Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations
1.
Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
2.
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
3.
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).
ADS PubMed PubMed Central Article CAS Google Scholar
4.
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
ADS PubMed PubMed Central Article Google Scholar
5.
Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
6.
Mittell, E. A., Nakagawa, S. & Hadfield, J. D. Are molecular markers useful predictors of adaptive potential? Ecol. Lett. 18, 772–778 (2015).
PubMed Article PubMed Central Google Scholar
7.
Vilas, A., Pérez-Figueroa, A., Quesada, H. & Caballero, A. Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Mol. Ecol. 24, 4419–4432 (2015).
PubMed Article PubMed Central Google Scholar
8.
Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
CAS PubMed Article PubMed Central Google Scholar
9.
Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B Biol. Sci. 285, 20172746 (2018).
Article Google Scholar
10.
Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).
CAS PubMed Article Google Scholar
11.
Attard, C. R. M. et al. Low genetic diversity in pygmy blue whales is due to climate-induced diversification rather than anthropogenic impacts. Biol. Lett. 11, 20141037 (2015).
PubMed PubMed Central Article Google Scholar
12.
Ma, G., Rudolf, V. H. W. & Ma, C. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Chang. Biol. 21, 1794–1808 (2015).
ADS PubMed Article Google Scholar
13.
Johnson, D. W., Freiwald, J. & Bernardi, G. Genetic diversity affects the strength of population regulation in a marine fish. Ecology 97, 627–639 (2016).
CAS PubMed Google Scholar
14.
Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).
Article Google Scholar
15.
Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503 (2015).
Article Google Scholar
16.
Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017).
CAS PubMed Article Google Scholar
17.
Bruford, M. W., Davies, N., Dulloo, M. E., Faith, D. P. & Walters, M. In The GEO Handbook on Biodiversity Observation Networks 107–128 (Springer International Publishing, 2017).
18.
Hamrick, J. L. & Godt, M. J. W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. B Biol. Sci. 351, 1291–1298 (1996).
ADS Article Google Scholar
19.
Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).
PubMed Article Google Scholar
20.
Gelmi-Candusso, T. A., Heymann, E. W. & Heer, K. Effects of zoochory on the spatial genetic structure of plant populations. Mol. Ecol. 26, 5896–5910 (2017).
PubMed Article Google Scholar
21.
Vranckx, G., Jacquemyn, H., Muys, B. & Honnay, O. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv. Biol. 26, 228–237 (2012).
PubMed Article PubMed Central Google Scholar
22.
Eo, S. H., Doyle, J. M. & DeWoody, J. A. Genetic diversity in birds is associated with body mass and habitat type. J. Zool. 283, 220–226 (2011).
Article Google Scholar
23.
Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2012).
Article Google Scholar
24.
Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
25.
Doyle, J. M., Hacking, C. C., Willoughby, J. R., Sundaram, M. & DeWoody, J. A. Mammalian genetic diversity as a function of habitat, body size, trophic class, and conservation status. J. Mammal. 96, 564–572 (2015).
Article Google Scholar
26.
Miller, J. E. D., Damschen, E. I., Harrison, S. P. & Grace, J. B. Landscape structure affects specialists but not generalists in naturally fragmented grasslands. Ecology 96, 3323–3331 (2015).
PubMed Article PubMed Central Google Scholar
27.
Dalongeville, A., Andrello, M., Mouillot, D., Albouy, C. & Manel, S. Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes. J. Biogeogr. 43, 845–857 (2016).
Article Google Scholar
28.
Mitton, J. B. & Lewis, W. M. Relationships between genetic variability and life history features of bony fishes. Evolution 43, 1712–1723 (1989).
PubMed Article PubMed Central Google Scholar
29.
Vachon, F., Whitehead, H. & Frasier, T. R. What factors shape genetic diversity in cetaceans? Ecol. Evol. 8, 1554–1572 (2018).
PubMed PubMed Central Article Google Scholar
30.
Jackson, J. M. et al. Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Mol. Ecol. 27, 2926–2942 (2018).
PubMed Article PubMed Central Google Scholar
31.
Yannic, G. et al. Genetic diversity in caribou linked to past and future climate change. Nat. Clim. Chang. 4, 132–137 (2014).
