More stories

  • in

    The value of China’s ban on wildlife trade and consumption

    This announcement sent shockwaves around the globe, largely lauding it as an important step in the right direction4. China’s decision is also unprecedented at several levels, which could result in profound and far-reaching impacts for both humans and wildlife.
    First, this decision was initiated and adopted by China’s highest legislature — the Standing Committee of the National People’s Congress — with the explicit endorsement of President Xi1,2. In contrast, China’s response to the SARS outbreak in 2003 — a short-lived ban on the trade and consumption of palm civets5 — was initiated by various government agencies at lower legislative levels. In responding to the COVID-19 pandemic, the political will in China has never been stronger or more overt across multiple levels of government6. Within a few months, all 31 provinces in China have published provincial legislation on wildlife farming and consumption. Perhaps more importantly, from May to July, the People’s Congress standing committees at the national and provincial levels conducted nation-wide evaluations on the effectiveness of these policies and their enforcement. The committees concluded that policies were generally well implemented, but there was room for improvement on certain aspects, including finding alternative livelihoods for affected wildlife traders, continuing to revise the protected species lists, and addressing loopholes in wildlife trade monitoring and habitat conservation. In terms of positive outcomes, joint actions and special operations from the government have closed 12,000 wildlife-related businesses, intensified monitoring efforts to include over four million e-commerce platforms, and removed 990,000 online sources of information associated with wildlife trade6.
    Second, China’s current decision includes a series of new legislations to build on the achievements of current actions by enhancing the regulation of wildlife farms and markets (Box 1). The revision of the country’s Wildlife Protection Law is expected to bring about long-term and systematic changes to wildlife conservation. Additionally, China is also revising its List of Protected Animals. Species threatened by consumption, such as the pangolin and yellow-breasted bunting, are being promoted to the highest protection level (Class I Wildlife species)7. Furthermore, China’s Ministry of Agriculture and Rural Affairs published an updated Catalogue of Animal Genetic Resource in May 2020. Among wild animals, only species in this catalogue can be farmed or consumed8. There are 64 species of wild animals that are being farmed for consumption, but are not yet included in this catalogue for various reasons (for example, to reduce the risk of sourcing animals from the wild). Nevertheless, the Ministry of Forestry and Grassland has categorized them into two groups: the farming of 45 species (for example, bamboo rat and civet cat) is due to be banned by the end of 2020, and the remaining 19 species (for example, several species of snakes) are allowed to be farmed for non-consumption uses9. Furthermore, the disbursement of government financial compensation to the farmers affected by these new legislations, amounting to over a billion US dollars, is expected to be completed by the end of 2020.
    Third, the current ban is likely to galvanize rapid and widespread knock-on actions and impacts. For example, Guangdong has already banned wild vertebrate animals as pets10. The consumption of dogs and cats is banned in the city of Shenzhen11. Pangolin scales are removed as a key ingredient in traditional Chinese medicine, although it is still included as an ingredient in patent medicines in the 2020 Chinese Pharmacopoeia12,13. The pre-COVID wildlife management system in China, especially in its wildlife farming industry, has long been criticized by conservationists to be disordered and outdated. The lack of incentives and capacities had been a major barrier to change for government agencies in the country. The COVID-19 pandemic, at great human and economic costs, has mainstreamed the discourse of wildlife conservation for human well-being, clarified legislations on what species can be farmed, and provided a policy framework for systematic and enforceable wildlife management and conservation. These actions are exactly what scientists have long called for to minimize the risk of zoonotic disease transmission and outbreaks in the future14. More

  • in

    Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips

    1.
    Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can J Res. 2003;33:612–23.
    Article  Google Scholar 
    2.
    Fricker MD, Heaton LLM, Jones NS, Boddy L. The mycelium as a network. Microbiol Spectr. 2017;5:1–32.
    Google Scholar 

    3.
    Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. London, UK: Academic Press; 2008.
    Google Scholar 

    5.
    Maron JL, Marler M, Klironomos JN, Cleveland CC. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett. 2011;14:36–41.
    PubMed  Article  Google Scholar 

    6.
    García-Guzmán G, Heil M. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytol. 2013.

    7.
    Lin X, Alspaugh JA, Liu H, Harris S. Fungal morphogenesis. Cold Spring Harb Perspect Med. 2014;5:a019679.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    8.
    Griffin DH. Fungal physiology. 2nd ed. New York, NY: John Wiley and Sons; 1994.
    Google Scholar 

    9.
    Trewavas A. What is plant behaviour? Plant, Cell Environ. 2009;32:606–16.
    Article  Google Scholar 

    10.
    Karban R. Plant behaviour and communication. Ecol Lett. 2008;11:727–39.
    PubMed  Article  Google Scholar 

    11.
    de Kroon H, Mommer L. Root foraging theory put to the test. Trends Ecol Evol. 2006;21:113–6.
    PubMed  Article  Google Scholar 

    12.
    Novoplansky A. Developmental plasticity in plants: implications of non-cognitive behavior. Evol Ecol. 2002;16:177–88.
    Article  Google Scholar 

    13.
    Lovett Doust L. Population dynamics and local specialization in a clonal perennial (Ranunculus repens): II. The dynamics of leaves, and a reciprocal transplant-replant experiment. J Ecol. 1981;69:757–68.
    Article  Google Scholar 

    14.
    Saiz H, Bittebiere A-K, Benot M-L, Jung V, Mony C. Understanding clonal plant competition for space over time: a fine-scale spatial approach based on experimental communities. J Veg Sci. 2016;27:759–70.
    Article  Google Scholar 

    15.
    Andrews JH. Comparative ecology of microorganisms and macroorganisms. New York, NY: Springer; 1991.
    Google Scholar 

    16.
    Carlile MJ. The success of the hypha and mycelium. In: Gow NAR, Gadd GM, editors. The growing fungus. London: Chapman & Hall; 1995. pp. 3–20.

    17.
    Boddy L. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia. 1999;91:13.
    Article  Google Scholar 

    18.
    Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Mov Ecol. 2019;7:36.
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Ritz K, Young IM. Interactions between soil structure and fungi. Mycologist. 2004;18:52–9.
    Article  Google Scholar 

    20.
    Harris K, Young IM, Gilligan CA, Otten W, Ritz K. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol Ecol. 2003;44:45–56.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Otten W, Harris K, Young IM, Ritz K, Gilligan CA. Preferential spread of the pathogenic fungus Rhizoctonia solani through structured soil. Soil Biol Biochem. 2004;36:203–10.
    CAS  Article  Google Scholar 

    22.
    Burges A, Nicholas DP. Use of soil sections in studying the amount of fungal hyphae in soil. Soil Sci. 1961;92:25–9.
    Article  Google Scholar 

    23.
    Dechesne A, Wang G, Gülez G, Or D, Smets BF. Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci USA. 2010;107:14369–72.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wolfaardt GM, Hendry MJ, Birkham T, Bressel A, Gardner MN, Sousa AJ, et al. Microbial response to environmental gradients in a ceramic-based diffusion system. Biotechnol Bioeng. 2008;100:141–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Otten W, Pajor R, Schmidt S, Baveye PC, Hague R, Falconer RE. Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries. Soil Biol Biochem. 2012;51:53–5.
    CAS  Article  Google Scholar 

    26.
    Deng J, Orner EP, Chau JF, Anderson EM, Kadilak AL, Rubinstein RL, et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biol Biochem. 2015;83:116–24.
    CAS  Article  Google Scholar 

    27.
    Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Stanley CE, Grossmann G, Casadevall i Solvas X, DeMello AJ. Soil-on-a-chip: microfluidic platforms for environmental organismal studies. Lab Chip. 2016;16:228–41.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Held M, Kaspar O, Edwards C, Nicolau DV. Intracellular mechanisms of fungal space searching in microenvironments. Proc Natl Acad Sci USA. 2019;116:13543–52.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Soufan R, Delaunay Y, Gonod LV, Shor LM, Garnier P, Otten W, et al. Pore-scale monitoring of the effect of microarchitecture on fungal growth in a two-dimensional soil-like micromodel. Front Environ Sci. 2018;6:68.
    Article  Google Scholar 

    31.
    Schmieder SS, Stanley CE, Rzepiela A, van Swaay D, Sabotič J, Nørrelykke SF, et al. Bidirectional propagation of signals and nutrients in fungal networks via specialized hyphae. Curr Biol. 2019;29:217–28.e4.
    CAS  PubMed  Article  Google Scholar 

    32.
    Aleklett K, Kiers ET, Ohlsson P, Shimizu TS, Caldas VE, Hammer EC. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 2018;12:312–9.
    PubMed  Article  Google Scholar 

    33.
    Veresoglou SD, Wang D, Andrade-Linares DR, Hempel S, Rillig MC. Fungal decision to exploit or explore depends on growth rate. Micro Ecol. 2018;75:289–92.
    Article  Google Scholar 

    34.
    Lange M, Smith, Alexander H. The coprinus ephemerus group. Mycologia. 1953;45:747–80.
    Article  Google Scholar 

    35.
    Hernández-Rodríguez M, Oria-de-Rueda JA, Martín-Pinto P. Post-fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. Ecol Manag. 2013;289:48–57.
    Article  Google Scholar 

    36.
    Hughes KW, Petersen RH. Transatlantic disjunction in fleshy fungi III: Gymnopus confluens. MycoKeys. 2015;9:37–63.
    Article  Google Scholar 

    37.
    Garnier-Delcourt M, Reckinger C, Tholl M-T, Turk J. Notes mycologiques luxembourgeoises. IV. Bull Soc Nat Luxemb. 2011;112:39–50.
    Google Scholar 

    38.
    Maynard DS, Bradford MA, Covey KR, Lindner D, Glaeser J, Talbert DA, et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat Microbiol. 2019;4:846–53.
    CAS  PubMed  Article  Google Scholar 

    39.
    Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011;115:493–505.
    PubMed  Article  Google Scholar 

    40.
    Dowson CG, Rayner ADM, Boddy L. Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis. N Phytol. 1989;111:699–705.
    Article  Google Scholar 

    41.
    Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 2020;14:380–8.
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Held M, Binz M, Edwards C, Nicolau DV. Dynamic behaviour of fungi in microfluidics: a comparative study. In: Proc. SPIE 7182, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII. 2009. pp. 718213. https://doi.org/10.1117/12.822464.

