Primer evaluation and development of a droplet digital PCR protocol targeting amoA genes for the quantification of Comammox in lakes
1.
Vitousek, P. M. et al. The Nitrogen Cycle at Regional to Global Scales 1–45 (Springer, New York, 2002).
Google Scholar
2.
Stein, L. Y. & Klotz, M. G. The nitrogen cycle. Curr. Biol. CB 26, R94–R98 (2016).
CAS PubMed Article Google Scholar
3.
Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).
CAS PubMed Article Google Scholar
4.
Winogradsky, S. On the nitrifying organisms. Sciences 110, 1013–1016 (1890).
Google Scholar
5.
Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).
ADS PubMed Article CAS Google Scholar
6.
Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).
CAS PubMed PubMed Central Article Google Scholar
7.
Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
8.
van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).
ADS PubMed PubMed Central Article CAS Google Scholar
9.
Pester, M. et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ. Microbiol. 16, 3055–3071 (2014).
CAS PubMed Article Google Scholar
10.
Gruber-Dorninger, C. et al. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 9, 643–655 (2015).
CAS PubMed Article Google Scholar
11.
Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).
PubMed PubMed Central Article Google Scholar
12.
Bartelme, R. P., McLellan, S. L. & Newton, R. J. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and Comammox Nitrospira. Front. Microbiol. 8, 101 (2017).
PubMed PubMed Central Article Google Scholar
13.
Wang, Y. et al. Comammox in drinking water systems. Water Res. 116, 332–341 (2017).
CAS PubMed Article Google Scholar
14.
Pinto, A. J. et al. Metagenomic evidence for the presence of Comammox Nitrospira-like bacteria in a drinking water system. mSphere 1 (2016).
15.
Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).
CAS PubMed Article Google Scholar
16.
Beach, N. K. & Noguera, D. R. Design and assessment of species-level qPCR primers targeting Comammox. Front. Microbiol. 10, 36 (2019).
PubMed PubMed Central Article Google Scholar
17.
Hu, H.-W. & He, J.-Z. Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J. Soils Sediments 17, 2709–2717 (2017).
CAS Article Google Scholar
18.
Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (Comammox). Appl. Environ. Microbiol. 84, e01390-18 (2018).
19.
Jiang, Q., Xia, F., Zhu, T., Wang, D. & Quan, Z. Distribution of comammox and canonical ammonia-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary at different depths over four seasons. J. Appl. Microbiol. 127, 533–543 (2019).
CAS PubMed Article Google Scholar
20.
Liu, S. et al. Comammox Nitrospira within the Yangtze River continuum: Community, biogeography, and ecological drivers. ISME J. 14, 2488–2504 (2020).
CAS PubMed PubMed Central Article Google Scholar
21.
Xu, Y. et al. Diversity and abundance of comammox bacteria in the sediments of an urban lake. J. Appl. Microbiol. 128, 1647–1657 (2020).
CAS PubMed Article Google Scholar
22.
Lu, S., Sun, Y., Lu, B., Zheng, D. & Xu, S. Change of abundance and correlation of Nitrospira inopinata-like comammox and populations in nitrogen cycle during different seasons. Chemosphere 241, 125098 (2020).
ADS CAS PubMed Article Google Scholar
23.
Boehrer, B. & Schultze, M. Stratification of lakes. Rev. Geophys. 46, RG2005 (2008).
24.
Hou, J., Song, C., Cao, X. & Zhou, Y. Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Res. 47, 2285–2296 (2013).
CAS PubMed Article Google Scholar
25.
Alfreider, A. et al. CO2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environ. Microbiol. 19, 2754–2768 (2017).
CAS PubMed PubMed Central Article Google Scholar
26.
Alfreider, A. et al. Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes. FEMS Microbiol. Ecol. 94, fiy163 (2018).
27.
Herber, J. et al. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ. Microbiol. 22, 212–228 (2020).
CAS PubMed Article Google Scholar
28.
Rotthauwe, J.-H., Witzel, K.-P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
CAS PubMed PubMed Central Article Google Scholar
29.
Junier, P. et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol. 85, 425–440 (2010).
CAS PubMed Article Google Scholar
30.
Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529 (2001).
CAS PubMed Article Google Scholar
31.