ADS Article Google Scholar
32.
Lira-Noriega, A. & Manthey, J. D. Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68, 1082–1093 (2014).
PubMed Article PubMed Central Google Scholar
33.
Duncan, S. I., Crespi, E. J., Mattheus, N. M. & Rissler, L. J. History matters more when explaining genetic diversity within the context of the core-periphery hypothesis. Mol. Ecol. 24, 4323–4336 (2015).
PubMed Article PubMed Central Google Scholar
34.
Garner, T. W. J., Pearman, P. B. & Angelone, S. Genetic diversity across a vertebrate species’ range: a test of the central-peripheral hypothesis. Mol. Ecol. 13, 1047–1053 (2004).
CAS PubMed Article PubMed Central Google Scholar
35.
Munwez, I. et al. The change in genetic diversity down the core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol. Ecol. 19, 2675–2689 (2010).
Article CAS Google Scholar
36.
Jones, M. E., Paetkau, D., Geffen, E. & Moritz, C. Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol. Ecol. 13, 2197–2209 (2004).
CAS PubMed Article PubMed Central Google Scholar
37.
White, T. A. & Searle, J. B. Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Mol. Ecol. 16, 2005–2016 (2007).
CAS PubMed Article PubMed Central Google Scholar
38.
Conord, C., Gurevitch, J. & Fady, B. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol. Evol. 2, 2600–2614 (2012).
PubMed PubMed Central Article Google Scholar
39.
Whitlock, R. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. J. Ecol. 102, 857–872 (2014).
PubMed PubMed Central Article Google Scholar
40.
García-Verdugo, C. et al. Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates. Mol. Ecol. 24, 726–741 (2015).
PubMed Article CAS PubMed Central Google Scholar
41.
Patiño, J. et al. A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. J. Biogeogr. 44, 963–983 (2017).
Article Google Scholar
42.
Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).
ADS CAS PubMed Article PubMed Central Google Scholar
43.
Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
44.
Miraldo, A. et al. An Anthropocene map of genetic diversity. Sci 353, 1532–1535 (2016).
ADS CAS Article Google Scholar
45.
Hirao, A. S. et al. Genetic diversity within populations of an arctic-alpine species declines with decreasing latitude across the Northern Hemisphere. J. Biogeogr. 44, 2740–2751 (2017).
Article Google Scholar
46.
Kim, M.-S., Richardson, B. A., McDonald, G. I. & Klopfenstein, N. B. Genetic diversity and structure of western white pine (Pinus monticola) in North America: a baseline study for conservation, restoration, and addressing impacts of climate change. Tree Genetics & Genomes, 7. PLoS Genet. 1, 11–21 (2011).
Google Scholar
47.
Adams, R. I. & Hadly, E. A. Genetic diversity within vertebrate species is greater at lower latitudes. Evol. Ecol. 27, 133–143 (2013).
Article Google Scholar
48.
Gratton, P. et al. Which latitudinal gradients for genetic diversity? Trends Ecol. Evol. 32, 724–726 (2017).
PubMed Article PubMed Central Google Scholar
49.
Lumibao, C. Y., Hoban, S. M. & McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 20, 1459–1468 (2017).
PubMed Article PubMed Central Google Scholar
50.
Schoville, S. D. et al. Adaptive genetic variation on the landscape: methods and cases. Annu. Rev. Ecol. Evol. Syst. 43, 23–43 (2012).
Article Google Scholar
51.
Manel, S. et al. Global determinants of freshwater and marine fish genetic diversity. Nat. Commun. 11, 1–9 (2020).
ADS Article CAS Google Scholar
52.
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).
PubMed Article PubMed Central Google Scholar
53.
Browne, L., Ottewell, K., Sork, V. L. & Karubian, J. The relative contributions of seed and pollen dispersal to gene flow and genetic diversity in seedlings of a tropical palm. Mol. Ecol. 27, 3159–3173 (2018).
PubMed Article PubMed Central Google Scholar
54.
Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).
PubMed Article PubMed Central Google Scholar
55.
Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol. Rev. 94, 648–661 (2018).
PubMed Article PubMed Central Google Scholar
56.