    43.
    Hanson KL, Nicolau DV, Filipponi L, Wang L, Lee AP, Nicolau DV. Fungi use efficient algorithms for the exploration of microfluidic networks. Small. 2006;2:1212–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Falconer RE, Houston AN, Otten W, Baveye PC. Emergent behavior of soil fungal dynamics: influence of soil architecture and water distribution. Soil Sci. 2012;177:111–9.
    CAS  Article  Google Scholar 

    45.
    Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Nezhad AS, Packirisamy M, Bhat R, Geitmann A. In vitro study of oscillatory growth dynamics of camellia pollen tubes in microfluidic environment. IEEE Trans Biomed Eng. 2013;60:3185–93.
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Tayagui A, Sun Y, Collings D, Garrill A, Nock V. An elastomeric micropillar platform for the study of protrusive forces in hyphal invasion. Lab Chip. 2017;17:3643–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Brand A, Gow NA. Mechanisms of hypha orientation of fungi. Curr Opin Microbiol. 2009;12:350–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Pantidou M, Watling R, Gonou Z. Mycelial characters, anamorphs, and teleomorphs in genera and species of various families of Agaricales in culture. Mycotaxon. 1983;17:409–32.
    Google Scholar 

    50.
    Boekhout T, Stalpers J, Verduin SJW, Rademaker J, Noordeloos ME. Experimental taxonomic studies in Psilocybe sect. Psilocybe. Mycol Res. 2002;106:1251–61.
    Article  Google Scholar 

    51.
    Valenzuela E, Garnica S. Pseudohelicomyces, a new anamorph of Psilocybe. Mycol Res. 2000;104:738–41.
    Article  Google Scholar 

    52.
    Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, et al. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev. 2014;28:36–55.
    Article  Google Scholar  More

  • in

    Comparison of water-use characteristics of tropical tree saplings with implications for forest restoration

    1.
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 
    2.
    Blenkinsop, S. & Fowler, H. J. Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models. J. Hydrol. 342, 50–71 (2007).
    Article  ADS  Google Scholar 

    3.
    Guardiola-Claramonte, M. et al. Decreased streamflow in semi-arid basins following drought-induced tree die-off: a counter-intuitive and indirect climate impact on hydrology. J. Hydrol. 406, 225–233 (2011).
    Article  ADS  Google Scholar 

    4.
    Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Chaturvedi, R. K., Raghubanshi, A. S., Tomlinson, K. & Singh, J. S. Impacts of human disturbance in tropical dry forests increase with soil moisture stress. J. Veg. Sci. 28, 997–1007 (2017).
    Article  Google Scholar 

    6.
    Sjöman, H., Hirons, A. D. & Bassuk, N. L. Improving confidence in tree species selection for challenging urban sites: a role for leaf turgor loss. Urban Ecosyst. 21, 1171–1188 (2018).
    Article  Google Scholar 

    7.
    Esperon-Rodriguez, M. et al. Assessing the vulnerability of Australia’s urban forests to climate extremes. Plants People Planet. 1, 387–397 (2019).
    Article  Google Scholar 

    8.
    Thaiutsa, B., Puangchit, L., Kjelgren, R. & Arunpraparut, W. Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban For. Urban Green. 7, 219–229 (2008).
    Article  Google Scholar 

    9.
    Chaturvedi, R.K., Tripathi, A., Raghubanshi, A.S. & Singh, J.S. Functional traits indicate a continuum of treee drought strategies across a soil water availability gradient in a tropical dry forest. For. Ecol. Manag. 2020 (In press).

    10.
    Chaturvedi, R. K., Raghubanshi, A. S. & Singh, J. S. Growth of tree seedlings in a tropical dry forest in relation to soil moisture and leaf traits. J. Plant Ecol. 6, 158–170 (2013).
    Article  Google Scholar 

    11.
    Krauss, K. W., Twilley, R. R., Doyle, T. W. & Gardiner, E. S. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod. Tree Physiol. 26, 959–968 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Yan, M.-J., Yamanaka, N., Yamamoto, F. & Du, S. Responses of leaf gas exchange, water relations, and water consumption in seedlings of four semiarid tree species to soil drying. Acta Physiol. Plant. 32, 183–189 (2010).
    Article  Google Scholar 

    13.
    Yan, W., Zheng, S., Zhong, Y. & Shangguan, Z. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia. Sci. Rep. 7, 4470 (2017).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    14.
    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).
    Article  Google Scholar 

    15.
    Wullschleger, S. D., Gunderson, C. A., Hanson, P. J., Wilson, K. B. & Norby, R. J. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration: interacting variables and perspectives of scale. New Phytol. 153, 485–496 (2002).
    CAS  Article  Google Scholar 

    16.
    Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant. Cell Environ. 30, 258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x (2007).
    CAS  Article  PubMed  Google Scholar 

    17.
    Tor-ngern, P. et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. New Phytol. 205, 518–525 (2015).
    CAS  PubMed  Article  Google Scholar 

    18.
    Schäfer, K. V. R. et al. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Glob. Chang. Biol. 9, 1378–1400 (2003).
    Article  ADS  Google Scholar 

    19.
    Williams, M. et al. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant. Cell Environ. 19, 911–927 (1996).
    Article  Google Scholar 

    20.
    Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. For. Sci. 42, 193–200 (1985).
    Article  Google Scholar 

    21.
    Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).
    CAS  PubMed  Article  Google Scholar 

    22.
    Green, S., Clothier, B. & Jardine, B. Theory and practical application of heat pulse to measure sap flow. Agron. J. 95, 1371–1379 (2003).
    Article  Google Scholar 

    23.
    Burgess, S. S. O. et al. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 21, 589–598 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Sakuratani, T. A Heat balance method for measuring water flux in the stem of intact plants. J. Agric. Meteorol. 37, 9–17 (1981).
    Article  Google Scholar 

    25.
    Chang, X., Zhao, W., Zhang, Z. & Su, Y. Sap flow and tree conductance of shelter-belt in arid region of China. Agric. For. Meteorol. 138, 132–141 (2006).
    Article  ADS  Google Scholar 

    26.
    Ewers, B. E., Oren, R., Phillips, N., Strömgren, M. & Linder, S. Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda. Tree Physiol. 21, 841–850 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Pataki, D. E., Oren, R. & Phillips, N. Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area. J. Exp. Bot. 49, 871–878 (1998).
    CAS  Article  Google Scholar 

    28.
    Ryan, M. G. et al. Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia 124, 553–560 (2000).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    29.
    Oishi, A. C., Oren, R., Novick, K. A., Palmroth, S. & Katul, G. G. Interannual invariability of forest evapotranspiration and its consequence to water flow downstream. Ecosystems 13, 421–436 (2010).
    Article  Google Scholar 

    30.
    Oishi, A. C., Oren, R. & Stoy, P. C. Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements. Agric. For. Meteorol. 148, 1719–1732 (2008).
    Article  ADS  Google Scholar 

    31.
    Bell, D. M. et al. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data. Tree Physiol. 35, 792–802 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Kim, H.-S., Oren, R. & Hinckley, T. M. Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiol. 28, 559–577 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Meinzer, F. C., James, S. A. & Goldstein, G. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Tree Physiol. 24, 901–909 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Phillips, N., Nagchaudhuri, A., Oren, R. & Katul, G. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees 11, 412–419 (1997).
    Article  Google Scholar 

    35.
    Tor-ngern, P. et al. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results. Ecol. Appl. 27, 118–133 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Clark, J. S. et al. Inferential ecosystem models, from network data to prediction. Ecol. Appl. 21, 1523–1536 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Lu, P., Urban, L. & Zhao, P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Bot. Sin. 46, 631–646 (2004).
    Google Scholar 

    38.
    Ewers, B. & Oren, R. Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol. 20, 579–589 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Ward, E. J., Oren, R., Sigurdsson, B. D., Jarvis, P. G. & Linder, S. Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Tree Physiol. 28, 579–596 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Addington, R. N., Mitchell, R. J., Oren, R. & Donovan, L. A. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol. 24, 561–569 (2004).
    PubMed  Article  Google Scholar 

    41.
    Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant. Cell Environ. 18, 339–355 (1995).
    CAS  Article  Google Scholar 

    42.
    Meinzer, F. C., Hinckley, T. M. & Ceulemans, R. Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Plant. Cell Environ. 20, 1301–1308 (1997).
    Article  Google Scholar 

    43.
    Monteith, J. L. A reinterpretation of stomatal responses to humidity. Plant. Cell Environ. 18, 357–364 (1995).
    Article  Google Scholar 

    44.
    Loustau, D. et al. Transpiration of a 64-year-old maritime pine stand in Portugal. Oecologia 107, 33–42 (1996).
    CAS  PubMed  Article  ADS  Google Scholar 

    45.
    Domec, J.-C. & Gartner, B. L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15, 204–214 (2001).
    Article  Google Scholar 

    46.
    Moore, G. W., Bond, B. J., Jones, J. A., Phillips, N. & Meinzer, F. C. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA. Tree Physiol. 24, 481–491 (2004).
    PubMed  Article  Google Scholar 

    47.
    Leigh, A., Sevanto, S., Close, J. D. & Nicotra, A. B. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?. Plant. Cell Environ. 40, 237–248 (2017).
    CAS  PubMed  Article  Google Scholar 

    48.
    Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutiérrez, M. V. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant. Cell Environ. 26, 443–450 (2003).
    Article  Google Scholar 

    49.
    Choat, B., Ball, M., Luly, J., Donnelly, C. & Holtum, J. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology. Tree Physiol. 26, 657–664 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Tor-ngern, P. & Puangchit, L. Effects of varying soil and atmospheric water deficit on water use characteristics of tropical street tree species. Urban For. Urban Green. 36, 76–83 (2018).
    Article  Google Scholar 

    51.
    Jarvis, P. G. Transpiration and assimilation of tree and agricultural crops: the omega factor. In Attributes of Trees as Crop Plants (eds Cannel, M. G. R. & Jackson, J. E.) 460–480 (Institute of Terrestrial Ecology Huntingdon, UK, 1985).
    Google Scholar 

    52.
    Marchin, R. M., Broadhead, A. A., Bostic, L. E., Dunn, R. R. & Hoffmann, W. A. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant. Cell Environ. 39, 2221–2234 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Mahan, J. R. & Upchurch, D. R. Maintenance of constant leaf temperature by plants—I Hypothesis-limited homeothermy. Environ. Exp. Bot. 28, 351–357 (1988).
    Article  Google Scholar 

    54.
    Schultz, H. R. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant. Cell Environ. 26, 1393–1405 (2003).
    Article  Google Scholar 

    55.
    Harris, P. P., Huntingford, C., Cox, P. M., Gash, J. H. C. & Malhi, Y. Effect of soil moisture on canopy conductance of Amazonian rainforest. Agric. For. Meteorol. 122, 215–227 (2004).
    Article  ADS  Google Scholar 

    56.
    Kjelgren, R., Joyce, D. & Doley, D. Subtropical-tropical urban tree water relations and drought stress response strategies. Arboric. Urban For. 39, 125–131 (2013).
    Google Scholar 

    57.
    West, A. G., Hultine, K. R., Jackson, T. L. & Ehleringer, J. R. Differential summer water use by Pinus edulis and Juniperus osteosperma reflects contrasting hydraulic characteristics. Tree Physiol. 27, 1711–1720 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).
    Article  Google Scholar 

    59.
    Suralta, R. R. & Yamauchi, A. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ. Exp. Bot. 64, 75–82 (2008).
    CAS  Article  Google Scholar 

    60.
    Lawler, J. J. et al. The scope and treatment of threats in endangered species recovery plans. Ecol. Appl. 12, 663–667 (2002).
    Article  Google Scholar 

    61.
    Liu, H., Lin, J., Zhang, M., Lin, Z. & Wen, T. Extinction of poorest competitors and temporal heterogeneity of habitat destruction. Ecol. Modell. 219, 30–38 (2008).
    Article  Google Scholar 

    62.
    Baltzer, J. L., Grégoire, D. M., Bunyavejchewin, S., Noor, N. S. M. & Davies, S. J. Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the Malay-Thai Peninsula. Am. J. Bot. 96, 2214–2223 (2009).
    PubMed  Article  Google Scholar 

    63.
    Kursar, T. A. et al. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol. 23, 93–102 (2009).
    Article  Google Scholar 

    64.
    Monteith, J. L. & Unsworth, M. H. Principles of Environmental Physics 287 (Butterworth-Heinemann, Oxford, 1990).
    Google Scholar 

    65.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671–675 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. Software X. 5, 139–143 (2016).
    ADS  Google Scholar 

    67.
    Ball, J., Woodrow, I. & Berry, J. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog. Photosynth. Res. 4, 221–224 (1987).
    Google Scholar 

    68.
    Jarvis, P. G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. London. B Biol. Sci. 273, 593–610 (1976).
    CAS  Article  ADS  Google Scholar  More