Alves, R. J. E., Minh, B. Q., Urich, T., von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, 1517 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
32.
Linhart, C. & Shamir, R. The degenerate primer design problem: Theory and applications. J. Comput Biol. 12, 431–456 (2005).
33.
Alfreider, A. & Tartarotti, B. Spatiotemporal dynamics of different CO2 fixation strategies used by prokaryotes in a dimictic lake. Sci. Rep. 9, 15068 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
34.
Luesken, F. A. et al. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl. Microbiol. Biotechnol. 92, 845–854 (2011).
CAS PubMed PubMed Central Article Google Scholar
35.
Wu, D. Y., Ugozzoli, L., Pal, B. K., Qian, J. I. N. & Wallace, R. B. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 10, 233–238 (1991).
CAS PubMed Article Google Scholar
36.
Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
37.
Daims, H., Lücker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712 (2016).
CAS PubMed PubMed Central Article Google Scholar
38.
Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).
CAS PubMed PubMed Central Article Google Scholar
39.
Callieri, C., Hernández-Avilés, S., Salcher, M. M., Fontaneto, D. & Bertoni, R. Distribution patterns and environmental correlates of Thaumarchaeota abundance in six deep subalpine lakes. Aquat. Sci. 78, 215–225 (2016).
CAS Article Google Scholar
40.
Coci, M., Odermatt, N., Salcher, M. M., Pernthaler, J. & Corno, G. Ecology and distribution of Thaumarchaea in the deep hypolimnion of Lake Maggiore. Archaea 2015, 1–11 (2015).
Article Google Scholar
41.
Auguet, J.-C., Triadó-Margarit, X., Nomokonova, N., Camarero, L. & Casamayor, E. O. Vertical segregation and phylogenetic characterization of ammonia-oxidizing archaea in a deep oligotrophic lake. ISME J. 6, 1786–1797 (2012).
CAS PubMed PubMed Central Article Google Scholar
42.
Vissers, E. W. et al. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiol. Ecol. 83, 515–526 (2013).
CAS PubMed Article Google Scholar
43.
Vissers, E. W. Spatial and Temporal Dynamics of Thaumarchaeota in Deep European Lakes (Netherlands Institute of Ecology, 2012).
44.
Small, G. E. et al. Rates and controls of nitrification in a large oligotrophic lake. Limnol. Oceanogr. 58, 276–286 (2013).
ADS CAS Article Google Scholar
45.
Lavrentyev, P. J., Gardner, W. S. & Johnson, J. R. Cascading trophic effects on aquatic nitrification: Experimental evidence and potential implications. Aquat. Microb. Ecol. 13, 161–175 (1997).
Article Google Scholar
46.
Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification?. Trends Microbiol. 14, 213–219 (2006).
CAS PubMed Article Google Scholar
47.
Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: Insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189 (2019).
CAS PubMed Article Google Scholar
48.
Schramm, A., de Beer, D., Gieseke, A. & Amann, R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ. Microbiol. 2, 680–686 (2000).
CAS PubMed Article Google Scholar
49.
Nowka, B., Off, S., Daims, H. & Spieck, E. Improved isolation strategies allowed the phenotypic differentiation of two Nitrospira strains from widespread phylogenetic lineages. FEMS Microbiol. Ecol. 91, fiu031 (2015).
50.
Ushiki, N., Fujitani, H., Aoi, Y. & Tsuneda, S. Isolation of Nitrospira belonging to sublineage II from a wastewater treatment plant. Microbes Environ. ME13042 (2013).
51.
Cotto, I. et al. Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Res. 169, 115268 (2020).
CAS PubMed Article Google Scholar
52.
Koch, H. et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc. Natl. Acad. Sci. U.S.A. 112, 11371–11376 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
53.
Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat. Geosci. 6, 228–234 (2013).
ADS CAS Article Google Scholar
54.
Bristow, L. A. et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc. Natl. Acad. Sci. U.S.A. 113, 10601–10606 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
55.
Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
CAS PubMed PubMed Central Article Google Scholar
56.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
CAS PubMed Article Google Scholar
57.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
CAS PubMed PubMed Central Article Google Scholar
58.
Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
CAS Article Google Scholar
59.
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England) 25, 1189–1191 (2009).
CAS Article Google Scholar More
