Mobilizing the past to shape a better Anthropocene
1.
Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).
CAS PubMed Article Google Scholar
2.
Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002).
CAS PubMed Article Google Scholar
3.
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
CAS PubMed PubMed Central Article Google Scholar
4.
Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. & Nash, C. Z. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 102, 11131–11136 (2005).
CAS PubMed Article Google Scholar
5.
Schirrmeister, B. E., de Vos, J. M., Antonelli, A. & Bagheri, H. C. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).
CAS PubMed Article Google Scholar
6.
Bennett, E. M. et al. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14, 441–448 (2016).
Article Google Scholar
7.
Braje, T. J. Earth systems, human agency, and the Anthropocene: Planet Earth in the human age. J. Archaeol. Res. 23, 369–396 (2015).
Article Google Scholar
8.
Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the age of humans. Proc. Natl Acad. Sci. USA 117, 8250–8253 (2020).
CAS PubMed Article Google Scholar
9.
Sabloff, J. A. Archaeology Matters: Action Archaeology in the Modern World (Routledge, 2008).
10.
Guttmann-Bond, E. Sustainability out of the past: how archaeology can save the planet. World Archaeol. 42, 355–366 (2010).
Article Google Scholar
11.
Reed, K. & Ryan, P. Lessons from the past and the future of food. World Archaeol. 51, 1–16 (2019).
Article Google Scholar
12.
Isendahl, C. & Stump, D. (eds) The Oxford Handbook of Historical Ecology and Applied Archaeology (Oxford Univ. Press, 2019).
13.
Fisher, C. Archaeology for sustainable agriculture. J. Archaeol. Res. 28, 393–441 (2019).
Article Google Scholar
14.
Wolverton, S. & Lyman, R. L. (eds) Conservation Biology and Applied Zooarchaeology (Univ. Arizona Press, 2012).
15.
Folke, C. Resilience: the emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).
Article Google Scholar
16.
Raymond, H. The ecologically noble savage debate. Annu. Rev. Anthropol. 36, 177–190 (2007).
Article Google Scholar
17.
Steffen, W., Grinevald, J., Crutzen, P. J. & McNeill, J. R. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. Lond. A 369, 842–867 (2011).
Google Scholar
18.
Ellis, E., Maslin, M., Boivin, N. & Bauer, A. A. Involve social scientists in defining the Anthropocene. Nature 540, 192–193 (2016).
Article Google Scholar
19.
Smith, B. D. & Zeder, M. A. The onset of the Anthropocene. Anthropocene 4, 8–13 (2013).
Article Google Scholar
20.
Lewis, S. L. & Maslin, M. Defining the Anthropocene. Nature 519, 171–180 (2015).
CAS PubMed Article PubMed Central Google Scholar
21.
Boivin, N. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).
CAS PubMed Article PubMed Central Google Scholar
22.
Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).
CAS PubMed Article PubMed Central Google Scholar
23.
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
CAS PubMed Article PubMed Central Google Scholar
24.
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
CAS PubMed Article PubMed Central Google Scholar
25.
Braje, T. J. & Erlandson, J. M. Human acceleration of animal and plant extinctions: a Late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 4, 14–23 (2013).
Article Google Scholar
26.
Haines-Young, R. & Potschin, M. in Ecosystem Ecology: A New Synthesis (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).
27.
Foster, D. et al. The importance of land-use legacies to ecology and conservation. BioScience 53, 77–88 (2003).
Article Google Scholar
28.
Willis, K. J. & Birks, H. J. B. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314, 1261–1265 (2006).
CAS PubMed Article PubMed Central Google Scholar
29.
Dietl, G. P. & Flessa, K. W. Conservation paleobiology: putting the dead to work. Trends Ecol. Evol. 26, 30–37 (2011).
PubMed Article PubMed Central Google Scholar
30.
Szabó, P. & Hédl, R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 25, 680–687 (2011).
PubMed Article PubMed Central Google Scholar
31.
Scharf, E. A. Deep time: the emerging role of archaeology in landscape ecology. Landsc. Ecol. 29, 563–569 (2014).
Article Google Scholar
32.
Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).
CAS Article Google Scholar
33.
Whitlock, C., Colombaroli, D., Conedera, M. & Tinner, W. Land‐use history as a guide for forest conservation and management. Conserv. Biol. 32, 84–97 (2018).
PubMed Article PubMed Central Google Scholar
34.
Frazier, J. Sustainable use of wildlife: the view from archaeozoology. Nat. Conserv. 15, 163–173 (2007).
Article Google Scholar
35.
Lyman, R. L. A warrant for applied palaeozoology. Biol. Rev. 87, 513–525 (2012).
PubMed Article PubMed Central Google Scholar
36.
Braje, T. & Rick, T. C. From forest fires to fisheries management: anthropology, conservation biology, and historical ecology. Evol. Anthropol. 22, 303–311 (2013).
PubMed Article PubMed Central Google Scholar
37.
Rick, T. C. & Lockwood, R. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27, 45–54 (2013).
PubMed Article PubMed Central Google Scholar
38.
Barak, R. S. et al. Taking the long view: integrating recorded, archeological, paleoecological, and evolutionary data into ecological restoration. Int. J. Plant Sci. 177, 90–102 (2016).
