utilization locus underlies divergent fructan specificities and functional adaptation in Bacteroides thetaiotaomicron strains. mSphere. 2018;3:e00185–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Pudlo NA, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517:165–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Reintjes G, Arnosti C, Fuchs BM, Amann R. An alternative polysaccharide uptake mechanism of marine bacteria. ISME J. 2017;11:1640–50.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Hehemann J-H, Truong LV, Unfried F, Welsch N, Kabisch J, Heiden SE, et al. Aquatic adaptation of a laterally acquired pectin degradation pathway in marine Gammaproteobacteria. Environ Microbiol. 2017;19:2320–33.
    CAS  PubMed  Article  Google Scholar 

    23.
    Neumann AM, Balmonte JP, Berger M, Giebel H-A, Arnosti C, Voget S, et al. Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Environ Microbiol. 2015;17:3857–68.
    CAS  PubMed  Article  Google Scholar 

    24.
    Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E. TonB-dependent transporters and their occurrence in Cyanobacteria. BMC Biol. 2009;7:68.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Gudmundsdottir A, Bell PE, Lundrigan MD, Bradbeer C, Kadner RJ. Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport. J Bacteriol. 1989;171:6526–33.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Köster W, Braun V. Iron (III) hydroxamate transport into Escherichia coli. Substrate binding to the periplasmic FhuD protein. J Biol Chem. 1990;265:21407–10.
    PubMed  Article  Google Scholar 

    27.
    Schauer K, Gouget B, Carrière M, Labigne A, Reuse HD. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol. 2007;63:1054–68.
    CAS  PubMed  Article  Google Scholar 

    28.
    Reeves AR, D’Elia JN, Frias J, Salyers AA. A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol. 1996;178:823–30.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Cheng Q, Yu MC, Reeves AR, Salyers AA. Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol. 1995;177:3721–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J Bacteriol. 2005;187:8300–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Noinaj N, Guillier M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol. 2010;64:43–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schauer K, Rodionov DA, de Reuse H. New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci. 2008;33:330–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun. 2019;10:2043.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci. 2016;73:2603–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Terrapon N, Lombard V, Gilbert HJ, Henrissat B. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics. 2015;31:647–55.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Terrapon N, Lombard V, Drula E, Lapébie P, Al-Masaudi S, Gilbert HJ, et al. PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res. 2017;46:D677–83.
    PubMed Central  Article  CAS  Google Scholar 

    38.
    Bergauer K, Fernandez-Guerra A, Garcia JA, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Dong H-P, Hong Y-G, Lu S, Xie L-Y. Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea. Environ Microbiol Rep. 2014;6:683–95.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA. 2010;107:16420–7.
    CAS  PubMed  Article  Google Scholar 

    41.
    Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J. 2010;4:673–85.
    CAS  PubMed  Article  Google Scholar 

    42.
    Williams TJ, Long E, Evans F, DeMaere MZ, Lauro FM, Raftery MJ, et al. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012;6:1883–900.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Article  CAS  Google Scholar 

    45.
    Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Orellana LH, Francis TB, Krüger K, Teeling H, Müller M-C, Fuchs BM, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. ISME J. 2019;13:3024–36.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Deusch S, Seifert J. Catching the tip of the iceberg—evaluation of sample preparation protocols for metaproteomic studies of the rumen microbiota. Proteomics. 2015;15:3590–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
    CAS  PubMed  Article  Google Scholar 

    51.
    Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.
    CAS  PubMed  Article  Google Scholar 

    52.
    Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL, et al. Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods. 2006;40:303–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50.
    CAS  PubMed  Article  Google Scholar 

    54.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Article  Google Scholar 

    57.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.
    Article  Google Scholar 

    59.
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32.
    CAS  Article  Google Scholar 

    60.
    Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 2016;44:D372–9.
    CAS  PubMed  Article  Google Scholar 

    61.
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    CAS  PubMed  Article  Google Scholar 