  • in

    Monitoring the snap, crackle and pop of the sea

    Cross the line between air and water, and you enter a very different world. The air can be completely silent, but listen below the sea’s surface and your ears fill with sound.
    Here, I’m listening to a colleague using a wireless acoustic signal to trigger the release of an underwater noise-monitoring buoy moored to the sea bed. When the buoy floats to the surface, we retrieve its data. It is one of nine being used to continuously record underwater noise for a year in the northern Adriatic Sea between Italy and Croatia. The devices are part of the Soundscape project, which launched in 2019 and is funded mainly by the European Commission.
    Underwater noise was in the European Commission’s 2008 Marine Strategy Framework Directive for protecting the ocean environment. We know that noise can affect marine species, but no one has extensive baseline data on underwater sound levels. Soundscape aims to fill this knowledge gap by developing a planning tool for underwater noise management.
    As a marine biologist, I monitor water quality and underwater noise around the Gulf of Trieste in the Adriatic. The gulf is a busy shipping area, so most of what we record is the low, continuous noise of ship traffic. But we can also hear the beating sounds of drum fish, the ‘pops’ of damsel fish as they communicate with partners, and the snapping claws of pistol shrimp.
    Growing up by the sea, I was intrigued by all the sounds I could hear when I ducked beneath the waves. For my master’s thesis, colleagues and I recorded noise in the Gulf of Trieste and showed that the hearing sensitivity of fish there was reduced when we played them the recording in our laboratory. Now our main questions concern the effects of underwater noise at the population scale.
    It’s sunny in this picture, and we try to organize monitoring around the best possible weather. But sometimes we just have to get wet. More

  • in

    Mobilizing the past to shape a better Anthropocene

    1.
    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).
    CAS  PubMed  Article  Google Scholar 
    2.
    Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002).
    CAS  PubMed  Article  Google Scholar 

    3.
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. & Nash, C. Z. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 102, 11131–11136 (2005).
    CAS  PubMed  Article  Google Scholar 

    5.
    Schirrmeister, B. E., de Vos, J. M., Antonelli, A. & Bagheri, H. C. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).
    CAS  PubMed  Article  Google Scholar 

    6.
    Bennett, E. M. et al. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14, 441–448 (2016).
    Article  Google Scholar 

    7.
    Braje, T. J. Earth systems, human agency, and the Anthropocene: Planet Earth in the human age. J. Archaeol. Res. 23, 369–396 (2015).
    Article  Google Scholar 

    8.
    Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the age of humans. Proc. Natl Acad. Sci. USA 117, 8250–8253 (2020).
    CAS  PubMed  Article  Google Scholar 

    9.
    Sabloff, J. A. Archaeology Matters: Action Archaeology in the Modern World (Routledge, 2008).

    10.
    Guttmann-Bond, E. Sustainability out of the past: how archaeology can save the planet. World Archaeol. 42, 355–366 (2010).
    Article  Google Scholar 

    11.
    Reed, K. & Ryan, P. Lessons from the past and the future of food. World Archaeol. 51, 1–16 (2019).
    Article  Google Scholar 

    12.
    Isendahl, C. & Stump, D. (eds) The Oxford Handbook of Historical Ecology and Applied Archaeology (Oxford Univ. Press, 2019).

    13.
    Fisher, C. Archaeology for sustainable agriculture. J. Archaeol. Res. 28, 393–441 (2019).
    Article  Google Scholar 

    14.
    Wolverton, S. & Lyman, R. L. (eds) Conservation Biology and Applied Zooarchaeology (Univ. Arizona Press, 2012).

    15.
    Folke, C. Resilience: the emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).
    Article  Google Scholar 

    16.
    Raymond, H. The ecologically noble savage debate. Annu. Rev. Anthropol. 36, 177–190 (2007).
    Article  Google Scholar 

    17.
    Steffen, W., Grinevald, J., Crutzen, P. J. & McNeill, J. R. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. Lond. A 369, 842–867 (2011).
    Google Scholar 

    18.
    Ellis, E., Maslin, M., Boivin, N. & Bauer, A. A. Involve social scientists in defining the Anthropocene. Nature 540, 192–193 (2016).
    Article  Google Scholar 

    19.
    Smith, B. D. & Zeder, M. A. The onset of the Anthropocene. Anthropocene 4, 8–13 (2013).
    Article  Google Scholar 

    20.
    Lewis, S. L. & Maslin, M. Defining the Anthropocene. Nature 519, 171–180 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Boivin, N. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Braje, T. J. & Erlandson, J. M. Human acceleration of animal and plant extinctions: a Late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 4, 14–23 (2013).
    Article  Google Scholar 

    26.
    Haines-Young, R. & Potschin, M. in Ecosystem Ecology: A New Synthesis (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).

    27.
    Foster, D. et al. The importance of land-use legacies to ecology and conservation. BioScience 53, 77–88 (2003).
    Article  Google Scholar 

    28.
    Willis, K. J. & Birks, H. J. B. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314, 1261–1265 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Dietl, G. P. & Flessa, K. W. Conservation paleobiology: putting the dead to work. Trends Ecol. Evol. 26, 30–37 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Szabó, P. & Hédl, R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 25, 680–687 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Scharf, E. A. Deep time: the emerging role of archaeology in landscape ecology. Landsc. Ecol. 29, 563–569 (2014).
    Article  Google Scholar 

    32.
    Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).
    CAS  Article  Google Scholar 

    33.
    Whitlock, C., Colombaroli, D., Conedera, M. & Tinner, W. Land‐use history as a guide for forest conservation and management. Conserv. Biol. 32, 84–97 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Frazier, J. Sustainable use of wildlife: the view from archaeozoology. Nat. Conserv. 15, 163–173 (2007).
    Article  Google Scholar 

    35.
    Lyman, R. L. A warrant for applied palaeozoology. Biol. Rev. 87, 513–525 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Braje, T. & Rick, T. C. From forest fires to fisheries management: anthropology, conservation biology, and historical ecology. Evol. Anthropol. 22, 303–311 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Rick, T. C. & Lockwood, R. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27, 45–54 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Barak, R. S. et al. Taking the long view: integrating recorded, archeological, paleoecological, and evolutionary data into ecological restoration. Int. J. Plant Sci. 177, 90–102 (2016).
    Article  Google Scholar 

    39.
    Lambrides, A. B. & Weisler, M. I. Pacific Islands ichthyoarchaeology: implications for the development of prehistoric fishing studies and global sustainability. J. Archaeol. Res. 24, 275–324 (2016).
    Article  Google Scholar 

    40.
    Foster, T., Olsen, L., Dale, V. & Cohen, A. Studying the past for the future: managing modern biodiversity from historic and prehistoric data. Hum. Organ. 69, 149–157 (2010).
    Article  Google Scholar 

    41.
    Wilmshurst, J. M. et al. Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand. Conserv. Biol. 28, 202–212 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Nogué, S. et al. Island biodiversity conservation needs palaeoecology. Nat. Ecol. Evol. 1, 0181 (2017).
    Article  Google Scholar 

    43.
    Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Newsome, S. D. et al. The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. Proc. Natl Acad. Sci. USA 104, 9709–9714 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Szpak, P., Orchard, T., McKechnie, I. & Gröcke, D. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).
    Article  Google Scholar 

    46.
    McCune, J. L., Pellatt, M. G. & Vellend, M. Multidisciplinary synthesis of long-term human–ecosystem interactions: a perspective from the Garry oak ecosystem of British Columbia. Biol. Conserv. 166, 293–300 (2013).
    Article  Google Scholar 

    47.
    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Corlett, R. T. The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol. Conserv. 163, 13–21 (2013).
    Article  Google Scholar 

    49.
    Hofman, C. A. & Rick, T. C. Ancient biological invasions and island ecosystems: tracking translocations of wild plants and animals. J. Archaeol. Res. 26, 65–115 (2018).
    Article  Google Scholar 

    50.
    Speller, C. F. et al. High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS ONE 7, e51122 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Hofman, C. A., Rick, T. C., Fleischer, R. C. & Maldonado, J. E. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends Ecol. Evol. 30, 540–549 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Waters, J. M. & Grosser, S. Managing shifting species: ancient DNA reveals conservation conundrums in a dynamic world. BioEssays 38, 1177–1184 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Valentine, K. et al. Ancient DNA reveals genotypic relationships among Oregon populations of the sea otter (Enhydra lutris). Conserv. Genet. 9, 933–938 (2008).
    Article  Google Scholar 

    54.
    Newsome, S. D. et al. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California. Proc. Natl Acad. Sci. USA 107, 9246–9251 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: a long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 36249 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Brewington, S. et al. Islands of change vs. islands of disaster: managing pigs and birds in the Anthropocene of the North Atlantic. Holocene 25, 1676–1684 (2015).
    Article  Google Scholar 

    58.
    Hicks, M. et al. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) Ch. 12 (Oxford Univ. Press, 2019).

    59.
    Grayson, D. K. & Delpech, F. Pleistocene reindeer and global warming. Conserv. Biol. 19, 557–562 (2005).
    Google Scholar 

    60.
    Enghoff, I. B., MacKenzie, B. R. & Nielson, E. E. The Danish fish fauna during the warm Atlantic period (ca. 7000–3900 BC): forerunner of future changes? Fish. Res. 87, 167–180 (2007).
    Article  Google Scholar 

    61.
    Tengberg, A. et al. Cultural ecosystem services provided by landscapes: assessment of heritage values and identity. Ecosyst. Serv. 2, 14–26 (2012).
    Article  Google Scholar 

    62.
    Walter, R. K. & Hamilton, R. J. A cultural landscape approach to community-based conservation in Solomon Islands. Ecol. Soc. 19, 41 (2014).
    Article  Google Scholar 

    63.
    Ekblom, A., Shoemaker, A., Gillson, L., Lane, P. & Lindholm, K. J. Conservation through biocultural heritage—examples from sub-Saharan Africa. Land 8, 5 (2019).
    Article  Google Scholar 

    64.
    Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).
    CAS  PubMed  Article  Google Scholar 

    65.
    Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).
    CAS  Article  Google Scholar 

    66.
    Bowman, D. M. et al. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos. Trans. R. Soc. Lond. B 371, 20150169 (2016).
    Article  Google Scholar 

    67.
    Kelly, L. T. & Brotons, L. Using fire to promote biodiversity. Science 355, 1264–1265 (2017).
    CAS  PubMed  Article  Google Scholar 

    68.
    Beale, C. M. et al. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecol. Lett. 21, 557–567 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Gillson, L., Whitlock, C. & Humphrey, G. Resilience and fire management in the Anthropocene. Ecol. Soc. 24, 14 (2019).
    Article  Google Scholar 

    70.
    Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl Acad. Sci. USA 109, E1215–E1220 (2012).
    CAS  PubMed  Article  Google Scholar 

    71.
    Hlubik, S., Berna, F., Feibel, C., Braun, D. & Harris, J. W. K. Researching the nature of fire at 1.5 Mya on the site of FxJj20 AB, Koobi Fora, Kenya, using high-resolution spatial analysis and FTIR spectrometry. Curr. Anthropol. 58, S243–S257 (2017).
    Article  Google Scholar 

    72.
    Yibarbuk, D. et al. Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: a tradition of ecosystem management. J. Biogeogr. 28, 325–343 (2001).
    Article  Google Scholar 

    73.
    Black, B. A., Ruffner, C. M. & Abrams, M. D. Native American influences on the forest composition of the Allegheny Plateau, northwest Pennsylvania. Can. J. For. Res. 36, 1266–1275 (2006).
    Article  Google Scholar 

    74.
    Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).
    CAS  Article  Google Scholar 

    75.
    Bowman, D. M., O’Brien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Env. Res. 38, 57–80 (2013).
    Article  Google Scholar 

    76.
    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Maezumi, S. Y. et al. New insights from pre-Columbian land use and fire management in Amazonian Dark Earth forests. Front. Ecol. Evol. 6, 111 (2018).
    Article  Google Scholar 

    78.
    Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    79.
    Nowacki, G. J. & Abrams, M. D. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 58, 123–138 (2008).
    Article  Google Scholar 

    80.
    Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Env. 11, e55–e63 (2013).
    Google Scholar 

    81.
    Archibald, S. Managing the human component of fire regimes: lessons from Africa. Philos. Trans. R. Soc. Lond. B 371, 20150346 (2016).
    Article  CAS  Google Scholar 