Article Google Scholar
39.
Lambrides, A. B. & Weisler, M. I. Pacific Islands ichthyoarchaeology: implications for the development of prehistoric fishing studies and global sustainability. J. Archaeol. Res. 24, 275–324 (2016).
Article Google Scholar
40.
Foster, T., Olsen, L., Dale, V. & Cohen, A. Studying the past for the future: managing modern biodiversity from historic and prehistoric data. Hum. Organ. 69, 149–157 (2010).
Article Google Scholar
41.
Wilmshurst, J. M. et al. Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand. Conserv. Biol. 28, 202–212 (2014).
PubMed Article PubMed Central Google Scholar
42.
Nogué, S. et al. Island biodiversity conservation needs palaeoecology. Nat. Ecol. Evol. 1, 0181 (2017).
Article Google Scholar
43.
Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).
CAS PubMed Article PubMed Central Google Scholar
44.
Newsome, S. D. et al. The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. Proc. Natl Acad. Sci. USA 104, 9709–9714 (2007).
CAS PubMed Article PubMed Central Google Scholar
45.
Szpak, P., Orchard, T., McKechnie, I. & Gröcke, D. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).
Article Google Scholar
46.
McCune, J. L., Pellatt, M. G. & Vellend, M. Multidisciplinary synthesis of long-term human–ecosystem interactions: a perspective from the Garry oak ecosystem of British Columbia. Biol. Conserv. 166, 293–300 (2013).
Article Google Scholar
47.
Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).
CAS PubMed Article PubMed Central Google Scholar
48.
Corlett, R. T. The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol. Conserv. 163, 13–21 (2013).
Article Google Scholar
49.
Hofman, C. A. & Rick, T. C. Ancient biological invasions and island ecosystems: tracking translocations of wild plants and animals. J. Archaeol. Res. 26, 65–115 (2018).
Article Google Scholar
50.
Speller, C. F. et al. High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS ONE 7, e51122 (2012).
CAS PubMed PubMed Central Article Google Scholar
51.
Hofman, C. A., Rick, T. C., Fleischer, R. C. & Maldonado, J. E. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends Ecol. Evol. 30, 540–549 (2015).
PubMed Article PubMed Central Google Scholar
52.
Waters, J. M. & Grosser, S. Managing shifting species: ancient DNA reveals conservation conundrums in a dynamic world. BioEssays 38, 1177–1184 (2016).
CAS PubMed Article PubMed Central Google Scholar
53.
Valentine, K. et al. Ancient DNA reveals genotypic relationships among Oregon populations of the sea otter (Enhydra lutris). Conserv. Genet. 9, 933–938 (2008).
Article Google Scholar
54.
Newsome, S. D. et al. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California. Proc. Natl Acad. Sci. USA 107, 9246–9251 (2010).
CAS PubMed Article PubMed Central Google Scholar
55.
Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: a long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 36249 (2016).
CAS PubMed PubMed Central Article Google Scholar
56.
Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
CAS PubMed Article PubMed Central Google Scholar
57.
Brewington, S. et al. Islands of change vs. islands of disaster: managing pigs and birds in the Anthropocene of the North Atlantic. Holocene 25, 1676–1684 (2015).
Article Google Scholar
58.
Hicks, M. et al. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) Ch. 12 (Oxford Univ. Press, 2019).
59.
Grayson, D. K. & Delpech, F. Pleistocene reindeer and global warming. Conserv. Biol. 19, 557–562 (2005).
Google Scholar
60.
Enghoff, I. B., MacKenzie, B. R. & Nielson, E. E. The Danish fish fauna during the warm Atlantic period (ca. 7000–3900 BC): forerunner of future changes? Fish. Res. 87, 167–180 (2007).
Article Google Scholar
61.
Tengberg, A. et al. Cultural ecosystem services provided by landscapes: assessment of heritage values and identity. Ecosyst. Serv. 2, 14–26 (2012).
Article Google Scholar
62.
Walter, R. K. & Hamilton, R. J. A cultural landscape approach to community-based conservation in Solomon Islands. Ecol. Soc. 19, 41 (2014).
Article Google Scholar
63.
Ekblom, A., Shoemaker, A., Gillson, L., Lane, P. & Lindholm, K. J. Conservation through biocultural heritage—examples from sub-Saharan Africa. Land 8, 5 (2019).
Article Google Scholar
64.
Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).
CAS PubMed Article Google Scholar
65.
Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).
CAS Article Google Scholar
66.
Bowman, D. M. et al. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos. Trans. R. Soc. Lond. B 371, 20150169 (2016).
Article Google Scholar
67.
Kelly, L. T. & Brotons, L. Using fire to promote biodiversity. Science 355, 1264–1265 (2017).
CAS PubMed Article Google Scholar
68.
Beale, C. M. et al. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecol. Lett. 21, 557–567 (2018).
PubMed PubMed Central Article Google Scholar
69.
Gillson, L., Whitlock, C. & Humphrey, G. Resilience and fire management in the Anthropocene. Ecol. Soc. 24, 14 (2019).
