Drivers of spatio-temporal variation in mosquito submissions to the citizen science project ‘Mückenatlas’
1.
Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 11, 1177–1185 (2009).
CAS PubMed Article Google Scholar
2.
Scholte, E. J. & Schaffner, F. Waiting for the tiger: Establishment and spread of the Aedes albopictus mosquito in Europe. In Emerging Pests and Vector-Borne Diseases in Europe (eds Takken, W. & Knols, B. G. J.) 241–260 (Wageningen Academic Publishers, Wageningen, 2007).
Google Scholar
3.
Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863. https://doi.org/10.1038/s41564-019-0376-y (2019).
CAS Article PubMed PubMed Central Google Scholar
4.
Kuhlisch, C., Kampen, H. & Walther, D. The Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) in Central Germany: Surveillance in its northernmost distribution area. Acta Trop. 188, 78–85 (2018).
PubMed Article PubMed Central Google Scholar
5.
Kampen, H. & Walther, D. Vector potential of mosquito species (Diptera: Culicidae) occurring in Central Europe. In Mosquito-borne Diseases: Implications for Public Health, Parasitol. Res. Monogr. Vol. 10 (eds Benelli, G. & Mehlhorn, H.) 41–68 (Springer, Heidelberg, 2018).
Google Scholar
6.
Kampen, H., Schuhbauer, A. & Walther, D. Emerging mosquito species in Germany—A synopsis after 6 years of mosquito monitoring (2011–2016). Parasitol. Res. 116, 3253–3263 (2017).
PubMed Article PubMed Central Google Scholar
7.
Ziegler, U. et al. West Nile virus epidemic in Germany triggered by epizootic emergence, 2019. Viruses 12, 448. https://doi.org/10.3390/v12040448 (2020).
Article PubMed Central Google Scholar
8.
Sullivan, B. L. et al. The eBird enterprise: An integrated approach to development and application of citizen science. Biol. Conserv. 169, 31–40 (2014).
Article Google Scholar
9.
Oltra, A., Palmer, J. R. B. & Bartumeus, F. AtrapaelTigre.com: Enlisting citizen-scientists in the war on tiger mosquitoes. In European Handbook of Crowdsourced Geographic Information (eds Capineri, C. et al.) 295–308 (Ubiquity Press, London, 2016).
Google Scholar
10.
Heigl, F., Horvath, K., Laaha, G. & Zaller, J. G. Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: Using a citizen science approach with open-access land cover data. BMC Ecol. 17, 24. https://doi.org/10.1186/s12898-017-0134-z (2017).
Article PubMed PubMed Central Google Scholar
11.
Walther, D. & Kampen, H. The citizen science project “Mueckenatlas” helps monitor the distribution and spread of invasive mosquito species in Germany. J. Med. Entomol. 54, 1790–1794 (2017).
PubMed PubMed Central Article Google Scholar
12.
Pocock, M. J. O., Roy, H. E., Fox, R., Ellis, W. N. & Botham, M. Citizen science and invasive alien species: Predicting the detection of the oak processionary moth Thaumetopoea processionea by moth recorders. Biol. Conserv. 208, 146–154 (2017).
Article Google Scholar
13.
Kampen, H., Kronefeld, M., Zielke, D. & Werner, D. Further specimens of the Asian tiger mosquito Aedes albopictus (Diptera, Culicidae) trapped in Southwest Germany. Parasitol. Res. 112, 905–907 (2013).
PubMed Article PubMed Central Google Scholar
14.
Kampen, H., Kuhlisch, C., Fröhlich, A., Scheuch, D. E. & Walther, D. Occurrence and spread of the invasive Asian bush mosquito Aedes japonicus japonicus (Diptera: Culicidae) in West and North Germany since detection in 2012 and 2013, respectively. PLoS ONE 11, e0167948. https://doi.org/10.1371/journal.pone.0167948 (2016).
CAS Article PubMed PubMed Central Google Scholar
15.
Walther, D., Scheuch, D. E. & Kampen, H. The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) in Germany: Local reproduction and overwintering. Acta Trop. 166, 186–192 (2017).