    82.
    Roos, C. I. et al. Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. Philos. Trans. R. Soc. Lond. B 371, 20150469 (2016).
    Article  Google Scholar 

    83.
    North, M. P. et al. Reform forest fire management. Science 349, 1280–1281 (2015).
    CAS  PubMed  Article  Google Scholar 

    84.
    Lawes, M. J. et al. Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. Int. J. Wildland Fire 23, 712–722 (2015).
    Article  Google Scholar 

    85.
    Edwards, A., Russell-Smith, J. & Meyer, M. Contemporary fire regime risks to key ecological assets and processes in north Australian savannas. Int. J. Wildland Fire 24, 857–870 (2015).
    Article  Google Scholar 

    86.
    Bliege Bird, R., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
    PubMed  Article  Google Scholar 

    87.
    Whitehead, P. J., Bowman, D. M., Preece, N., Fraser, F. & Cooke, P. Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management. Int. J. Wildland Fire 12, 415–425 (2003).
    Article  Google Scholar 

    88.
    Mitchell, R. J. et al. Future climate and fire interactions in the southeastern region of the United States. For. Ecol. Manag. 327, 316–326 (2014).
    Article  Google Scholar 

    89.
    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 107, 19167–19170 (2010).
    CAS  PubMed  Article  Google Scholar 

    90.
    Whitehead, P. J., Purdon, P., Russell-Smith, J., Cooke, P. M. & Sutton, S. The management of climate change through prescribed savanna burning: emerging contributions of indigenous people in northern Australia. Public Admin. Dev. 28, 374–385 (2008).
    Article  Google Scholar 

    91.
    Mistry, J., Bilbao, B. A. & Berardi, A. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America. Philos. Trans. R. Soc. Lond. B 371, 20150174 (2016).
    Article  CAS  Google Scholar 

    92.
    Gillson, L. & Willis, K. J. ‘As Earth’s testimonies tell’: wilderness conservation in a changing world. Ecol. Lett. 7, 990–998 (2004).
    Article  Google Scholar 

    93.
    Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. Human appropriation of the products of photosynthesis. BioScience 36, 368–373 (1986).
    Article  Google Scholar 

    94.
    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).
    CAS  PubMed  Article  Google Scholar 

    95.
    Khush, G. S. Green revolution: the way forward. Nat. Rev. Genet. 2, 815–822 (2001).
    CAS  PubMed  Article  Google Scholar 

    96.
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
    CAS  PubMed  Article  Google Scholar 

    97.
    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
    CAS  PubMed  Article  Google Scholar 

    98.
    Renard, D. et al. Ecological engineers ahead of their time: the functioning of pre-Columbian raised-field agriculture and its potential contributions to sustainability today. Ecol. Eng. 45, 30–44 (2012).
    Article  Google Scholar 

    99.
    Kunen, J. L. Ancient Maya agricultural installations and the development of intensive agriculture in NW Belize. J. Field. Archaeol. 28, 325–346 (2001).
    Article  Google Scholar 

    100.
    Erickson, C. L. in Managing Change: Sustainable Approaches to the Conservation of the Built Environment (eds Erickson, C. L. et al.) 181–204 (Getty Conservation Institute, 2003).

    101.
    Sandor, J. A. & Eash, N. S. Significance of ancient agricultural soils for long‐term agronomic studies and sustainable agriculture research. Agron. J. 83, 29–37 (1991).
    Article  Google Scholar 

    102.
    Marston, J. M. Modeling resilience and sustainability in ancient agricultural systems. J. Ethnobiol. 35, 585–605 (2015).
    Article  Google Scholar 

    103.
    Logan, A. L., Stump, D., Goldstein, S. T., Orijemie, E. A. & Schoeman, M. H. Usable pasts forum: critically engaging food security. Afr. Archaeol. Rev. 36, 419–438 (2019).
    Article  Google Scholar 

    104.
    Stump, D. “Ancient and backward or long-lived and sustainable?” The role of the past in debates concerning rural livelihoods and resource conservation in eastern Africa. World Dev. 38, 1251–1122 (2010).
    Article  Google Scholar 

    105.
    Spriggs, M. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 395–411 (Oxford Univ. Press, 2019).

    106.
    Herath, S., Mishra, B., Wong, P. & Weerakoon, S. B. in Resilient Asia: Fusion of Traditional and Modern Systems for a Sustainable Future (eds Takeuchi, K. et al.) 151–187 (Springer, 2018).

    107.
    Lang, C. & Stump, D. Geoarchaeological evidence for the construction, irrigation, cultivation, and resilience of 15th–18th century AD terraced landscape at Engaruka, Tanzania. Quat. Res. 88, 382–399 (2017).
    Article  Google Scholar 

    108.
    Abeywardana, N., Schütt, B., Wagalawatta, T. & Bebermeier, W. Indigenous agricultural systems in the Dry Zone of Sri Lanka: management transformation assessment and sustainability. Sustainability 11, 910 (2019).
    Article  Google Scholar 

    109.
    Kendall, A. & Drew, D. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 423–440 (Oxford Univ. Press, 2019).

    110.
    Erickson, C. L. & Candler, K. L. in Fragile Lands of Latin America: Strategies For Sustainable Development (ed. Browder, J. O.) 230–248 (Westview Press, 1989).

    111.
    Erickson, C. L. Raised field agriculture in the Lake Titicaca Basin: putting ancient agriculture back to work. Expedition 30, 8–16 (1988).
    Google Scholar 

    112.
    McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    113.
    Lombardo, U., Canal-Beeby, E., Fehr, S. & Veit, H. Raised fields in the Bolivian Amazonia: a prehistoric green revolution or a flood risk mitigation strategy? J. Archaeol. Sci. 38, 502–512 (2011).
    Article  Google Scholar 

    114.
    Kurashima, N., Fortini, L. & Ticktin, T. The potential of indigenous agricultural food production under climate change in Hawaiʻi. Nat. Sustain. 2, 191–199 (2019).
    Article  Google Scholar 

    115.
    Marshall, K. et al. Restoring people and productivity to Puanui: challenges and opportunities in the restoration of an intensive rain-fed Hawaiian field system. Ecol. Soc. 22, 23 (2017).
    Article  Google Scholar 

    116.
    Lincoln, N. K. et al. Restoration of ‘Āina Malo’o on Hawai’i Island: expanding biocultural relationships. Sustainability 10, 3985 (2018).
    Article  Google Scholar 

    117.
    Atlas, W. I. et al. Ancient fish weir technology for modern stewardship: lessons from community-based salmon monitoring. Ecosyst. Health Sustain. 3, 1341284 (2017).
    Article  Google Scholar 

    118.
    Rodrigues, L., Lombardo, U., Beeby, E. C. & Veit, H. Linking soil properties and pre-Columbian agricultural strategies in the Bolivian lowlands: the case of raised fields in Exaltación. Quat. Int. 437, 143–155 (2017).
    Article  Google Scholar 

    119.
    Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    120.
    Herrera, A. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 459–479 (Oxford Univ. Press, 2019).

    121.
    Barthel, S. & Isendahl, C. Urban gardens, agriculture, and water management: sources of resilience for long-term food security in cities. Ecol. Econ. 86, 224–234 (2013).
    Article  Google Scholar 

    122.
    Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia: combating the erosion of diversity in landscapes of food production. Ecol. Soc. 18, 71 (2013).
    Article  Google Scholar 

    123.
    Maezumi, S. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    124.
    Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia—safeguarding diversity of practices for food security and biodiversity. Glob. Environ. Change 23, 1142–1152 (2013).
    Article  Google Scholar 

    125.
    Poschlod, P. & Braun-Reichert, R. Small natural features with large ecological roles in ancient agricultural landscapes of Central Europe-history, value, status, and conservation. Biol. Conserv. 211, 60–68 (2017).
    Article  Google Scholar 

    126.
    Smýkal, P., Nelson, M. N., Berger, J. D. & Von Wettberg, E. J. The impact of genetic changes during crop domestication. Agronomy 8, 119 (2018).
    Article  Google Scholar 

    127.
    Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    128.
    Cheng, A. Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 269, 136–142 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    129.
    Mueller, N. G., Fritz, G. J., Patton, P., Carmody, S. & Horton, E. T. Growing the lost crops of eastern North America’s original agricultural system. Nat. Plants 3, 17092 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    130.
    Logan, A. L. “Why Can’t People Feed Themselves?”: archaeology as alternative archive of food security in Banda, Ghana. Am. Anthropol. 118, 508–524 (2016).
    Article  Google Scholar 

    131.
    Mueller, N. G., White, A. & Szilagyi, P. Experimental cultivation of eastern North America’s lost crops: insights into agricultural practice and yield potential. J. Ethnobiol. 39, 549–566 (2019).
    Article  Google Scholar 

    132.
    Palmer, S. A., Smith, O. & Allaby, R. G. The blossoming of plant archaeogenetics. Ann. Anat. 194, 146–156 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    133.
    Østerberg, J. T. et al. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 22, 373–384 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    134.
    McNeill, J. R. & Winiwarter, V. Breaking the sod: humankind, history, and soil. Science 304, 1627–1629 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    135.
    Brown, A. G. & Walsh, K. Societal stability and environmental change: examining the archaeology‐soil erosion paradox. Geoarchaeology 32, 23–35 (2017).
    Article  Google Scholar 

    136.
    Sandor, J. A. & Homburg, J. A. Anthropogenic soil change in ancient and traditional agricultural fields in arid to semiarid regions of the Americas. J. Ethnobiol. 37, 196–217 (2017).
    Article  Google Scholar 

    137.
    Glaser, B., Haumaier, L., Guggenberger, G. & Zech, W. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    138.
    Lehmann, J., Kern, D. C., Glaser, B. & Woods, W. I. (eds) Amazonian Dark Earths: Origin, Properties, Management (Springer, 2007).

    139.
    Blume, H. P. & Leinweber, P. Plaggen soils: landscape history, properties, and classification. J. Plant Nutr. Soil Sci. 16, 319–327 (2004).
    Article  Google Scholar 

    140.
    Davidson, D. A., Dercon, G., Stewart, M. & Watson, F. The legacy of past urban waste disposal on local soils. J. Archaeol. Sci. 33, 778–783 (2006).
    Article  Google Scholar 

    141.
    Sandor, J. A. & Eash, N. S. Ancient agricultural soils in the Andes of southern Peru. Soil Sci. Soc. Am. J. 59, 170–179 (1995).
    CAS  Article  Google Scholar 

    142.
    Fairhead, J. & Leach, M. in Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 265–278 (Springer, 2009).

    143.
    McFadgen, B. G. Maori plaggen soils in New Zealand, their origin and properties. J. R. Soc. N. Z. 10, 3–18 (1980).
    Article  Google Scholar 

    144.
    Calvelo Pereira, R. et al. Detailed carbon chemistry in charcoals from pre‐European Māori gardens of New Zealand as a tool for understanding biochar stability in soils. Eur. J. Soil Sci. 65, 83–95 (2014).
    CAS  Article  Google Scholar 

    145.
    Downie, A. E., Van Zwieten, L., Smernik, R. J., Morris, S. & Munroe, P. R. Terra Preta Australis: reassessing the carbon storage capacity of temperate soils. Agric. Ecosyst. Environ. 140, 137–147 (2011).
    Article  Google Scholar 

    146.
    Kern, J., Giani, L., Teixeira, W., Lanza, G. & Glaser, B. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration? CATENA 172, 104–112 (2019).
    CAS  Article  Google Scholar 

    147.
    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    148.
    Bezerra, J., Turnhout, E., Rittl, T. F., Arts, B. & Kuyper, T. W. The promises of the Amazonian soil: shifts in discourses of Terra Preta and biochar. J Environ. Policy Plan. 21, 623–635 (2019).
    Article  Google Scholar 

    149.
    Novotny, E. H. et al. Lessons from the Terra Preta de Índios of the Amazon region for the utilisation of charcoal for soil amendment. J. Braz. Chem. Soc. 20, 1003–1010 (2009).
    CAS  Article  Google Scholar 

    150.
    Lehmann, J. & Joseph, S. in Biochar for Environmental Management (eds Lehmann, J. & Joseph, S.) 1–14 (Routledge, 2015).