Article Google Scholar
70.
Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl Acad. Sci. USA 109, E1215–E1220 (2012).
CAS PubMed Article Google Scholar
71.
Hlubik, S., Berna, F., Feibel, C., Braun, D. & Harris, J. W. K. Researching the nature of fire at 1.5 Mya on the site of FxJj20 AB, Koobi Fora, Kenya, using high-resolution spatial analysis and FTIR spectrometry. Curr. Anthropol. 58, S243–S257 (2017).
Article Google Scholar
72.
Yibarbuk, D. et al. Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: a tradition of ecosystem management. J. Biogeogr. 28, 325–343 (2001).
Article Google Scholar
73.
Black, B. A., Ruffner, C. M. & Abrams, M. D. Native American influences on the forest composition of the Allegheny Plateau, northwest Pennsylvania. Can. J. For. Res. 36, 1266–1275 (2006).
Article Google Scholar
74.
Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).
CAS Article Google Scholar
75.
Bowman, D. M., O’Brien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Env. Res. 38, 57–80 (2013).
Article Google Scholar
76.
Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
PubMed PubMed Central Article Google Scholar
77.
Maezumi, S. Y. et al. New insights from pre-Columbian land use and fire management in Amazonian Dark Earth forests. Front. Ecol. Evol. 6, 111 (2018).
Article Google Scholar
78.
Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
PubMed PubMed Central Article Google Scholar
79.
Nowacki, G. J. & Abrams, M. D. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 58, 123–138 (2008).
Article Google Scholar
80.
Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Env. 11, e55–e63 (2013).
Google Scholar
81.
Archibald, S. Managing the human component of fire regimes: lessons from Africa. Philos. Trans. R. Soc. Lond. B 371, 20150346 (2016).
Article CAS Google Scholar
82.
Roos, C. I. et al. Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. Philos. Trans. R. Soc. Lond. B 371, 20150469 (2016).
Article Google Scholar
83.
North, M. P. et al. Reform forest fire management. Science 349, 1280–1281 (2015).
CAS PubMed Article Google Scholar
84.
Lawes, M. J. et al. Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. Int. J. Wildland Fire 23, 712–722 (2015).
Article Google Scholar
85.
Edwards, A., Russell-Smith, J. & Meyer, M. Contemporary fire regime risks to key ecological assets and processes in north Australian savannas. Int. J. Wildland Fire 24, 857–870 (2015).
Article Google Scholar
86.
Bliege Bird, R., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
PubMed Article Google Scholar
87.
Whitehead, P. J., Bowman, D. M., Preece, N., Fraser, F. & Cooke, P. Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management. Int. J. Wildland Fire 12, 415–425 (2003).
Article Google Scholar
88.
Mitchell, R. J. et al. Future climate and fire interactions in the southeastern region of the United States. For. Ecol. Manag. 327, 316–326 (2014).
Article Google Scholar
89.
Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 107, 19167–19170 (2010).
CAS PubMed Article Google Scholar
90.
Whitehead, P. J., Purdon, P., Russell-Smith, J., Cooke, P. M. & Sutton, S. The management of climate change through prescribed savanna burning: emerging contributions of indigenous people in northern Australia. Public Admin. Dev. 28, 374–385 (2008).
Article Google Scholar
91.
Mistry, J., Bilbao, B. A. & Berardi, A. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America. Philos. Trans. R. Soc. Lond. B 371, 20150174 (2016).
Article CAS Google Scholar
92.
Gillson, L. & Willis, K. J. ‘As Earth’s testimonies tell’: wilderness conservation in a changing world. Ecol. Lett. 7, 990–998 (2004).
Article Google Scholar
93.
Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. Human appropriation of the products of photosynthesis. BioScience 36, 368–373 (1986).
Article Google Scholar
94.
Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).
CAS PubMed Article Google Scholar
95.
Khush, G. S. Green revolution: the way forward. Nat. Rev. Genet. 2, 815–822 (2001).
CAS PubMed Article Google Scholar
96.
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
CAS PubMed Article Google Scholar
97.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
CAS PubMed Article Google Scholar
98.
Renard, D. et al. Ecological engineers ahead of their time: the functioning of pre-Columbian raised-field agriculture and its potential contributions to sustainability today. Ecol. Eng. 45, 30–44 (2012).
Article Google Scholar
99.
Kunen, J. L. Ancient Maya agricultural installations and the development of intensive agriculture in NW Belize. J. Field. Archaeol. 28, 325–346 (2001).
Article Google Scholar
100.
Erickson, C. L. in Managing Change: Sustainable Approaches to the Conservation of the Built Environment (eds Erickson, C. L. et al.) 181–204 (Getty Conservation Institute, 2003).
101.
Sandor, J. A. & Eash, N. S. Significance of ancient agricultural soils for long‐term agronomic studies and sustainable agriculture research. Agron. J. 83, 29–37 (1991).
Article Google Scholar
102.
Marston, J. M. Modeling resilience and sustainability in ancient agricultural systems. J. Ethnobiol. 35, 585–605 (2015).
Article Google Scholar
103.