Nybom, H. & Bartish, I. V. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect. Plant Ecol. Evol. Syst. 3, 93–114 (2000).
Article Google Scholar
57.
Honnay, O. & Jacquemyn, H. Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv. Biol. 21, 823–831 (2007).
PubMed Article PubMed Central Google Scholar
58.
Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).
PubMed Article PubMed Central Google Scholar
59.
Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717 (2018).
ADS Article Google Scholar
60.
Lawrence, E. R. & Fraser, D. J. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr. 29, 770–788 (2020).
Article Google Scholar
61.
Mariette, S., Le Corre, V., Austerlitz, F. & Kremer, A. Sampling within the genome for measuring within-population diversity: trade-offs between markers. Mol. Ecol. 11, 1145–1156 (2002).
CAS PubMed Article PubMed Central Google Scholar
62.
Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J. & Sheldon, B. C. A quantitative review of heterozygosity-fitness correlations in animal populations. Mol. Ecol. 18, 2746–2765 (2009).
CAS PubMed Article PubMed Central Google Scholar
63.
Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Chang. 10, 244–248 (2020).
ADS Article Google Scholar
64.
Storey, J., Bass, A., Dabney, A. & Robinson, D. qvalue: Q-value estimation for false discovery rate control. R package version 2.14.1. https://doi.org/10.1111/ele.12303 (2019).
65.
Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).
PubMed Article PubMed Central Google Scholar
66.
Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).
PubMed Article PubMed Central Google Scholar
67.
Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
Article Google Scholar
68.
Kappes, H. & Haase, P. Slow, But Steady: Dispersal of Freshwater Molluscs (Springer, 2012).
69.
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
70.
Brun, P. et al. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).
ADS CAS PubMed PubMed Central Article Google Scholar
71.
McGlynn, T. P., Weiser, M. D. & Dunn, R. R. More individuals but fewer species: testing the ‘more individuals hypothesis’ in a diverse tropical fauna. Biol. Lett. 6, 490–493 (2010).
PubMed PubMed Central Article Google Scholar
72.
Binks, R. M., Millar, M. A. & Byrne, M. Not all rare species are the same: contrasting patterns of genetic diversity and population structure in two narrow-range endemic sedges. Biol. J. Linn. Soc. 114, 873–886 (2015).
Article Google Scholar
73.
Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).
PubMed Article PubMed Central Google Scholar
74.
Cardillo, M. et al. Evolution: multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar
75.
LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
76.
Mittelbach, G. G. A matter of time for tropical diversity. Nature 550, 51–52 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
77.
Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550, 105–108 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
78.
Eziz, A. et al. Drought effect on plant biomass allocation: a meta-analysis. Ecol. Evol. 7, 11002–11010 (2017).
PubMed PubMed Central Article Google Scholar
79.
Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
80.
Martin, T. E. Age-related mortality explains life history strategies of tropical and temperate songbirds. Science 349, 966–970 (2015).
ADS CAS PubMed Article Google Scholar
81.
Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).
PubMed PubMed Central Article Google Scholar
82.
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
PubMed Article Google Scholar
83.
Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).
Article Google Scholar
84.
Cronk, Q. Plant extinctions take time: many plant species may already be functionally extinct. Science 353, 446–447 (2016).
ADS CAS PubMed Article Google Scholar
85.
Aguilar, R. et al. Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecol. Lett. 22, 1163–1173 (2019).
PubMed Article Google Scholar
86.
González, A. V., Gómez‐Silva, V., Ramírez, M. J. & Fontúrbel, F. E. Meta‐analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv. Biol. 34, 711–720 (2019).
PubMed Article Google Scholar
87.
Wood, J. L. A., Yates, M. C. & Fraser, D. J. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol. Appl. 9, 640–657 (2016).
PubMed PubMed Central Article Google Scholar
88.
Yates, M. C., Bowles, E. & Fraser, D. J. Small population size and low genomic diversity have no effect on fitness in experimental translocations of a wild fish. Proc. R. Soc. B Biol. Sci. 286, 20191989 (2019).
CAS Article Google Scholar
89.