    151.
    Kim, J. S., Sparovek, G., Longo, R. M., De Melo, W. J. & Crowley, D. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol. Biochem. 39, 684–690 (2007).
    CAS  Article  Google Scholar 

    152.
    Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).
    CAS  Article  Google Scholar 

    153.
    Jorio, A. et al. Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils. Soil Tillage Res. 122, 61–66 (2012).
    Article  Google Scholar 

    154.
    More, A. F. et al. Next-generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: insights from the Black Death. GeoHealth 1, 211–219 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    155.
    Factura, H. et al. Terra Preta sanitation: re-discovered from an ancient Amazonian civilisation – integrating sanitation, bio-waste management and agriculture. Water Sci. Technol. 61, 2673–2679 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    156.
    Glaser, B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Lond. B 362, 187–196 (2007).
    CAS  Article  Google Scholar 

    157.
    Fedick, S. L. & Morrison, B. A. Ancient use and manipulation of landscape in the Yalahau region of the northern Maya lowlands. Agric. Hum. Values 21, 207–219 (2004).
    Article  Google Scholar 

    158.
    Sedov, S. et al. Soil genesis in relation to landscape evolution and ancient sustainable land use in the northeastern Yucatan Peninsula, Mexico. Atti Soc. Tosc. Sci. Nat. Mem. A 112, 115–126 (2007).
    Google Scholar 

    159.
    Acksel, A., Kapenberg, A., Kühn, P. & Leinweber, P. Human activity formed deep, dark topsoils around the Baltic Sea. Geoderma Region. 10, 93–101 (2017).
    Article  Google Scholar 

    160.
    Marshall, F. et al. Ancient herders enriched and restructured African grasslands. Nature 561, 387–390 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    161.
    Muchiru, A. N., Western, D. & Reid, R. S. The impact of abandoned pastoral settlements on plant and nutrient succession in an African savanna ecosystem. J. Arid Environ. 73, 322–331 (2009).
    Article  Google Scholar 

    162.
    Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl Acad. Sci. USA 110, 12589–12594 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    163.
    Beach, T., Luzzadder-Beach, S., Dunning, N., Hageman, J. & Lohse, J. Upland agriculture in the Maya Lowlands: ancient Maya soil conservation in northwestern Belize. Geogr. Rev. 92, 372–397 (2002).
    Article  Google Scholar 

    164.
    Akimoto, H. Global air quality and pollution. Science 302, 1716–1719 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    165.
    Hong, S., Candelone, J. P., Patterson, C. & Boutron, C. F. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272, 246–249 (1996).
    CAS  Article  Google Scholar 

    166.
    Hong, S., Candelone, J. P., Patterson, C. C. & Boutron, C. F. Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265, 1841–1843 (1994).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    167.
    Shotyk, W. et al. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281, 1635–1640 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    168.
    Borsos, E., Makra, L., Béczi, R., Vitányi, B. & Szentpéteri, M. Anthropogenic air pollution in the ancient times. Acta Climatol. Chorolog. 36–37, 5–15 (2003).
    Google Scholar 

    169.
    Pyatt, F. B. & Grattan, J. P. Some consequences of ancient mining activities on the health of ancient and modern human populations. J. Public Health 23, 235–236 (2001).
    CAS  Article  Google Scholar 

    170.
    Pyatt, F. B., Pyatt, A. J., Walker, C., Sheen, T. & Grattan, J. P. The heavy metal content of skeletons from an ancient metalliferous polluted area in southern Jordan with particular reference to bioaccumulation and human health. Ecotoxicol. Environ. Saf. 60, 295–300 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    171.
    Longman, J., Veres, D., Finsinger, W. & Ersek, V. Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution. Proc. Natl Acad. Sci. USA 115, E5661–E5668 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    172.
    Renberg, I. et al. Environmental history: a piece in the puzzle for establishing plans for environmental management. J. Environ. Manag. 90, 2794–2800 (2009).
    CAS  Article  Google Scholar 

    173.
    Bennion, H., Battarbee, R. W., Sayer, C. D., Simpson, G. L. & Davidson, T. A. Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. J. Paleolimnol. 45, 533–544 (2011).
    Article  Google Scholar 

    174.
    Bindler, R., Rydberg, J. & Renberg, I. Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. J. Paleolimnol. 45, 519–531 (2011).
    Article  Google Scholar 

    175.
    Fuller, D. Q. et al. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21, 743–759 (2011).
    Article  Google Scholar 

    176.
    Ruddiman, W. F. et al. Late Holocene climate: natural or anthropogenic? Rev. Geophys. 54, 93–118 (2016).
    Article  Google Scholar 

    177.
    Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013).
    CAS  Article  Google Scholar 

    178.
    Pyatt, F. B. Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus. Ecotoxicol. Environ. Saf. 50, 60–64 (2001).
    CAS  PubMed  Article  Google Scholar 

    179.
    Pyatt, F. B., Gilmore, G., Grattan, J. P., Hunt, C. O. & McLaren, S. An imperial legacy? An exploration of the environmental impact of ancient metal mining and smelting in southern Jordan. J. Archaeol. Sci. 27, 771–778 (2000).
    Article  Google Scholar 

    180.
    Bindler, R., Renberg, I. & Klaminder, J. Bridging the gap between ancient metal pollution and contemporary biogeochemistry. J. Paleolimnol. 40, 755–770 (2008).
    Article  Google Scholar 

    181.
    Farmer, J. G. et al. Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years. Sci. Total Environ. 407, 5578–5588 (2009).
    CAS  PubMed  Article  Google Scholar 

    182.
    Knabb, K. A. et al. Environmental impacts of ancient copper mining and metallurgy: multi-proxy investigation of human-landscape dynamics in the Faynan valley, southern Jordan. J. Archaeol. Sci. 74, 85–101 (2016).
    CAS  Article  Google Scholar 

    183.
    Grattan, J. P., Gilbertson, D. D. & Hunt, C. O. The local and global dimensions of metalliferous pollution derived from a reconstruction of an eight thousand year record of copper smelting and mining at a desert-mountain frontier in southern Jordan. J. Archaeol. Sci. 34, 83–110 (2007).
    Article  Google Scholar 

    184.
    Wilson, B. & Pyatt, F. B. Heavy metal bioaccumulation by the important food plant, Olea europaea L., in an ancient metalliferous polluted area of Cyprus. Bull. Environ. Contam. Toxicol. 78, 390–394 (2007).
    CAS  PubMed  Article  Google Scholar 

    185.
    Seto, K. C. & Shepherd, J. M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 1, 89–95 (2009).
    Article  Google Scholar 

    186.
    Simon, D. & Adam-Bradford, A. in Balanced Urban Development: Options and Strategies for Liveable Cities (eds Maheshwari, B. et al.) 57–83 (Springer, 2016).

    187.
    Isendahl, C. & Smith, M. E. Sustainable agrarian urbanism: the low-density cities of the Mayas and Aztecs. Cities 31, 132–143 (2013).
    Article  Google Scholar 

    188.
    Lucero, L. J., Fletcher, R. & Coningham, R. From ‘collapse’ to urban diaspora: the transformation of low-density, dispersed agrarian urbanism. Antiquity 89, 1139–1154 (2015).
    Article  Google Scholar 

    189.
    Fletcher, R. in The Comparative Archaeology of Complex Societies (ed. Smith, M. E.) 285–320 (Cambridge Univ. Press, 2011).

    190.
    Heckenberger, M. J. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).
    CAS  PubMed  Article  Google Scholar 

    191.
    Barthel, S. et al. Global urbanization and food production in direct competition for land: leverage places to mitigate impacts on SDG2 and on the Earth System. Anthropocene Rev. 6, 71–97 (2019).
    Article  Google Scholar 

    192.
    Wilkinson, A. The Garden in Ancient Egypt (Rubicon Press, 1998).

    193.
    Edmondson, J. L. et al. The hidden potental of urban horticulture. Nat. Food 1, 155–159 (2020).
    Article  Google Scholar 

    194.
    Scarborough, V. L. et al. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala. Proc. Natl Acad. Sci. USA 109, 12408–12413 (2012).
    CAS  PubMed  Article  Google Scholar 

    195.
    Angelakis, A. N. & Spyridakis, S. V. Major urban water and wastewater systems in Minoan Crete, Greece. Water Sci. Technol. Water Supply 13, 564–573 (2013).
    Article  Google Scholar 

    196.
    Mays, L., Antoniou, G. P. & Angelakis, A. N. History of water cisterns: legacies and lesson. Water 5, 1916–1940 (2013).
    Article  Google Scholar 

    197.
    French, K. D. & Duffy, C. J. Understanding ancient Maya water resources and the implications for a more sustainable future. Wiley Interdiscip. Rev. Water 1, 305–313 (2014).
    Article  Google Scholar 

    198.
    Chase, A. S. Beyond elite control: residential reservoirs at Caracol, Belize. Wiley Interdiscip. Rev. Water 3, 885–897 (2016).
    Article  Google Scholar 

    199.
    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).
    CAS  PubMed  Article  Google Scholar 

    200.
    Van de Noort, R. Conceptualising climate change archaeology. Antiquity 85, 1039–1048 (2011).
    Article  Google Scholar 

    201.
    Hudson, M. J., Aoyama, M., Hoover, K. C. & Uchiyama, J. Prospects and challenges for an archaeology of global climate change. Wiley Interdiscip. Rev. Clim. Change 3, 313–328 (2012).
    Article  Google Scholar 

    202.
    Sandweiss, D. H. & Kelley, A. R. Archaeological contributions to climate change research: the archaeological record as a paleoclimatic and paleoenvironmental archive. Annu. Rev. Anthropol. 41, 371–391 (2012).
    Article  Google Scholar 

    203.
    Rockman, M. & Hritz, C. Expanding use of archaeology in climate change response by changing its social environment. Proc. Natl Acad. Sci. USA 117, 8295–8302 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    204.
    Douglass, K. & Cooper, J. Archaeology, environmental justice, and climate change on islands of the Caribbean and southwestern Indian Ocean. Proc. Natl Acad. Sci. USA 117, 8254–8262 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    205.
    Nelson, M. C. et al. Climate challenges, vulnerabilities, and food security. Proc. Natl Acad. Sci. USA 113, 298–303 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    206.
    Mitchell, P. Practising archaeology at a time of climatic catastrophe. Antiquity 82, 1093–1103 (2008).
    Article  Google Scholar 

    207.
    Weiss, H. & Bradley, R. S. What drives societal collapse? Science 291, 609–610 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    208.
    Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    209.
    Weninger, B. et al. The impact of rapid climate change on prehistoric societies during the Holocene in the eastern Mediterranean. Doc. Praehistorica 36, 7–59 (2009).
    Article  Google Scholar 

    210.
    Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    211.
    Anderson, D. G., Maasch, K. A., Sandweiss, D. H. & Mayewski, P. A. in Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions (eds Anderson, D. G. et al.) 1–23 (Academic Press, 2007).

    212.
    Kintigh, K. W. & Ingram, S. E. Was the drought really responsible? Assessing statistical relationships between climate extremes and cultural transitions. J. Archaeol. Sci. 89, 25–31 (2018).
    Article  Google Scholar 

    213.
    Amand, F. S. et al. Leveraging legacy archaeological collections as proxies for climate and environmental research. Proc. Natl Acad. Sci. USA 117, 8287–8294 (2020).
    Article  CAS  Google Scholar 

    214.
    Jones, T. L. et al. Environmental imperatives reconsidered: demographic crises in western North America during the Medieval climatic anomaly. Curr. Anthropol. 40, 137–170 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    215.
    Mann, M. E. in Encyclopedia of Global Environmental Change (ed. MacCracken, M. C.) 504–509 (John Wiley & Sons, Ltd, 2002).