Logan, A. L., Stump, D., Goldstein, S. T., Orijemie, E. A. & Schoeman, M. H. Usable pasts forum: critically engaging food security. Afr. Archaeol. Rev. 36, 419–438 (2019).
Article Google Scholar
104.
Stump, D. “Ancient and backward or long-lived and sustainable?” The role of the past in debates concerning rural livelihoods and resource conservation in eastern Africa. World Dev. 38, 1251–1122 (2010).
Article Google Scholar
105.
Spriggs, M. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 395–411 (Oxford Univ. Press, 2019).
106.
Herath, S., Mishra, B., Wong, P. & Weerakoon, S. B. in Resilient Asia: Fusion of Traditional and Modern Systems for a Sustainable Future (eds Takeuchi, K. et al.) 151–187 (Springer, 2018).
107.
Lang, C. & Stump, D. Geoarchaeological evidence for the construction, irrigation, cultivation, and resilience of 15th–18th century AD terraced landscape at Engaruka, Tanzania. Quat. Res. 88, 382–399 (2017).
Article Google Scholar
108.
Abeywardana, N., Schütt, B., Wagalawatta, T. & Bebermeier, W. Indigenous agricultural systems in the Dry Zone of Sri Lanka: management transformation assessment and sustainability. Sustainability 11, 910 (2019).
Article Google Scholar
109.
Kendall, A. & Drew, D. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 423–440 (Oxford Univ. Press, 2019).
110.
Erickson, C. L. & Candler, K. L. in Fragile Lands of Latin America: Strategies For Sustainable Development (ed. Browder, J. O.) 230–248 (Westview Press, 1989).
111.
Erickson, C. L. Raised field agriculture in the Lake Titicaca Basin: putting ancient agriculture back to work. Expedition 30, 8–16 (1988).
Google Scholar
112.
McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).
CAS PubMed Article PubMed Central Google Scholar
113.
Lombardo, U., Canal-Beeby, E., Fehr, S. & Veit, H. Raised fields in the Bolivian Amazonia: a prehistoric green revolution or a flood risk mitigation strategy? J. Archaeol. Sci. 38, 502–512 (2011).
Article Google Scholar
114.
Kurashima, N., Fortini, L. & Ticktin, T. The potential of indigenous agricultural food production under climate change in Hawaiʻi. Nat. Sustain. 2, 191–199 (2019).
Article Google Scholar
115.
Marshall, K. et al. Restoring people and productivity to Puanui: challenges and opportunities in the restoration of an intensive rain-fed Hawaiian field system. Ecol. Soc. 22, 23 (2017).
Article Google Scholar
116.
Lincoln, N. K. et al. Restoration of ‘Āina Malo’o on Hawai’i Island: expanding biocultural relationships. Sustainability 10, 3985 (2018).
Article Google Scholar
117.
Atlas, W. I. et al. Ancient fish weir technology for modern stewardship: lessons from community-based salmon monitoring. Ecosyst. Health Sustain. 3, 1341284 (2017).
Article Google Scholar
118.
Rodrigues, L., Lombardo, U., Beeby, E. C. & Veit, H. Linking soil properties and pre-Columbian agricultural strategies in the Bolivian lowlands: the case of raised fields in Exaltación. Quat. Int. 437, 143–155 (2017).
Article Google Scholar
119.
Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).
CAS PubMed Article PubMed Central Google Scholar
120.
Herrera, A. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 459–479 (Oxford Univ. Press, 2019).
121.
Barthel, S. & Isendahl, C. Urban gardens, agriculture, and water management: sources of resilience for long-term food security in cities. Ecol. Econ. 86, 224–234 (2013).
Article Google Scholar
122.
Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia: combating the erosion of diversity in landscapes of food production. Ecol. Soc. 18, 71 (2013).
Article Google Scholar
123.
Maezumi, S. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).
PubMed PubMed Central Article Google Scholar
124.
Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia—safeguarding diversity of practices for food security and biodiversity. Glob. Environ. Change 23, 1142–1152 (2013).
Article Google Scholar
125.
Poschlod, P. & Braun-Reichert, R. Small natural features with large ecological roles in ancient agricultural landscapes of Central Europe-history, value, status, and conservation. Biol. Conserv. 211, 60–68 (2017).
Article Google Scholar
126.
Smýkal, P., Nelson, M. N., Berger, J. D. & Von Wettberg, E. J. The impact of genetic changes during crop domestication. Agronomy 8, 119 (2018).
Article Google Scholar
127.
Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).
CAS PubMed Article PubMed Central Google Scholar
128.
Cheng, A. Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 269, 136–142 (2018).
CAS PubMed Article PubMed Central Google Scholar
129.
Mueller, N. G., Fritz, G. J., Patton, P., Carmody, S. & Horton, E. T. Growing the lost crops of eastern North America’s original agricultural system. Nat. Plants 3, 17092 (2017).
PubMed Article PubMed Central Google Scholar
130.
Logan, A. L. “Why Can’t People Feed Themselves?”: archaeology as alternative archive of food security in Banda, Ghana. Am. Anthropol. 118, 508–524 (2016).
Article Google Scholar
131.
Mueller, N. G., White, A. & Szilagyi, P. Experimental cultivation of eastern North America’s lost crops: insights into agricultural practice and yield potential. J. Ethnobiol. 39, 549–566 (2019).