CAS PubMed Article PubMed Central Google Scholar
16.
Werner, D. & Kampen, H. Aedes albopictus breeding in southern Germany, 2014. Parasitol. Res. 114, 831–834 (2015).
PubMed Article PubMed Central Google Scholar
17.
Zielke, D. E., Walther, D. & Kampen, H. Newly discovered population of Aedes japonicus japonicus (Diptera: Culicidae) in upper Bavaria, Germany, and Salzburg, Austria, is closely related to the Austrian/Slovenian bush mosquito population. Parasit. Vectors 9, 163. https://doi.org/10.1186/s13071-016-1447-z (2016).
CAS Article PubMed PubMed Central Google Scholar
18.
Kampen, H., Jansen, S., Schmidt-Chanasit, J. & Walther, D. Indoor development of Aedes aegypti in Germany, 2016. Euro Surveill. 21, 30407. https://doi.org/10.2807/1560-7917.ES.2016.21.47.30407 (2016).
Article PubMed PubMed Central Google Scholar
19.
Werner, D., Zielke, D. E. & Kampen, H. First record of Aedes koreicus (Diptera: Culicidae) in Germany. Parasitol. Res. 115, 1331–1334 (2016).
PubMed Article Google Scholar
20.
Kampen, H., Kronefeld, M., Zielke, D. & Werner, D. Three rarely encountered and one new Culiseta species (Diptera: Culicidae) in Germany. J. Eur. Mosq. Control Assoc. 31, 36–39 (2013).
Google Scholar
21.
Kampen, H., Kronefeld, M., Zielke, D. & Werner, D. Some new, rare and less frequent mosquito species (Diptera, Culicidae) recently collected in Germany. Mitt. Dtsch. Ges. Allg. Angew. Ent. 19, 123–130 (2014).
Google Scholar
22.
Isaac, N. J. B. et al. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).
Article Google Scholar
23.
Kuhlisch, C., Kampen, H. & Werner, D. On the distribution and ecology of Culiseta (Culicella) ochroptera (Peus) (Diptera: Culicidae) in Germany. Zootaxa 4576, 544–558 (2019).
Article Google Scholar
24.
Heym, E. C., Schröder, J., Kampen, H. & Walther, D. The nuisance mosquito Anopheles plumbeus (Stephens, 1828) in Germany—A questionnaire survey may help support surveillance and control. Front. Public Health 5, 278. https://doi.org/10.3389/fpubh.2017.00278 (2017).
Article PubMed PubMed Central Google Scholar
25.
Zielke, D. Population genetics and distribution of the invasive mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Germany and Europe (Ph.D. thesis, University of Greifswald, 2015).
26.
Kerkow, A. et al. What makes the Asian bush mosquito Aedes japonicus japonicus feel comfortable in Germany? A fuzzy modelling approach. Parasit. Vectors 12, 106. https://doi.org/10.1186/s13071-019-3368-0 (2019).
Article PubMed PubMed Central Google Scholar
27.
Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. 6, 33051. https://doi.org/10.1038/srep33051 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
28.
Seymour, V. & Haklay, M. Exploring engagement characteristics and behaviours of environmental volunteers. Citiz. Sci. Theory Pract. 2, 5. https://doi.org/10.5334/cstp.66 (2017).
Article Google Scholar
29.
Mair, L. & Ruete, A. Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11, e0147796. https://doi.org/10.1371/journal.pone.0147796 (2016).
CAS Article PubMed PubMed Central Google Scholar
30.
Tiago, P., Ceia-Hasse, A., Marques, T. A., Capinha, C. & Pereira, H. M. Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci. Rep. 7, 12832. https://doi.org/10.1038/s41598-017-13130-8 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
31.
Chandler, M. et al. Contributions to publications and management plans from 7 years of citizen science: Use of a novel evaluation tool on Earthwatch-supported projects. Biol. Conserv. 208, 163–173 (2017).
Article Google Scholar
32.
Kelling, S. et al. Taking a “Big Data” approach to data quality in a citizen science project. Ambio 44, 601–611 (2015).