    216.
    Flohr, P., Fleitmann, D., Matthews, R., Matthews, W. & Black, S. Evidence of resilience to past climate change in Southwest Asia: early farming communities and the 9.2 and 8.2 ka events. Quat. Sci. Rev. 136, 23–39 (2016).
    Article  Google Scholar 

    217.
    Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    218.
    Roscoe, P. A changing climate for anthropological and archaeological research? Improving the climate‐change models. Am. Anthropol. 116, 535–548 (2014).
    Google Scholar 

    219.
    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    220.
    Petraglia, M. D., Groucutt, H., Guagnin, M., Breeze, P. S. & Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl Acad. Sci. USA 117, 8263–8270 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    221.
    Manuel, M., Lightfoot, D. & Fattahi, M. The sustainability of ancient water control techniques in Iran: an overview. Water Hist. 10, 13–30 (2018).
    Article  Google Scholar 

    222.
    Avriel-Avni, N., Avni, Y., Babad, A. & Meroz, A. Wisdom dwells in places: what can modern farmers learn from ancient agricultural systems in the desert of the Southern Levant? J. Arid Environ. 163, 86–98 (2019).
    Article  Google Scholar 

    223.
    Lasaponara, R., Rojas, J. L. & Masini, N. in The Ancient Nasca World (eds Lasaponara, R. et al.) 279–327 (Springer, 2016).

    224.
    Bebermeier, W., Meister, J., Withanachchi, C. R., Middelhaufe, I. & Schütt, B. Tank cascade systems as a sustainable measure of watershed management in South Asia. Water 9, 231 (2017).
    Article  Google Scholar 

    225.
    Altschul, J. H. et al. Opinion: Fostering synthesis in archaeology to advance science and benefit society. Proc. Natl Acad. Sci. USA 114, 10999–11002 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    226.
    Tainter, J. The Collapse of Complex Societies (Cambridge Univ. Press, 1988).

    227.
    Redman, C. L. Human Impact on Ancient Environments (Univ. Arizona, 1999).

    228.
    Redman, C. L. Resilience theory in archaeology. Am. Anthropol. 107, 70–77 (2005).
    Article  Google Scholar 

    229.
    Jenny, J.-P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    230.
    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).
    Article  Google Scholar 

    231.
    Lane, P. Archaeology in the age of the Anthropocene: a critical assessment of its scope and societal contributions. J. Field Archaeol. 40, 485–498 (2015).
    Article  Google Scholar 

    232.
    Catlin, K. A. Archaeology for the Anthropocene: scale, soil, and the settlement of Iceland. Anthropocene 15, 13–21 (2016).
    Article  Google Scholar 

    233.
    Kintigh, K. W. et al. Grand challenges for archaeology. Proc. Natl Acad. Sci. USA 111, 879–880 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    234.
    Smith, M. E. Sprawl, squatters and sustainable cities: can archaeological data shed light on modern urban issues? Camb. Archaeol. J. 20, 229–253 (2010).
    Article  Google Scholar 

    235.
    Dave, R. Archaeology must open up to become more diverse. The Guardian (23 May 2016); https://go.nature.com/36mbRRl

    236.
    White, W. & Draycott, C. Why the whiteness of archaeology is a problem. Sapiens (7 July 2020); https://go.nature.com/3lhgS3T

    237.
    Smith, C. & Wobst, H. M. Indigenous Archaeologies: Decolonising Theory and Practice (Routledge, 2004).

    238.
    Hamilakis, Y. Decolonial archaeology as social justice. Antiquity 92, 518–520 (2018).
    Article  Google Scholar 

    239.
    Mustaphi, C. J. C. et al. Integrating evidence of land use and land cover change for land management policy formulation along the Kenya-Tanzania borderlands. Anthropocene 28, 100228 (2019).
    Article  Google Scholar 

    240.
    Widgren, M. in Rethinking Environmental History World-System History and Global Environmental Change (eds Hornberg, A. et al.) 61–77 (Rowman Altamira, 2007).

    241.
    Matthews, D. German humanities scholars’ unusual role. Inside Higher Ed (24 April 2020); https://go.nature.com/3nbVCNi

    242.
    Agnoletti, M. (ed.) The Conservation of Cultural Landscapes (CABI, 2006).

    243.
    Lowenthal, D. The Past is a Foreign Country – Revisited (Cambridge Univ. Press, 2015). More

  • in

    Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale

    1.
    Suomalainen, E., Saura, A. & Lokki, J. Cytology and Evolution in Parthenogenesis (CRC Press, 1987).
    2.
    Astaurov, B. L. Experimental alterations of the developmental cytogenetic mechanisms in mulberry silkworms: artificial parthenogenesis, polyploidy, gynogenesis, and androgenesis. Adv. Morphog. 6, 199–257 (1967).
    CAS  PubMed  Article  Google Scholar 

    3.
    Innes, D. J. & Hebert, P. D. N. The origin and genetic basis of obligate parthenogenesis in daphnia pulex. Evolution 42, 1024–1035 (1988).
    PubMed  Article  Google Scholar 

    4.
    Saura, A., Lokki, J. & Suomalainen, E. Origin of polyploidy in parthenogenetic weevils. J. Theor. Biol. 163, 449–456 (1993).
    Article  Google Scholar 

    5.
    Schwander, T., Henry, L. & Crespi, B. J. Molecular evidence for ancient asexuality in timema stick insects. Curr. Biol. 21, 1129–1134 (2011).
    CAS  PubMed  Article  Google Scholar 

    6.
    Birky, C. W. Jr. Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144, 427–437 (1996).
    PubMed  Google Scholar 

    7.
    Mark Welch, D. & Meselson, M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288, 1211–1215 (2000).
    CAS  PubMed  Article  Google Scholar 

    8.
    Jaron, K. S. et al. Genomic features of parthenogenetic animals. J. Hered. https://doi.org/10.1093/jhered/esaa031 (2020).

    9.
    Scholtz, G. et al. Ecology: parthenogenesis in an outsider crayfish. Nature 421, 806 (2003).
    CAS  PubMed  Article  Google Scholar 

    10.
    Lyko, F. The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363, 544–552 (2017).
    PubMed  Article  Google Scholar 

    11.
    Martin, P., Dorn, N. J., Kawai, T., van der Heiden, C. & Scholtz, G. The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib. Zool. 79, 107–118 (2010).
    Article  Google Scholar 

    12.
    Vogt, G. et al. The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biol. Open 4, 1583–1594 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Schön, I., Martens, K. & van, Dijk P. Lost Sex. The Evolutionary Biology of Parthenogenesis (Springer, 2009).

    14.
    Martin, P., Kohlmann, K. & Scholtz, G. The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94, 843–846 (2007).
    CAS  PubMed  Article  Google Scholar 

    15.
    Vogt, G. et al. Production of different phenotypes from the same genotype in the same environment by developmental variation. J. Exp. Biol. 211, 510–523 (2008).
    CAS  PubMed  Article  Google Scholar 

    16.
    Vogt, G., Tolley, L. & Scholtz, G. Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J. Morphol. 261, 286–311 (2004).
    PubMed  Article  Google Scholar 

    17.
    Kato, M., Hiruta, C. & Tochinai, S. The behavior of chromosomes during parthenogenetic oogenesis in Marmorkrebs Procambarus fallax f. virginalis. Zool. Sci. 33, 426–430 (2016).
    Article  Google Scholar 

    18.
    Gutekunst, J. et al. Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat. Ecol. Evol. 2, 567–573 (2018).
    PubMed  Article  Google Scholar 

    19.
    Chucholl, C. Marbled crayfish gaining ground in Europe: the role of the pet trade as invasion pathway. in Freshwater Crayfish: Global Overview (eds Kawai, T. et al.) 83–114 (CRC Press, 2015).

    20.
    Jones, J. P. G. et al. The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol. Invasions 11, 1475–1482 (2009).
    Article  Google Scholar 

    21.
    Kawai, T. et al. Parthenogenetic alien crayfish (Decapoda: Cambaridae) spreading in Madagascar. J. Crust. Biol. 29, 562–567 (2009).
    Article  Google Scholar 

    22.
    Andriantsoa, R. et al. Ecological plasticity and commercial impact of invasive marbled crayfish populations in Madagascar. BMC Ecol. 19, 8 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Chucholl, C. & Pfeiffer, M. First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817). Aquat. Invasions 5, 405–412 (2010).
    Article  Google Scholar 

    24.
    Lipták, B. et al. Expansion of the marbled crayfish in Slovakia: beginning of an invasion in the Danube catchment? J. Limnol. 75, 305–312 (2016).
    Google Scholar 

    25.
    Novitsky, R. A. & Son, M. O. The first records of Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] (Crustacea, Decapoda, Cambaridae) in Ukraine. Ecol. Montenegrina 5, 44–46 (2016).
    Article  Google Scholar 

    26.
    Patoka, J. et al. Predictions of marbled crayfish establishment in conurbations fulfilled: evidences from the Czech Republic. Biologia 71, 1380–1385 (2016).
    CAS  Article  Google Scholar 

    27.
    Pârvulescu, L. et al. First established population of marbled crayfish Procambarus fallax (Hagen, 1870) f. virginalis (Decapoda, Cambaridae) in Romania. Bioinvasions Rec. 6, 357–362 (2017).
    Article  Google Scholar 

    28.
    Deidun, A. et al. Invasion by non-indigenous freshwater decapods of Malta and Sicily, central Mediterranean Sea. J. Crust. Biol. 38, 748–753 (2018).
    Google Scholar 

    29.
    Ercoli, F., Kaldre, K., Paaver, T. & Gross, R. First record of an established marbled crayfish Procambarus virginalis (Lyko, 2017) population in Estonia. Bioinvasions Rec. 8, 675–683 (2019).
    Article  Google Scholar 

    30.
    Charlesworth, B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).
    CAS  PubMed  Article  Google Scholar 

    31.
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).
    CAS  PubMed  Article  Google Scholar 

    32.
    Munoz, J., Chaturvedi, A., De Meester, L. & Weider, L. J. Characterization of genome-wide SNPs for the water flea Daphnia pulicaria generated by genotyping-by-sequencing (GBS). Sci. Rep. 6, 28569 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Flynn, J. M., Chain, F. J., Schoen, D. J. & Cristescu, M. E. Spontaneous mutation accumulation in Daphnia pulex in selection-free vs. competitive environments. Mol. Biol. Evol. 34, 160–173 (2017).
    CAS  PubMed  Article  Google Scholar 

    34.
    Fazalova, V. & Nevado, B. Low spontaneous mutation rate and pleistocene radiation of pea aphids. Mol. Biol. Evol. 37, 2045–2051 (2020).
    CAS  PubMed  Article  Google Scholar 

    35.
    Krebs, C. J. Estimating abundance in animal and plant populations. in Ecological Methodology https://www.zoology.ubc.ca/~krebs/downloads/krebs_chapter_02_2020.pdf (2014).

    36.
    van der Heiden, C. A. & Dorn, N. J. Benefits of adjacent habitat patches to the distribution of a crayfish population in a hydro-dynamic wetland landscape. Aquat. Ecol. 51, 219–233 (2017).
    Article  Google Scholar 

    37.
    Liu, H. et al. Direct determination of the mutation rate in the bumblebee reveals evidence for weak recombination-associated mutation and an approximate rate constancy in insects. Mol. Biol. Evol. 34, 119–130 (2017).
    CAS  PubMed  Article  Google Scholar 

    38.
    Vandel, A. La parthénogenèse géographique. Contribution à l’étude biologique et cytologique de la parthénogenèse naturelle. Bull. Biol. Fr. Belg. 62, 164–281 (1928).
    Google Scholar 

    39.
    Baker, H. G. Characteristics and modes of origin of weeds. in The Genetics of Colonising Species (eds Baker, H. G. & Stebbins, G. L.) 147–172 (Academic Press, 1965).