Article Google Scholar
132.
Palmer, S. A., Smith, O. & Allaby, R. G. The blossoming of plant archaeogenetics. Ann. Anat. 194, 146–156 (2012).
CAS PubMed Article PubMed Central Google Scholar
133.
Østerberg, J. T. et al. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 22, 373–384 (2017).
PubMed Article CAS PubMed Central Google Scholar
134.
McNeill, J. R. & Winiwarter, V. Breaking the sod: humankind, history, and soil. Science 304, 1627–1629 (2004).
CAS PubMed Article PubMed Central Google Scholar
135.
Brown, A. G. & Walsh, K. Societal stability and environmental change: examining the archaeology‐soil erosion paradox. Geoarchaeology 32, 23–35 (2017).
Article Google Scholar
136.
Sandor, J. A. & Homburg, J. A. Anthropogenic soil change in ancient and traditional agricultural fields in arid to semiarid regions of the Americas. J. Ethnobiol. 37, 196–217 (2017).
Article Google Scholar
137.
Glaser, B., Haumaier, L., Guggenberger, G. & Zech, W. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41 (2001).
CAS PubMed Article PubMed Central Google Scholar
138.
Lehmann, J., Kern, D. C., Glaser, B. & Woods, W. I. (eds) Amazonian Dark Earths: Origin, Properties, Management (Springer, 2007).
139.
Blume, H. P. & Leinweber, P. Plaggen soils: landscape history, properties, and classification. J. Plant Nutr. Soil Sci. 16, 319–327 (2004).
Article Google Scholar
140.
Davidson, D. A., Dercon, G., Stewart, M. & Watson, F. The legacy of past urban waste disposal on local soils. J. Archaeol. Sci. 33, 778–783 (2006).
Article Google Scholar
141.
Sandor, J. A. & Eash, N. S. Ancient agricultural soils in the Andes of southern Peru. Soil Sci. Soc. Am. J. 59, 170–179 (1995).
CAS Article Google Scholar
142.
Fairhead, J. & Leach, M. in Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 265–278 (Springer, 2009).
143.
McFadgen, B. G. Maori plaggen soils in New Zealand, their origin and properties. J. R. Soc. N. Z. 10, 3–18 (1980).
Article Google Scholar
144.
Calvelo Pereira, R. et al. Detailed carbon chemistry in charcoals from pre‐European Māori gardens of New Zealand as a tool for understanding biochar stability in soils. Eur. J. Soil Sci. 65, 83–95 (2014).
CAS Article Google Scholar
145.
Downie, A. E., Van Zwieten, L., Smernik, R. J., Morris, S. & Munroe, P. R. Terra Preta Australis: reassessing the carbon storage capacity of temperate soils. Agric. Ecosyst. Environ. 140, 137–147 (2011).
Article Google Scholar
146.
Kern, J., Giani, L., Teixeira, W., Lanza, G. & Glaser, B. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration? CATENA 172, 104–112 (2019).
CAS Article Google Scholar
147.
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).
PubMed Article CAS PubMed Central Google Scholar
148.
Bezerra, J., Turnhout, E., Rittl, T. F., Arts, B. & Kuyper, T. W. The promises of the Amazonian soil: shifts in discourses of Terra Preta and biochar. J Environ. Policy Plan. 21, 623–635 (2019).
Article Google Scholar
149.
Novotny, E. H. et al. Lessons from the Terra Preta de Índios of the Amazon region for the utilisation of charcoal for soil amendment. J. Braz. Chem. Soc. 20, 1003–1010 (2009).
CAS Article Google Scholar
150.
Lehmann, J. & Joseph, S. in Biochar for Environmental Management (eds Lehmann, J. & Joseph, S.) 1–14 (Routledge, 2015).
151.
Kim, J. S., Sparovek, G., Longo, R. M., De Melo, W. J. & Crowley, D. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol. Biochem. 39, 684–690 (2007).
CAS Article Google Scholar
152.
Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).
CAS Article Google Scholar
153.
Jorio, A. et al. Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils. Soil Tillage Res. 122, 61–66 (2012).
Article Google Scholar
154.
More, A. F. et al. Next-generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: insights from the Black Death. GeoHealth 1, 211–219 (2017).
PubMed PubMed Central Article Google Scholar
155.
Factura, H. et al. Terra Preta sanitation: re-discovered from an ancient Amazonian civilisation – integrating sanitation, bio-waste management and agriculture. Water Sci. Technol. 61, 2673–2679 (2010).
CAS PubMed Article PubMed Central Google Scholar
156.
Glaser, B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Lond. B 362, 187–196 (2007).
CAS Article Google Scholar
157.
Fedick, S. L. & Morrison, B. A. Ancient use and manipulation of landscape in the Yalahau region of the northern Maya lowlands. Agric. Hum. Values 21, 207–219 (2004).
Article Google Scholar
158.
Sedov, S. et al. Soil genesis in relation to landscape evolution and ancient sustainable land use in the northeastern Yucatan Peninsula, Mexico. Atti Soc. Tosc. Sci. Nat. Mem. A 112, 115–126 (2007).