PubMed PubMed Central Article Google Scholar
33.
Becker, N. et al. Mosquitoes and Their Control (Springer, Heidelberg, 2010).
Google Scholar
34.
Schaffner, F. et al. The Mosquitoes of Europe. An Identification and Training Programme (CD-Rom) (IRD Éditions & EID Méditerrannée, Montpellier, 2001).
Google Scholar
35.
Heym, E. C., Kampen, H. & Walther, D. Mosquito species composition and phenology (Diptera, Culicidae) in two German zoological gardens imply different risks of mosquito-borne pathogen transmission. J. Vector Ecol. 43, 80–88 (2018).
PubMed Article PubMed Central Google Scholar
36.
European Union, Copernicus Land Monitoring Service. (European Environment Agency (EEA), 2012).
37.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
Google Scholar
38.
Tennekes, M. treemap: Treemap Visualization. R package version 2.4-2 (2017).
39.
Comtois, D. summarytools: Tools to Quickly and Neatly Summarize Data. R package version 0.9.3 (2019).
40.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).
Google Scholar
41.
Alender, B. Understanding volunteer motivations to participate in citizen science projects: A deeper look at water quality monitoring. J. Sci. Commun. 15, A04. https://doi.org/10.22323/2.15030204 (2016).
Article Google Scholar
42.
Domroese, M. C. & Johnson, E. A. Why watch bees? Motivations of citizen science volunteers in the Great Pollinator Project. Biol. Conserv. 208, 40–47 (2017).
Article Google Scholar
43.
Geoghegan, H., Dyke, A., Pateman, R., West, S. & Everett, G. Understanding Motivations for Citizen Science. Final report on behalf of UKEOF (University of Reading, Stockholm Environment Institute (University of York) and University of the West of England, 2016).
44.
Land-Zandstra, A. M., Devilee, J. L., Snik, F., Buurmeijer, F. & van den Broek, J. M. Citizen science on a smartphone: Participants’ motivations and learning. Public Underst. Sci. 25, 45–60 (2016).
PubMed Article PubMed Central Google Scholar
45.
GeoBasis-DE/BKG. Bundesamt für Kartographie und Geodäsie. WFS service. http://sg.geodatenzentrum.de/wfs_dlm250_inspire?request=GetCapabilities&service=wfs (2019).
46.
Statistisches Bundesamt, Wiesbaden. https://ergebnisse.zensus2011.de/ (2015).
47.
Deutscher Wetterdienst (German Weather Service, single values averaged). https://opendata.dwd.de/climate_environment/ (2020).
48.
Pebesma, E. Simple Features for R: Standardized support for spatial vector data. R J. 10, 439–446. https://doi.org/10.32614/rj-2018-009 (2018).
Article Google Scholar
49.
Cheng, J., Karambelkar, B. & Xie, Y. leaflet: Create Interactive Web Maps with the JavaScript ‘Leaflet’ Library. R package version 2.0.3 (2019).
50.
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 2.8-19 (2019).
51.
Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.4-3 (2019).
52.
Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC Press, Boca Raton, 2015).
Google Scholar
53.
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).
Google Scholar
54.
Kleiber, C. & Zeileis, A. countreg: Count Data Regression. R package version 0.2-1 (2016).
55.
Barton, K. MuMIn: Multi-model Inference. R package version 1.43.6 (2019).
56.
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, New York, 2002).
Google Scholar
57.
Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v027.i08 (2008).
Article Google Scholar
58.
Bertone, M. A. et al. Arthropods of the great indoors: Characterizing diversity inside urban and suburban homes. PeerJ 4, e1582. https://doi.org/10.7717/peerj.1582 (2016).
CAS Article PubMed PubMed Central Google Scholar
59.
Epps, M. J., Menninger, H. L., LaSala, N. & Dunn, R. R. Too big to be noticed: Cryptic invasion of Asian camel crickets in North American houses. PeerJ 2, e523. https://doi.org/10.7717/peerj.523 (2014).
Article PubMed PubMed Central Google Scholar
60.