    40.
    Tilquin, A. & Kokko, H. What does the geography of parthenogenesis teach us about sex? Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150538 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Van Doninck, K., Schon, I., De Bruyn, L. & Martens, K. A general purpose genotype in an ancient asexual. Oecologia 132, 205–212 (2002).
    PubMed  Article  Google Scholar 

    42.
    Van Doninck, K., Schon, I., Martens, K. & Backeljau, T. Clonal diversity in the ancient asexual ostracod Darwinula stevensoni assessed by RAPD-PCR. Heredity 93, 154–160 (2004).
    PubMed  Article  CAS  Google Scholar 

    43.
    Gatzmann, F. et al. The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes. Epigenetics Chromatin 11, 57 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Carneiro, V. C. & Lyko, F. Rapid epigenetic adaptation in animals and its role in invasiveness. Integr. Comp. Biol. 60, 267–274 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Mauvisseau, Q., Tönges, S., Andriantsoa, R., Lyko, F. & Sweet, M. Early detection of an emerging invasive species: eDNA monitoring of a parthenogenetic crayfish in freshwater systems. Manag. Biol. Invasions 10, 461–472 (2019).
    Article  Google Scholar 

    46.
    Andriantsoa, R. et al. Perceived socio-economic impacts of the marbled crayfish invasion in Madagascar. PLoS ONE 15, e0231773 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  Article  Google Scholar 

    53.
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    54.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  Google Scholar 

    55.
    Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods–a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).
    CAS  PubMed  Article  Google Scholar 

    56.
    Johnson, K. E. et al. Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an Allee effect. PLoS Biol. 17, e3000399 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Maiakovska, O. & Legrand, C. OlenaMaiakovska/Population_Analysis_MC. Zenodo, https://doi.org/10.5281/zenodo.4110932 (2020). More

  • in

    Simulated atmospheric nitrogen deposition inhibited the leaf litter decomposition of Cinnamomum migao H. W. Li in Southwest China

    1.
    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Zhou, X., Zhang, Y. & Downing, A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the gurbantunggut desert, northwestern China. Soil Biol. Biochem. 47, 67–77 (2012).
    CAS  Article  Google Scholar 

    3.
    Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of south China under high air pollution. Biogeosciences 5, 339–352 (2008).
    ADS  CAS  Article  Google Scholar 

    5.
    Hoorens, B., Aerts, R. & Stroetenga, M. Does initial litter chemistry explain litter mixture effects on decomposition?. Oecologia 137, 578–586 (2003).
    ADS  PubMed  Article  Google Scholar 

    6.
    Passarinho, J. A. P., Lamosa, P., Baeta, J. P., Santos, H. & Ricardo, C. P. P. Annual changes in the concentration of minerals and organic compounds of Quercus suber leaves. Physiol. Plantarum 127, 100–110 (2006).
    CAS  Article  Google Scholar 

    7.
    Shen, F. F. et al. Litterfall ecological stoichiometry and soil available nutrients under long-term nitrogen deposition in a Chinese fir plantation. Acta Ecol. Sin. 38, 7477–7487 (2018).
    Google Scholar 

    8.
    Huangfu, C. & Wei, Z. Nitrogen addition drives convergence of leaf litter decomposition rates between Flaveria bidentis and native plant. Plant Ecol. 219, 1355–1368 (2018).
    Article  Google Scholar 

    9.
    Vivanco, L. & Austin, A. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina. Global Change Biol. 17, 1963–1974 (2011).
    ADS  Article  Google Scholar 

    10.
    Li, H., Wei, Z., Huangfu, C., Chen, X. & Yang, D. Litter mixture dominated by leaf litter of the invasive species, Flaveria bidentis, accelerates decomposition and favors nitrogen release. J. Plant Res. 130, 167–180 (2017).
    CAS  PubMed  Article  Google Scholar 

    11.
    Aerts, R. D. C. H. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78, 244–260 (1997).
    Article  Google Scholar 

    12.
    Osono, T. & Takeda, H. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res. 19, 593–602 (2004).
    Article  Google Scholar 

    13.
    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).
    CAS  Article  Google Scholar 

    14.
    García-Palacios, P., Shaw, E. A., Wall, D. H. & Hättenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554–563 (2016).
    PubMed  Article  Google Scholar 

    15.
    Song, C., Liu, D., Yang, G., Song, Y. & Mao, R. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of northeast China. Ecol. Eng. 37, 1578–1582 (2011).
    Article  Google Scholar 

    16.
    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).
    Article  Google Scholar 

    17.
    Chen, F. et al. Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply. Plant Soil. 437, 413 (2019).
    CAS  Article  Google Scholar 

    18.
    Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest. Environ. Pollut. 250, 143–154 (2019).
    CAS  PubMed  Article  Google Scholar 

    19.
    Hou, S. et al. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytol. 229, 296–307 (2020).
    PubMed  Article  Google Scholar 

    20.
    Yu, Z. et al. Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biol. Biochem. 90, 188–196 (2015).
    CAS  Article  Google Scholar 

    21.
    Pichon, N. et al. Decomposition disentangled: A test of the multiple mechanisms by which nitrogen enrichment alters litter decomposition. Funct. Ecol. 34, 1485–1496 (2020).
    Article  Google Scholar 

    22.
    Hobbie, S. et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 82, 389–405 (2012).
    Article  Google Scholar 

    23.
    Knops, J., Naeem, S. & Reich, P. The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biol. 13, 1960–1971 (2007).
    ADS  Article  Google Scholar 

    24.
    Prescott, C. E. Does nitrogen availability control rates of litter decomposition in forests?. Plant Soil. 168, 83–88 (1995).
    Article  Google Scholar 

    25.
    Zhou, Y., Wang, L., Chen, Y., Zhang, J. & Liu, Y. Litter stoichiometric traits have stronger impact on humification than environment conditions in an alpine treeline ecotone. Plant Soil 453, 545–560 (2020).
    CAS  Article  Google Scholar 

    26.
    Mooshammer, M. et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech litter. Ecology 93, 770–782 (2012).
    PubMed  Article  Google Scholar 

    27.
    Remy, E. et al. Driving factors behind litter decomposition and nutrient release at temperate forest edges. Ecosystems 24, 755–771 (2017).
    Google Scholar 

    28.
    Zhou, S. et al. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the rainy area of western China. Plant Soil 420, 135–145 (2017).
    CAS  Article  Google Scholar 

    29.
    Cornwell, W. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).
    PubMed  Article  Google Scholar 

    30.
    Norris, M., Avis, P., Reich, P. & Hobbie, S. E. Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant Soil 367, 347–361 (2013).
    CAS  Article  Google Scholar 

    31.
    Berg, B. & McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration 2nd edn. (Springer, Berlin, 2008).
    Google Scholar 

    32.
    Cuchietti, A., Marcotti, E., Gurvich, D. E., Cingolani, A. M. & Harguindeguy, N. P. Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours. Appl. Soil Ecol. 82, 44–51 (2014).
    Article  Google Scholar 

    33.
    Jing, H. & Wang, G. Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the loess plateau of China. For. Ecol. Manag. 476, 118465 (2020).
    Article  Google Scholar 

    34.
    Sun, T., Dong, L., Wang, Z., Lü, X. & Mao, Z. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biol. Biochem. 93, 50–59 (2016).
    CAS  Article  Google Scholar 

    35.
    Carrera, A. L. & Bertiller, M. B. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands. J. Environ. Manag. 114, 505–511 (2013).
    CAS  Article  Google Scholar 

    36.
    Sun, Z. et al. The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil. Agr. For. Meteorol. 197, 103–110 (2014).
    Article  Google Scholar 

    37.
    He, X., Lin, Y., Han, G. & Ma, T. Litterfall interception by understorey vegetation delayed litter decomposition in Cinnamomum camphora plantation forest. Plant Soil 372, 207–219 (2013).
    CAS  Article  Google Scholar 

    38.
    Wang, Q. et al. Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China. Appl. Soil Ecol. 136, 148–157 (2019).
    Article  Google Scholar 

    39.
    Chen, J. et al. Co-stimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biol. 23, 1328–1337 (2016).
    ADS  Article  Google Scholar 

    40.
    Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).
    CAS  Article  Google Scholar 

    41.
    Jing, X. et al. Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem. Appl. Soil Ecol. 107, 205–213 (2016).
    Article  Google Scholar 

    42.
    Jing, X. et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Sci. Total Environ. 607–608, 806–815 (2017).
    ADS  PubMed  Article  CAS  Google Scholar 

    43.
    Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Decomposition of trembling aspen leaf litter under long-term nitrogen and sulfur deposition: effects of litter chemistry and forest floor microbial properties. For. Ecol. Manag. 412, 53–61 (2018).
    Article  Google Scholar 

    44.
    Huang, X. et al. Autotoxicity hinders the natural regeneration of Cinnamomum migao H W. Li in southwest China. Forests 10, 919 (2019).
    Article  Google Scholar 

    45.
    Feng, H., Xue, L. & Chen, H. Responses of decomposition of green leaves and leaf litter to stand density, N and P additions in Acacia auriculaeformis stands. Eur. J. For. Res. 137, 819–830 (2018).
    Article  Google Scholar 

    46.
    Diepen, L. V. et al. Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay. Ecosphere 6, t205 (2015).
    Article  Google Scholar 

    47.
    Zechmeister-Boltenstern, S. et al. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 85, 133–155 (2015).
    Article  Google Scholar 

    48.
    Hobbie, S. E. Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology 89, 2633–2644 (2008).
    PubMed  Article  Google Scholar 

    49.
    Hobbie, S. Interactions between litter lignin and nitrogenitter lignin and soil nitrogen availability during leaf litter decomposition in a hawaiian montane forest. Ecosystems 3, 484–494 (2000).
    CAS  Article  Google Scholar 

    50.
    Zhang, J. et al. Effect of nitrogen and phosphorus addition on litter decomposition and nutrients release in a tropical forest. Plant Soil 454, 139–153 (2020).
    CAS  Article  Google Scholar 

    51.
    Apolinário, V. et al. Litter decomposition of signalgrass grazed with different stocking rates and nitrogen fertilizer levels. Agron. J. 106, 1–6 (2014).
    Article  Google Scholar 

    52.
    Takeda, H. Decomposition Processes of Litter Along a Latitudinal Gradient (Springer, Dordrecht, 1998).
    Google Scholar 

    53.
    Torreta, N. K. & Takeda, H. Carbon and nitrogen dynamics of decomposing leaf litter in a tropical hill evergreen forest. Eur. J. Soil Biol. 35, 57–63 (1999).
    CAS  Article  Google Scholar 

    54.
    Song, Y., Song, C., Ren, J., Zhang, X. & Jiang, L. Nitrogen input increases Deyeuxia angustifolia litter decomposition and enzyme activities in a marshland ecosystem in Sanjiang plain, northeast China. Wetlands. 39, 549–557 (2019).
    Article  Google Scholar 

    55.
    Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Xia, M. A. T. A. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition. Ecosystems 21, 1–14 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Chen, F., Feng, X. & Liang, C. Endogenous versus exogenous nutrient affects C, N, and P dynamics in decomposing litters in mid-subtropical forests of China. Ecol. Res. 27, 923–932 (2012).
    CAS  Article  Google Scholar 

    58.
    Zhou, Z., Wang, C., Zheng, M., Jiang, L. & Luo, Y. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol. Biochem. 115, 433–441 (2017).
    CAS  Article  Google Scholar 

    59.
    He, X. et al. Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol. Res. 27, 273 (2011).
    ADS  Article  Google Scholar 