Google Scholar
159.
Acksel, A., Kapenberg, A., Kühn, P. & Leinweber, P. Human activity formed deep, dark topsoils around the Baltic Sea. Geoderma Region. 10, 93–101 (2017).
Article Google Scholar
160.
Marshall, F. et al. Ancient herders enriched and restructured African grasslands. Nature 561, 387–390 (2018).
CAS PubMed Article PubMed Central Google Scholar
161.
Muchiru, A. N., Western, D. & Reid, R. S. The impact of abandoned pastoral settlements on plant and nutrient succession in an African savanna ecosystem. J. Arid Environ. 73, 322–331 (2009).
Article Google Scholar
162.
Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl Acad. Sci. USA 110, 12589–12594 (2013).
CAS PubMed Article PubMed Central Google Scholar
163.
Beach, T., Luzzadder-Beach, S., Dunning, N., Hageman, J. & Lohse, J. Upland agriculture in the Maya Lowlands: ancient Maya soil conservation in northwestern Belize. Geogr. Rev. 92, 372–397 (2002).
Article Google Scholar
164.
Akimoto, H. Global air quality and pollution. Science 302, 1716–1719 (2003).
CAS PubMed Article PubMed Central Google Scholar
165.
Hong, S., Candelone, J. P., Patterson, C. & Boutron, C. F. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272, 246–249 (1996).
CAS Article Google Scholar
166.
Hong, S., Candelone, J. P., Patterson, C. C. & Boutron, C. F. Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265, 1841–1843 (1994).
CAS PubMed Article PubMed Central Google Scholar
167.
Shotyk, W. et al. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281, 1635–1640 (1998).
CAS PubMed Article PubMed Central Google Scholar
168.
Borsos, E., Makra, L., Béczi, R., Vitányi, B. & Szentpéteri, M. Anthropogenic air pollution in the ancient times. Acta Climatol. Chorolog. 36–37, 5–15 (2003).
Google Scholar
169.
Pyatt, F. B. & Grattan, J. P. Some consequences of ancient mining activities on the health of ancient and modern human populations. J. Public Health 23, 235–236 (2001).
CAS Article Google Scholar
170.
Pyatt, F. B., Pyatt, A. J., Walker, C., Sheen, T. & Grattan, J. P. The heavy metal content of skeletons from an ancient metalliferous polluted area in southern Jordan with particular reference to bioaccumulation and human health. Ecotoxicol. Environ. Saf. 60, 295–300 (2005).
CAS PubMed Article PubMed Central Google Scholar
171.
Longman, J., Veres, D., Finsinger, W. & Ersek, V. Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution. Proc. Natl Acad. Sci. USA 115, E5661–E5668 (2018).
PubMed Article CAS PubMed Central Google Scholar
172.
Renberg, I. et al. Environmental history: a piece in the puzzle for establishing plans for environmental management. J. Environ. Manag. 90, 2794–2800 (2009).
CAS Article Google Scholar
173.
Bennion, H., Battarbee, R. W., Sayer, C. D., Simpson, G. L. & Davidson, T. A. Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. J. Paleolimnol. 45, 533–544 (2011).
Article Google Scholar
174.
Bindler, R., Rydberg, J. & Renberg, I. Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. J. Paleolimnol. 45, 519–531 (2011).
Article Google Scholar
175.
Fuller, D. Q. et al. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21, 743–759 (2011).
Article Google Scholar
176.
Ruddiman, W. F. et al. Late Holocene climate: natural or anthropogenic? Rev. Geophys. 54, 93–118 (2016).
Article Google Scholar
177.
Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013).
CAS Article Google Scholar
178.
Pyatt, F. B. Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus. Ecotoxicol. Environ. Saf. 50, 60–64 (2001).
CAS PubMed Article Google Scholar
179.
Pyatt, F. B., Gilmore, G., Grattan, J. P., Hunt, C. O. & McLaren, S. An imperial legacy? An exploration of the environmental impact of ancient metal mining and smelting in southern Jordan. J. Archaeol. Sci. 27, 771–778 (2000).
Article Google Scholar
180.
Bindler, R., Renberg, I. & Klaminder, J. Bridging the gap between ancient metal pollution and contemporary biogeochemistry. J. Paleolimnol. 40, 755–770 (2008).
Article Google Scholar
181.
Farmer, J. G. et al. Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years. Sci. Total Environ. 407, 5578–5588 (2009).
CAS PubMed Article Google Scholar
182.
Knabb, K. A. et al. Environmental impacts of ancient copper mining and metallurgy: multi-proxy investigation of human-landscape dynamics in the Faynan valley, southern Jordan. J. Archaeol. Sci. 74, 85–101 (2016).
CAS Article Google Scholar
183.
Grattan, J. P., Gilbertson, D. D. & Hunt, C. O. The local and global dimensions of metalliferous pollution derived from a reconstruction of an eight thousand year record of copper smelting and mining at a desert-mountain frontier in southern Jordan. J. Archaeol. Sci. 34, 83–110 (2007).
Article Google Scholar
184.