De Kort, H., Mergeay, J., Jacquemyn, H. & Honnay, O. Transatlantic invasion routes and adaptive potential in North American populations of the invasive glossy buckthorn, Frangula alnus. Ann. Bot. 118, 1089–1099 (2016).
PubMed PubMed Central Article Google Scholar
90.
Jordan, R., Hoffmann, A. A., Dillon, S. K. & Prober, S. M. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change. Mol. Ecol. 26, 6002–6020 (2017).
CAS PubMed Article PubMed Central Google Scholar
91.
Wogan, G. O. U., Yuan, M. L., Mahler, D. L. & Wang, I. J. Genome-wide epigenetic isolation by environment in a widespread Anolis lizard. Mol. Ecol. 29, 40–55 (2020).
CAS PubMed Article PubMed Central Google Scholar
92.
Schmid, M. W. et al. Contribution of epigenetic variation to adaptation in Arabidopsis. Nat. Commun. 9, 4446 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
93.
Rey, O. et al. Linking epigenetics and biological conservation: towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).
Article Google Scholar
94.
Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
Article Google Scholar
95.
Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evolution 3, 539–551 (2019).
Article Google Scholar
96.
Crandall, E. D., Taffel, J. R. & Barber, P. H. High gene flow due to pelagic larval dispersal among South Pacific archipelagos in two amphidromous gastropods (Neritomorpha: Neritidae). Heredity 104, 563–572 (2010).
CAS PubMed Article Google Scholar
97.
Faurby, S. & Barber, P. H. Theoretical limits to the correlation between pelagic larval duration and population genetic structure. Mol. Ecol. 21, 3419–3432 (2012).
PubMed Article Google Scholar
98.
Álvarez-Noriega, M. et al. Global biogeography of marine dispersal potential. Nat. Ecol. Evol. 4, 1196–1203, https://doi.org/10.1038/s41559-020-1238-y (2020).
Article PubMed Google Scholar
99.
Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117, 654–664 (2008).
Article Google Scholar
100.
Willoughby, J. R. et al. Biome and migratory behaviour significantly influence vertebrate genetic diversity. Biol. J. Linn. Soc. 121, 446–457 (2017).
Article Google Scholar
101.
Martin, A. E. & Fahrig, L. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology 99, 2058–2066 (2018).
PubMed Article Google Scholar
102.
Tellier, A. Persistent seed banking as eco‐evolutionary determinant of plant nucleotide diversity: novel population genetics insights. N. Phytol. 221, 725–730 (2019).
CAS Article Google Scholar
103.
Ayre, D., O’Brien, E., Ottewell, K. & Whelan, R. The accumulation of genetic diversity within a canopy-stored seed bank. Mol. Ecol. 19, 2640–2650 (2010).
PubMed Article Google Scholar
104.
Campbell, D. R., Brody, A. K., Price, M. V., Waser, N. M. & Aldridge, G. Is plant fitness proportional to seed set? An experiment and a spatial model. Am. Nat. 190, 818–827 (2017).
PubMed Article PubMed Central Google Scholar
105.
Angeloni, F., Ouborg, N. J. & Leimu, R. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol. Conserv. 144, 35–43 (2011).
Article Google Scholar
106.
Nei, M., Maruyama, T. & Chakraborty, R. The Bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).
PubMed Article Google Scholar
107.
Kimura, M. The neutral theory of molecular evolution (Cambridge University Press: Cambridge [Cambridgeshire], 1983).
108.
Nagylaki, T. The effective size of a subdivided population. Genetics 149, 1599–1604 (1997).
Google Scholar
109.
Poirier, M.-A., Coltman, D. W., Pelletier, F., Jorgenson, J. & Festa-Bianchet, M. Genetic decline, restoration and rescue of an isolated ungulate population. Evol. Appl. 12, 1318–1328 (2018).
PubMed PubMed Central Article Google Scholar
110.
Dures, S. G. et al. A century of decline: loss of genetic diversity in a southern African lion-conservation stronghold. Divers. Distrib. 25, 870–879 (2019).
Article Google Scholar
111.
Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).
PubMed Article PubMed Central Google Scholar
112.
Burnham, K. P. & Anderson, D. R. In Sociological Methods & Research 33, (Sage PublicationsSage CA, Thousand Oaks, 2002). More