    60.
    Berg, B. R. & Laskowski, R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover, Advances in Ecological Research Vol. 38 (Academic Press, Waltham, 2006).
    Google Scholar 

    61.
    Hall, S., Huang, W., Timokhin, V. & Hammel, K. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology 101, e03113 (2020).
    PubMed  Article  Google Scholar 

    62.
    Tu, L. et al. Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS ONE 9, e88752 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Zhou, X. & Zhang, Y. Temporal dynamics of soil oxidative enzyme activity across a simulated gradient of nitrogen deposition in the gurbantunggut desert, northwestern China. Geoderma 213, 261–267 (2014).
    ADS  CAS  Article  Google Scholar 

    64.
    Hao, C. et al. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLoS ONE 8, e84101 (2013).
    ADS  Article  Google Scholar 

    65.
    Cameron, K. C., Di, H. J. & Moir, J. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162, 145–173 (2013).
    CAS  Article  Google Scholar 

    66.
    Waldrop, M. P., Zak, D. R., Sinsabaugh, R. L., Gallo, M. & Lauber, C. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol. Appl. 14, 1172–1177 (2004).
    Article  Google Scholar 

    67.
    Freedman, Z. B., Upchurch, R. A., Zak, D. R. & Cline, L. C. Anthropogenic N deposition slows decay by favoring bacterial metabolism: Insights from metagenomic analyses. Front. Microbiol. 7, 259 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).
    CAS  PubMed  Article  Google Scholar 

    69.
    Weand, M. P., Arthur, M. A., Lovett, G. M., McCulley, R. L. & Weathers, K. C. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol. Biochem. 42, 2161–2173 (2010).
    CAS  Article  Google Scholar 

    70.
    Wang, C. et al. Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest. Ecol. Res. 26, 505–513 (2011).
    CAS  Article  Google Scholar 

    71.
    Feng, H., Xue, L. & Chen, H. Responses of decomposition of green leaves and leaf litter to stand density, N and P additions in Acacia auriculaeformis stands. Eur. J. Forest Res. 137, 819 (2018).
    Article  Google Scholar 

    72.
    Frey, S. D., Knorr, M., Parrent, J. L. & Simpson, R. T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196, 159–171 (2004).
    Article  Google Scholar 

    73.
    Zheng, Z. et al. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. For. Ecol. Manag. 400, 123–128 (2017).
    Article  Google Scholar 

    74.
    Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).
    ADS  Article  Google Scholar 

    75.
    Liu, G., Jiang, N. & Zhang, L. D. Soil Physical and Chemical Analysis and Description of Soil Profiles (Standards Press of China, Beijing, 1996).
    Google Scholar 

    76.
    Bao, S. D. Soil and Agricultural Chemistry Analysis 3rd edn. (China Agricultural Press, Beijing, 2013).
    Google Scholar 

    77.
    Allen, S. E. Chemical analysis of Ecological Materials, 2nd edn, Vol. 13 (Blackwell Scientific Publications, Oxford, 1989).
    Google Scholar 

    78.
    Rowland, A. P. & Roberts, J. D. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Commun. Soil Sci. Plan. 25, 269–277 (1994).
    CAS  Article  Google Scholar 

    79.
    Olson, J. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).
    Article  Google Scholar 

    80.
    Bockheim, J., Jepsen, E. A. & Heisey, D. M. Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in northwestern Wisconsin. Can. J. For. Res. 21, 803–812 (1991).
    CAS  Article  Google Scholar  More

  • in

    Pteropods make thinner shells in the upwelling region of the California Current Ecosystem

    1.
    Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
    ADS  Article  Google Scholar 

    3.
    Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160, 2207–2245 (2013).
    CAS  Article  Google Scholar 

    9.
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
    ADS  Article  Google Scholar 

    10.
    Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).
    ADS  CAS  Article  Google Scholar 

    11.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2, 276–280 (2009).
    ADS  CAS  Article  Google Scholar 

    13.
    Bednaršek, N. et al. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5, 881–885 (2012).
    ADS  Article  CAS  Google Scholar 

    14.
    Bednaršek, N. et al. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B Biol. Sci. 281, 20140123 (2014).
    Article  CAS  Google Scholar 

    15.
    Manno, C. et al. Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean. Earth-Sci. Rev. 169, 132–145 (2017).
    ADS  CAS  Article  Google Scholar 

    16.
    Lischka, S., Büdenbender, J., Boxhammer, T. & Riebesell, U. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: Mortality, shell degradation, and shell growth. Biogeosciences 8, 919–932 (2011).
    ADS  CAS  Article  Google Scholar 

    17.
    Bednaršek, N. et al. Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast. Sci. Rep. 7, 1–12 (2017).
    Article  CAS  Google Scholar 

    18.
    Comeau, S. et al. Impact of aragonite saturation state changes on migratory pteropods. Proc. R. Soc. B Biol. Sci. 279, 732–738 (2011).
    Article  Google Scholar 

    19.
    Moya, A. et al. Near-future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod Heliconoides inflatus. Glob. Change Biol. 22, 3888–3900 (2016).
    ADS  Article  Google Scholar 

    20.
    Maas, A., Lawson, G. L., Bergan, A. J. & Tarrant, A. M. Exposure to CO2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa. J. Exp. Biol. 221, 164400 (2018).
    Article  Google Scholar 

    21.
    Johnson, K. M. & Hofman, G. E. A transcriptome resource for the Antarctic pteropod Limacina helicina antarctica. Mar. Genom. 28, 25–28 (2016).
    Article  Google Scholar 

    22.
    Feely, R. A. et al. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci. 183, 260–270 (2016).
    ADS  CAS  Article  Google Scholar 

    23.
    Bednaršek, N. et al. El Niño-related thermal stress coupled with ocean acidification negatively impacts cellular to population-level responses in pteropods along the California Current System with implications for increased bioenergetic costs. Front. Mar. Sci. 5, 486 (2018).
    Article  Google Scholar 

    24.
    Peck, V. L., Tarling, G. A., Manno, C., Harper, E. M. & Tynan, E. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep-Sea Res. II 127, 53–56 (2016).
    Article  Google Scholar 

    25.
    Peck, V. L., Oakes, R. L., Harper, E. M., Manno, C. & Tarling, G. A. Pteropods counter mechanical damage and dissolution through extensive shell repair. Nat. Commun. 9, 264 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Howes, E. L., Eagle, R. A., Gattuso, J.-P. & Bijma, J. Comparison of Mediterranean pteropod shell biometrics and ultrastructure from historical (1910 and 1921) and present day (2012) samples provides baseline for monitoring effects of global change. PLoS ONE 1, 1–23 (2017).
    Google Scholar 

    27.
    Oakes, R. L. & Sessa, J. A. Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin. Biogeosciences 7, 1975–1990 (2020).
    ADS  Article  Google Scholar 

    28.
    Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Alin, S. R., et al. Dissolved inorganic carbon, total alkalinity, pH on total scale, and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship Ronald H. Brown in the U.S. West Coast California Current System from 2016-05-08 to 2016-06-06 (NCEI Accession 0169412). Version 1.1. NOAA National Centers for Environmental Information dataset (2017). https://doi.org/10.7289/V5V40SHG.

    30.
    Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Wang, K., Hunt, B. P. V., Liang, C., Pauly, D. & Pakhomov, E. A. Reassessment of the life cycle of the pteropod Limacina helicina from a high resolution interannual time series in the temperate North Pacific. ICES J. Mar. Sci. 74, 1906–1920 (2017).
    Article  Google Scholar 

    32.
    Shimizu, K. et al. Phylogeography of the pelagic snail Limacina helicina (Gastropoda: Thecosomata) in the subarctic western North Pacific. J. Mollus. Stud. 84, 30–37 (2017).
    Article  Google Scholar 

    33.
    Sromek, L., Lasota, R. & Wolowicz, M. Impact of glaciations on genetic diversity of pelagic mollusks: Antarctic Limacina Antarctica and Arctic Limacina helicina. Mar. Ecol. Prog. Ser. 525, 143–152 (2015).
    ADS  Article  Google Scholar 

    34.
    Hunt, B. et al. Poles apart: the ‘bipolar’ pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic Oceans. PLoS ONE 5, e9835 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Bednaršek, N. et al. Systematic review and meta-analysis towards synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming. Front. Mar. Sci. 6, 227 (2019).
    Article  Google Scholar 

    36.
    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Legaard, K. R. & Thomas, A. C. Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California Current. J. Geophys. Res. 111, C06032 (2006).
    ADS  Article  Google Scholar 

    38.
    Thomsen, J., Casties, I., Pansch, C., Körtzinger, A. & Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: Laboratory and field experiments. Glob. Change Biol. 19, 1017–1027 (2013).
    ADS  Article  Google Scholar 

    39.
    Maas, A. E., Elder, L. E., Dierssen, H. M. & Seibel, B. A. Metabolic response of Antarctic pteropods (Mollusca: Gastropoda) to food deprivation and regional productivity. Mar. Ecol. Prog. Ser. 441, 129–139 (2011).
    ADS  CAS  Article  Google Scholar 

    40.
    Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 1–6 (2016).
    Article  CAS  Google Scholar 

    41.
    Thomas, A. C. & Strub, P. T. Interannual variability in phytoplankton pigment distribution during the spring transition along the west-coast of North America. J. Geophys. Res. 94, 18095–18117 (1989).
    ADS  CAS  Article  Google Scholar 

    42.
    Bednaršek, N. & Ohman, M. D. Changes in pteropod vertical distribution, abundance and species richness in the California Current System due to ocean acidification. Mar. Ecol. Prog. Ser. 523, 93–103 (2015).
    ADS  Article  CAS  Google Scholar 

    43.
    Lalli, C. M. & Gilmer, R. W. Pelagic Snails: The Biology of Holoplanktonic Gastropod Mollusks (Stanford University Press, Stanford, 1989).
    Google Scholar 

    44.
    Seibel, B. A., Dymowska, A. & Rosenthal, J. Metabolic temperature compensation and coevolution of locomotory performance in pteropod molluscs. Integr. Comp. Biol. 47, 880–891 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Checa, A. G. Physical and biological determinants of the fabrication of molluscan shell microstructures. Front. Mar. Sci. 5, 535 (2018).
    Article  Google Scholar 

    46.
    Marin, F., Le Roy, N. & Marie, B. The formation and mineralization of mollusk shell. Front. Biosci. 4, 1099–1125 (2012).
    Article  Google Scholar 

    47.
    Kroeker, K. J., Kordas, R. L. & Harley, C. D. G. Embracing interactions in ocean acidification research: Confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Buitenhuis, E. T., Le Quéré, C., Bednaršek, N. & Schiebel, R. Large contribution of pteropods to shallow CaCO3 export. Glob. Biogeochem. Cycles 33, 458–468 (2019).
    ADS  CAS  Article  Google Scholar 

    50.
    Mackas, D. L. & Galbraith, M. D. Pteropod time-series from the NE Pacific. ICES J. Mar. Sci. 69, 448–459 (2012).
    Article  Google Scholar 

    51.
    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).
    CAS  Article  Google Scholar 

    52.
    Kerney, M. P. & Cameron, R. A. D. A Field Guide to the Land Snails of Britain and North-West Europe (Collins, London, 1979).
    Google Scholar 

    53.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    54.
    Oksanen, J., et al. Vegan: Community Ecology Package. R package version 2.5-2 (2018).

    55.
    Wall-Palmer, D. et al. Biogeography and genetic diversity of the atlantid heteropods. Progr. Oceanogr. 160, 1–25 (2018).
    ADS  Article  Google Scholar 

    56.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Article  Google Scholar 

    57.
    Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).
    CAS  PubMed  Article  Google Scholar 

    58.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–2187 (2016).
    CAS  PubMed  Article  Google Scholar 

    59.
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More