Wilson, B. & Pyatt, F. B. Heavy metal bioaccumulation by the important food plant, Olea europaea L., in an ancient metalliferous polluted area of Cyprus. Bull. Environ. Contam. Toxicol. 78, 390–394 (2007).
CAS PubMed Article Google Scholar
185.
Seto, K. C. & Shepherd, J. M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 1, 89–95 (2009).
Article Google Scholar
186.
Simon, D. & Adam-Bradford, A. in Balanced Urban Development: Options and Strategies for Liveable Cities (eds Maheshwari, B. et al.) 57–83 (Springer, 2016).
187.
Isendahl, C. & Smith, M. E. Sustainable agrarian urbanism: the low-density cities of the Mayas and Aztecs. Cities 31, 132–143 (2013).
Article Google Scholar
188.
Lucero, L. J., Fletcher, R. & Coningham, R. From ‘collapse’ to urban diaspora: the transformation of low-density, dispersed agrarian urbanism. Antiquity 89, 1139–1154 (2015).
Article Google Scholar
189.
Fletcher, R. in The Comparative Archaeology of Complex Societies (ed. Smith, M. E.) 285–320 (Cambridge Univ. Press, 2011).
190.
Heckenberger, M. J. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).
CAS PubMed Article Google Scholar
191.
Barthel, S. et al. Global urbanization and food production in direct competition for land: leverage places to mitigate impacts on SDG2 and on the Earth System. Anthropocene Rev. 6, 71–97 (2019).
Article Google Scholar
192.
Wilkinson, A. The Garden in Ancient Egypt (Rubicon Press, 1998).
193.
Edmondson, J. L. et al. The hidden potental of urban horticulture. Nat. Food 1, 155–159 (2020).
Article Google Scholar
194.
Scarborough, V. L. et al. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala. Proc. Natl Acad. Sci. USA 109, 12408–12413 (2012).
CAS PubMed Article Google Scholar
195.
Angelakis, A. N. & Spyridakis, S. V. Major urban water and wastewater systems in Minoan Crete, Greece. Water Sci. Technol. Water Supply 13, 564–573 (2013).
Article Google Scholar
196.
Mays, L., Antoniou, G. P. & Angelakis, A. N. History of water cisterns: legacies and lesson. Water 5, 1916–1940 (2013).
Article Google Scholar
197.
French, K. D. & Duffy, C. J. Understanding ancient Maya water resources and the implications for a more sustainable future. Wiley Interdiscip. Rev. Water 1, 305–313 (2014).
Article Google Scholar
198.
Chase, A. S. Beyond elite control: residential reservoirs at Caracol, Belize. Wiley Interdiscip. Rev. Water 3, 885–897 (2016).
Article Google Scholar
199.
Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).
CAS PubMed Article Google Scholar
200.
Van de Noort, R. Conceptualising climate change archaeology. Antiquity 85, 1039–1048 (2011).
Article Google Scholar
201.
Hudson, M. J., Aoyama, M., Hoover, K. C. & Uchiyama, J. Prospects and challenges for an archaeology of global climate change. Wiley Interdiscip. Rev. Clim. Change 3, 313–328 (2012).
Article Google Scholar
202.
Sandweiss, D. H. & Kelley, A. R. Archaeological contributions to climate change research: the archaeological record as a paleoclimatic and paleoenvironmental archive. Annu. Rev. Anthropol. 41, 371–391 (2012).
Article Google Scholar
203.
Rockman, M. & Hritz, C. Expanding use of archaeology in climate change response by changing its social environment. Proc. Natl Acad. Sci. USA 117, 8295–8302 (2020).
CAS PubMed Article PubMed Central Google Scholar
204.
Douglass, K. & Cooper, J. Archaeology, environmental justice, and climate change on islands of the Caribbean and southwestern Indian Ocean. Proc. Natl Acad. Sci. USA 117, 8254–8262 (2020).
CAS PubMed Article PubMed Central Google Scholar
205.
Nelson, M. C. et al. Climate challenges, vulnerabilities, and food security. Proc. Natl Acad. Sci. USA 113, 298–303 (2016).
CAS PubMed Article PubMed Central Google Scholar
206.
Mitchell, P. Practising archaeology at a time of climatic catastrophe. Antiquity 82, 1093–1103 (2008).
Article Google Scholar
207.
Weiss, H. & Bradley, R. S. What drives societal collapse? Science 291, 609–610 (2001).
CAS PubMed Article PubMed Central Google Scholar
208.
Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).
CAS PubMed Article PubMed Central Google Scholar
209.
Weninger, B. et al. The impact of rapid climate change on prehistoric societies during the Holocene in the eastern Mediterranean. Doc. Praehistorica 36, 7–59 (2009).
Article Google Scholar
210.
Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).
CAS PubMed Article PubMed Central Google Scholar
211.
Anderson, D. G., Maasch, K. A., Sandweiss, D. H. & Mayewski, P. A. in Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions (eds Anderson, D. G. et al.) 1–23 (Academic Press, 2007).
212.
Kintigh, K. W. & Ingram, S. E. Was the drought really responsible? Assessing statistical relationships between climate extremes and cultural transitions. J. Archaeol. Sci. 89, 25–31 (2018).
