Possible interference of Bacillus thuringiensis in the survival and behavior of Africanized honey bees (Apis mellifera)
1.
Celli, G. & Maccagnani, B. Honey bees as bioindicators of environmental pollution. Bull. Insectol. 56, 1–3 (2003).
Google Scholar
2.
Quigley, T. P., Amdam, G. V. & Harwood, G. H. Honey bees as bioindicators of changing global agricultural landscapes. Curr. Opin. Insect Sci. 35, 132–137 (2019).
PubMed Article Google Scholar
3.
Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci. 285, 20172140 (2018).
Article Google Scholar
4.
Giannini, T. C., Cordeiro, G. D., Freitas, B. M., Saraiva, A. M. & Imperatriz-Fonseca, V. L. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108, 849–857 (2015).
CAS PubMed Article PubMed Central Google Scholar
5.
Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
6.
Miñarro, M., García, D. & Martínez-Sastre, R. Los insectos polinizadores en la agricultura: importancia y gestión de su biodiversidad. Ecosistemas Rev. Científica Ecol. y Medio Ambient. 27, 81–90 (2018).
Google Scholar
7.
Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, 24–28 (2012).
Article CAS Google Scholar
8.
Kaplan, J. K. Colony collapse disorder: an incomplete puzzle. Agric. Res. Mag. 60, 2489 (2012).
Google Scholar
9.
VanEngelsdorp, D. et al. Colony collapse disorder: a descriptive study. PLoS ONE 4, 1–17 (2009).
Article CAS Google Scholar
10.
Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: a risk assessment. PLoS ONE 9, e94482 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
11.
Sindiveg, S. N. da I. de P. para D. V. Mapeamento De Abelhas Participativo (MAP). Relatório 3 anos (2014-2017). Colmeia Viva (2017). 61p. https://www.colmeiaviva.com.br/wp-content/uploads/2019/10/RelatorioMAP.pdf
12.
Wolff, L. F. & Santos, R. S. S. Abelhas melíferas: bioindicadores de qualidade ambiental e de sustentabilidade da agricultura familiar de base ecológica. Embrapa Clima Temperado-Documentos https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/543990/1/documento244.pdf (2008).
13.
Amaro, P. & Godinho, J. Pesticidas e abelhas. Rev. Ciências Agrárias 35, 53–62 (2012).
Google Scholar
14.
Tosi, S. & Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Sci. Rep. 7, 1–13 (2017).
Article CAS Google Scholar
15.
Catae, A. F. et al. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. Pest Manag. Sci. 75, 607–615 (2019).
CAS PubMed Article Google Scholar
16.
Alves, S. Controle Microbiano de Insetos (FEALQ, Piracicaba, 1998).
Google Scholar
17.
Hajek, A. E. & Eilenberg, J. Natural Enemies: An Introduction to Biological Control (Cambridge University Press, Cambridge, 2018).
Google Scholar
18.
Lacey, L. A. et al. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).
CAS PubMed Article Google Scholar
19.
Melo, A. L. D. A., Soccol, V. T. & Soccol, C. R. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit. Rev. Biotechnol. 36, 317–326 (2014).
PubMed Article CAS PubMed Central Google Scholar
20.
Eski, A., Demir, İ, Sezen, K. & Demirbağ, Z. A new biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J. Microbiol. Biotechnol. 33, 35 (2017).
Article CAS Google Scholar
21.
Göktürk, T. Pyrethrum ve Bacillus thuringiensis biyopestisitlerinin Pristiphora abietina (Christ, 1791) (Hymenoptera: Tenthredinidae) üzerindeki etkisi. Artvin Çoruh Üniversitesi Orman Fakültesi Derg. 18, 83–87 (2017).
Article Google Scholar
22.
MAPA, M. da A. P. e A. Agrofit. MAPA http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (2019).
23.
Konecka, E., Kaznowski, A., Stachowiak, M. & Maciąg, M. Activity of spore-crystal mixtures of new Bacillus thuringiensis strains against Dendrolimus pini (Lepidoptera: Lasiocampidae) and Spodoptera exigua (Lepidoptera: Noctuidae). Folia For. Pol. Ser. A 60, 91–98 (2018).
Google Scholar
24.
Gupta, S. & Dikshit, A. K. Biopesticides: an ecofriendly approach for pest control. J. Biopestic. 3, 186–188 (2010).
Google Scholar
25.
Habid, M. E. M. & Andrade, C. F. S. Bactérias entomopatogênicas. in Controle microbiano de insetos (ed Alves, S. B.) 384–446 (FEALQ, Piracicaba, 1998).
26.
Bravo, A., Gill, S. S. & Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423–435 (2007).
CAS PubMed Article PubMed Central Google Scholar
27.
Slessor, K. N., Winston, M. L. & Conte, Y. L. Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31, 2731–2745 (2005).
CAS PubMed Article PubMed Central Google Scholar
28.
Lugtenberg, B. Principles of Plant-Microbe Interactions (Springer, Berlin, 2015).
Google Scholar
29.
Palma, L. & Berry, C. Understanding the structure and function of Bacillus thuringiensis toxins. Toxicon 109, 1–3 (2016).
CAS PubMed Article PubMed Central Google Scholar
30.
Malone, L. A. et al. Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity. Apidologie 32, 57–68 (2001).
CAS Article Google Scholar
31.
Yi, D., Fang, Z. & Yang, L. Effects of Bt cabbage pollen on the honeybee Apis mellifera L. Sci. Rep. 8, 1–6 (2018).