    64.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013;42:D490–5.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Tang K, Jiao N, Liu K, Zhang Y, Li S. Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PLoS ONE. 2012;7:e41204.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Gómez-Santos N, Glatter T, Koebnik R, Świątek-Połatyńska MA, Søgaard-Andersen L. A TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane. Nat Commun. 2019;10:1360.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Engel A, Händel N. A novel protocol for determining the concentration and composition of sugars in particulate and in high molecular weight dissolved organic matter (HMW-DOM) in seawater. Mar Chem. 2011;127:180–91.
    CAS  Article  Google Scholar 

    71.
    Reintjes G, Fuchs BM, Scharfe M, Wiltshire KH, Amann R, Arnosti C. Short-term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom. Environ Microbiol. 2020;22:1884–900.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Avcı B, Krüger K, Fuchs BM, Teeling H, Amann RI. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 2020;14:1369–83.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Sperling M, Piontek J, Engel A, Wiltshire KH, Niggemann J, Gerdts G, et al. Combined carbohydrates support rich communities of particle-associated marine bacterioplankton. Front Microbiol. 2017;8:65.
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann J-H, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92–103.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–24.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    Becker S, Scheffel A, Polz MF, Hehemann J-H. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl Environ Microbiol. 2017;83:e03389–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci USA. 2020;117:6599–607.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Warming impairs trophic transfer efficiency in a long-term field experiment

    In natural ecosystems, the efficiency of energy transfer from resources to consumers determines the biomass structure of food webs. As a general rule, about 10% of the energy produced in one trophic level makes it up to the next1–3. Recent theory suggests this energy transfer could be further constrained if rising temperatures increase metabolic growth costs4, although experimental confirmation in whole ecosystems is lacking. We quantified nitrogen transfer efficiency (a proxy for overall energy transfer) in freshwater plankton in artificial ponds exposed to 7 years of experimental warming. We provide the first direct experimental evidence that, relative to ambient conditions, 4 °C of warming can decrease trophic transfer efficiency by up to 56%. In addition, both phytoplankton and zooplankton biomass were lower in the warmed ponds, indicating major shifts in energy uptake, transformation and transfer5,6. These new findings reconcile observed warming-driven changes in individual-level growth costs and carbon-use efficiency across diverse taxa4,7–10 with increases in the ratio of total respiration to gross primary production at the ecosystem level11–13. Our results imply that an increasing proportion of the carbon fixed by photosynthesis will be lost to the atmosphere as the planet warms, impairing energy flux through food chains, with negative implications for larger consumers and the functioning of entire ecosystems. More

  • in

    My race against time to capture the sounds of ancient rainforests

    Natural soundscapes have always called to me. As an eco- and electro-acoustics researcher, with a background in sound engineering and electronic music composition, I have always tried to strike a balance between art and science in my work.
    In 1998, when I first heard about the extinction crisis — more than 35,500 species of flora and fauna are endangered — the idea for the Fragments of Extinction project came to me very quickly. My vision was to build a collection of 24-hour-long ‘acoustic fragments’, recorded at the highest definition possible, capturing the sonic heritage of ancient, biodiverse, untouched tropical rainforests — before climate change damages them irreversibly.
    In these forests, some species vocalize from the canopy, some from the ground and others from big tree trunks that act like sound diffusers. To capture a 3D acoustic portrait of the forest, we simultaneously record on 38 audio channels and microphones.
    In this photograph, I am standing in the Sonosfera, a geodesic theatre in Pesaro, Italy, in which audiences can experience rainforest soundscapes captured in the Amazon, Africa and Borneo. Forty-five high-definition loudspeakers are positioned in an isolated, acoustically perfect space, realistically reproducing the ecosystems’ natural sounds.
    For the first 15 minutes of the performance, the Sonosfera is completely dark. Sound helps listeners to ‘build’ the forest space around them — the position of every insect and amphibian; the birds and mammals moving through the canopy. My team then projects the spectrograms shown here to explain the sounds, and present data showing that these ecosystems are disappearing.
    We have captured the deep infrasound calls of elephants and have recorded insects that sound exactly like violins or trumpets. Our ecosystem recordings are very different. But I don’t have a favourite — they’re a collection. More