Dunn, R. R. & Beasley, D. E. Democratizing evolutionary biology, lessons from insects. Curr. Opin. Insect Sci. 18, 89–92 (2016).
PubMed Article PubMed Central Google Scholar
61.
Hamer, S. A., Curtis-Robles, R. & Hamer, G. L. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Curr. Opin. Insect Sci. 28, 98–104 (2018).
PubMed Article PubMed Central Google Scholar
62.
Freitag, H., Pangantihon, C. V. & Njunjic, I. Three new species of Grouvellinus Champion, 1923 from Maliau Basin, Sabah, Borneo, discovered by citizen scientists during the first Taxon Expedition (Insecta, Coleoptera, Elmidae). ZooKeys 754, 1–21 (2018).
Article Google Scholar
63.
Higa, M. et al. Mapping large-scale bird distributions using occupancy models and citizen data with spatially biased sampling effort. Divers. Distrib. 21, 46–54 (2015).
Article Google Scholar
64.
Caputo, B. et al. ZanzaMapp: A scalable citizen science tool to monitor perception of mosquito abundance and nuisance in Italy and beyond. Int. J. Environ. Res. Public Health 17, 7872 (2020).
PubMed Central Article Google Scholar
65.
Curtis-Robles, R., Wozniak, E. J., Auckland, L. D., Hamer, G. L. & Hamer, S. A. Combining public health education and disease ecology research: Using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl. Trop. Dis. 9, e0004235. https://doi.org/10.1371/journal.pntd.0004235 (2015).
Article PubMed PubMed Central Google Scholar
66.
Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Change Biol. 24, 5281–5291 (2018).
ADS Article Google Scholar
67.
Statistisches Bundesamt. Bevölkerungsdichte (Einwohner je km2) in Deutschland nach Bundesländern zum 31. Dezember 2019 (Statista GmbH, 2020).
68.
Newman, G. et al. Leveraging the power of place in citizen science for effective conservation decision making. Biol. Conserv. 208, 55–64 (2017).
Article Google Scholar
69.
Becker, N. Microbial control of mosquitoes: Management of the upper Rhine mosquito population as a model programme. Parasitol. Today 13, 485–487 (1997).
CAS PubMed Article PubMed Central Google Scholar
70.
Peus, F. Beiträge zur Faunistik und Ökologie der einheimischen Culiciden. I. Teil. Zeitschr. Desinfekt. 21(76–81), 92–98 (1929).
Google Scholar
71.
Vezzani, D. Artificial container-breeding mosquitoes and cemeteries: A perfect match. Trop. Med. Int. Health 12, 299–313 (2007).
PubMed Article Google Scholar
72.
Scharnweber, T. et al. Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecol. Manag. 262, 947–961 (2011).
Article Google Scholar
73.
Oedekoven, C. S. et al. Attributing changes in the distribution of species abundance to weather variables using the example of British breeding birds. Methods Ecol. Evol. 8, 1690–1702 (2017).
Article Google Scholar
74.
Catlin-Groves, C. L. The citizen science landscape: From volunteers to citizen sensors and beyond. Int. J. Zool. 2012, 349630 (2012).
Article Google Scholar
75.
Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).
PubMed PubMed Central Article Google Scholar
76.
Weiser, E. L. et al. Balancing sampling intensity against spatial coverage for a community science monitoring programme. J. Appl. Ecol. 56, 2252–2263 (2019).
Article Google Scholar
77.
Mwangungulu, S. P. et al. Crowdsourcing vector surveillance: Using community knowledge and experiences to predict densities and distribution of outdoor-biting mosquitoes in rural Tanzania. PLoS ONE 11, e0156388. https://doi.org/10.1371/journal.pone.0156388 (2016).
CAS Article PubMed PubMed Central Google Scholar
78.
Eritja, R. et al. First detection of Aedes japonicus in Spain: An unexpected finding triggered by citizen science. Parasit. Vectors 12, 53. https://doi.org/10.1186/s13071-019-3317-y (2019).
Article PubMed PubMed Central Google Scholar More