Article CAS Google Scholar
32.
D’Urso, V. et al. Observations on midgut of Apis mellifera workers (Hymenoptera: Apoidea) under controlled acute exposures to a Bacillus thuringiensis-based biopesticide. Apidologie 48, 51–62 (2017).
Article CAS Google Scholar
33.
Libardoni, G. et al. Effect of different Bacillus thuringiensis strains on the longevity of Africanized honey bee. Semin. Agrar. 39, 329–338 (2018).
Article Google Scholar
34.
Zhu, Y. C., Wang, Y., Portilla, M., Parys, K. & Li, W. Risk and toxicity assessment of a potential natural insecticide, methyl benzoate, in honey bees (Apis mellifera L.). Insects 10, 1–17 (2019).
Google Scholar
35.
Hesselbach, H., Seeger, J., Schilcher, F., Ankenbrand, M. & Scheiner, R. Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera. J. Appl. Ecol. 57, 609–618 (2020).
CAS Article Google Scholar
36.
Gomes, I. N., Vieira, K. I. C., Gontijo, L. M. & Resende, H. C. Honeybee survival and flight capacity are compromised by insecticides used for controlling melon pests in Brazil. Ecotoxicology 29, 97–107 (2020).
Article CAS Google Scholar
37.
Alquisira-Ramírez, E. V., Paredes-Gonzalez, J. R., Hernández-Velázquez, V. M., Ramírez-Trujillo, J. A. & Peña-Chora, G. In vitro susceptibility of Varroa destructor and Apis mellifera to native strains of Bacillus thuringiensis. Apidologie 45, 707–718 (2014).
Article CAS Google Scholar
38.
Fagúndez, G. A., Blettler, D. C., Krumrick, C. G., Bertos, M. A. & Trujillo, C. G. Do agrochemicals used during soybean flowering affect the visits of Apis mellifera L.?. Span. J. Agric. Res. 14, 7 (2016).
Article Google Scholar
39.
Alquisira-Ramírez, E. V. et al. Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera. Ecotoxicol. Environ. Saf. 142, 69–78 (2017).
PubMed Article CAS Google Scholar
40.
Horta, A. B., Pannuti, L., Baldin, E. L. L. & Furtado, E. L. Toxinas inseticidas de Bacillus thuringiensis. In Biotecnologia Aplicada à Agro&Indústria (ed. Resende, R. R.) 737–773 (Blucher, Erkrath, 2017). https://doi.org/10.5151/9788521211150-21.
Google Scholar
41.
Malone, L. A., Burgess, E. P. J. & Stefanovic, D. Effects of a Bacillus thuringiensis toxin, two Bacillus thuringiensis biopesticide formulations, and a soybean trypsin inhibitor on honey bee (Apis mellifera L.) survival and food consumption. Apidologie 30, 465–473 (1999).
CAS Article Google Scholar
42.
Potrich, M. et al. Effect of entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae). Rev. Bras. Entomol. 22, 1–2. https://doi.org/10.1016/j.rbe.2017.12.002 (2018).
ADS Article Google Scholar
43.
Wang, Y. Y. et al. Toxicological, biochemical, and histopathological analyses demonstrating that Cry1C and Cry2A are not toxic to larvae of the honeybee Apis mellifera. J. Agric. Food Chem. 63, 6126–6132 (2015).
CAS PubMed Article PubMed Central Google Scholar
44.
Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fi pronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol. Environ. Saf. 127, 205–213 (2016).
CAS PubMed Article PubMed Central Google Scholar
45.
Hendriksma, H. P. et al. Effect of stacked insecticidal cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS ONE 8, 1–11 (2013).
Article CAS Google Scholar
46.
Jia, H. R. et al. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae). Sci. Rep. 6, 1–8 (2016).
Article CAS Google Scholar
47.
Jia, H.-R. et al. No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae). Sci. Rep. 7, 1–10 (2017).
Article CAS Google Scholar
48.
Dai, P. et al. The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). Ecotoxicol. Environ. Saf. 181, 381–387 (2019).
CAS PubMed Article PubMed Central Google Scholar
49.
Baptista, A. P. M., Carvalho, G. A., Carvalho, S. M., Carvalho, C. F. & de Bueno Filho, J. S. S. Toxicidade produtos fitossanitários utilizados em citros para Apis mellifera. Ciência Rural 39, 955–961 (2009).
CAS Article Google Scholar
50.
Tomé, H. V. V., Barbosa, W. F., Martins, G. F. & Guedes, R. N. C. Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere 124, 103–109 (2015).
ADS PubMed Article CAS Google Scholar
51.
Kaplan, E. L. & Meier, P. Non parametric estimation from incomplete observation. J. Am. Stat. Assoc. 53, 457–481 (1958).
MATH Article Google Scholar
52.
Therneau, T. M. A Package for Survival Analysis in R. R package version 3.2-7. https://CRAN.R-project.org/package=survival (2020).
53.
Agresti, A. Categorical Data Analysis (Wiley, New York, 2002).
Google Scholar
54.
Christensen, R. H. B. Ordinal-Regression Models for Ordinal Data. R package version 2019.12-10. https://CRAN.R-project.org/package=ordina (2019).
55.
Russell, L. R Package ’emmeans’: Estimated Marginal Means, aka Least-Squares Means. https://github.com/rvlenth/emmeans (2020). More