Article Google Scholar
213.
Amand, F. S. et al. Leveraging legacy archaeological collections as proxies for climate and environmental research. Proc. Natl Acad. Sci. USA 117, 8287–8294 (2020).
Article CAS Google Scholar
214.
Jones, T. L. et al. Environmental imperatives reconsidered: demographic crises in western North America during the Medieval climatic anomaly. Curr. Anthropol. 40, 137–170 (1999).
CAS PubMed Article PubMed Central Google Scholar
215.
Mann, M. E. in Encyclopedia of Global Environmental Change (ed. MacCracken, M. C.) 504–509 (John Wiley & Sons, Ltd, 2002).
216.
Flohr, P., Fleitmann, D., Matthews, R., Matthews, W. & Black, S. Evidence of resilience to past climate change in Southwest Asia: early farming communities and the 9.2 and 8.2 ka events. Quat. Sci. Rev. 136, 23–39 (2016).
Article Google Scholar
217.
Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).
CAS PubMed Article PubMed Central Google Scholar
218.
Roscoe, P. A changing climate for anthropological and archaeological research? Improving the climate‐change models. Am. Anthropol. 116, 535–548 (2014).
Google Scholar
219.
Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).
PubMed Article CAS PubMed Central Google Scholar
220.
Petraglia, M. D., Groucutt, H., Guagnin, M., Breeze, P. S. & Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl Acad. Sci. USA 117, 8263–8270 (2020).
CAS PubMed Article PubMed Central Google Scholar
221.
Manuel, M., Lightfoot, D. & Fattahi, M. The sustainability of ancient water control techniques in Iran: an overview. Water Hist. 10, 13–30 (2018).
Article Google Scholar
222.
Avriel-Avni, N., Avni, Y., Babad, A. & Meroz, A. Wisdom dwells in places: what can modern farmers learn from ancient agricultural systems in the desert of the Southern Levant? J. Arid Environ. 163, 86–98 (2019).
Article Google Scholar
223.
Lasaponara, R., Rojas, J. L. & Masini, N. in The Ancient Nasca World (eds Lasaponara, R. et al.) 279–327 (Springer, 2016).
224.
Bebermeier, W., Meister, J., Withanachchi, C. R., Middelhaufe, I. & Schütt, B. Tank cascade systems as a sustainable measure of watershed management in South Asia. Water 9, 231 (2017).
Article Google Scholar
225.
Altschul, J. H. et al. Opinion: Fostering synthesis in archaeology to advance science and benefit society. Proc. Natl Acad. Sci. USA 114, 10999–11002 (2017).
CAS PubMed Article PubMed Central Google Scholar
226.
Tainter, J. The Collapse of Complex Societies (Cambridge Univ. Press, 1988).
227.
Redman, C. L. Human Impact on Ancient Environments (Univ. Arizona, 1999).
228.
Redman, C. L. Resilience theory in archaeology. Am. Anthropol. 107, 70–77 (2005).
Article Google Scholar
229.
Jenny, J.-P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).
CAS PubMed Article PubMed Central Google Scholar
230.
Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).
Article Google Scholar
231.
Lane, P. Archaeology in the age of the Anthropocene: a critical assessment of its scope and societal contributions. J. Field Archaeol. 40, 485–498 (2015).
Article Google Scholar
232.
Catlin, K. A. Archaeology for the Anthropocene: scale, soil, and the settlement of Iceland. Anthropocene 15, 13–21 (2016).
Article Google Scholar
233.
Kintigh, K. W. et al. Grand challenges for archaeology. Proc. Natl Acad. Sci. USA 111, 879–880 (2014).
CAS PubMed Article PubMed Central Google Scholar
234.
Smith, M. E. Sprawl, squatters and sustainable cities: can archaeological data shed light on modern urban issues? Camb. Archaeol. J. 20, 229–253 (2010).
Article Google Scholar
235.
Dave, R. Archaeology must open up to become more diverse. The Guardian (23 May 2016); https://go.nature.com/36mbRRl
236.
White, W. & Draycott, C. Why the whiteness of archaeology is a problem. Sapiens (7 July 2020); https://go.nature.com/3lhgS3T
237.
Smith, C. & Wobst, H. M. Indigenous Archaeologies: Decolonising Theory and Practice (Routledge, 2004).
238.
Hamilakis, Y. Decolonial archaeology as social justice. Antiquity 92, 518–520 (2018).
Article Google Scholar
239.
Mustaphi, C. J. C. et al. Integrating evidence of land use and land cover change for land management policy formulation along the Kenya-Tanzania borderlands. Anthropocene 28, 100228 (2019).
Article Google Scholar
240.
Widgren, M. in Rethinking Environmental History World-System History and Global Environmental Change (eds Hornberg, A. et al.) 61–77 (Rowman Altamira, 2007).
241.
Matthews, D. German humanities scholars’ unusual role. Inside Higher Ed (24 April 2020); https://go.nature.com/3nbVCNi
242.
Agnoletti, M. (ed.) The Conservation of Cultural Landscapes (CABI, 2006).
243.
Lowenthal, D. The Past is a Foreign Country – Revisited (Cambridge Univ. Press, 2015). More