In situ observations show vertical community structure of pelagic fauna in the eastern tropical North Atlantic off Cape Verde
1.
Robison, B. H. Deep pelagic biology. J. Exp. Mar. Biol. Ecol. 300, 253–272 (2004).
Article Google Scholar
2.
Ramirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).
ADS Article Google Scholar
3.
Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).
ADS Article Google Scholar
4.
Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).
PubMed Article Google Scholar
5.
Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).
ADS CAS PubMed Article Google Scholar
6.
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).
ADS CAS PubMed Article Google Scholar
7.
Breitburg, D. L. et al. Declining oxygen in the global ocean and coastal waters. Science 359, 1–11 (2018).
Article CAS Google Scholar
8.
Robison, B. H. Conservation of deep pelagic biodiversity. Conserv. Biol. 23, 847–858 (2009).
PubMed Article Google Scholar
9.
Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).
ADS CAS Article Google Scholar
10.
Paulmier, A., Ruiz-Pino, D., Garçon, V. & Farías, L. Maintaining of the eastern south pacific oxygen minimum zone (OMZ) off Chile. Geophys. Res. Lett. 33, 1–6 (2006).
Article CAS Google Scholar
11.
Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).
PubMed Article Google Scholar
12.
Chavez, F. P. & Messié, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009).
ADS Article Google Scholar
13.
Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).
ADS Article Google Scholar
14.
Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
15.
Ekau, W., Auel, H., Pörtner, H.-O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7, 1669–1699 (2010).
ADS CAS Article Google Scholar
16.
Childress, J. J. & Seibel, B. A. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol. 201, 1223–1232 (1998).
CAS PubMed PubMed Central Google Scholar
17.
Gallo, N. D. & Levin, L. A. Fish ecology and evolution in the world’s oxygen minimum zones and implications of ocean deoxygenation. Adv. Mar. Biol. 74, 117–198 (2016).
CAS PubMed Article PubMed Central Google Scholar
18.
Seibel, B. A. et al. Metabolic suppression during protracted exposure to hypoxia in the jumbo squid, Dosidicus gigas, living in an oxygen minimum zone. J. Exp. Biol. 217, 2555–2568 (2014).
PubMed Article PubMed Central Google Scholar
19.
Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).
Article Google Scholar
20.
Longhurst, A. R., Bedo, A. W., Harrison, W. G., Head, E. J. H. & Sameoto, D. D. Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep. Res. Part A. 37, 685–694 (1990).
ADS CAS Article Google Scholar
21.
Kiko, R. et al. Zooplankton-mediated fluxes in the eastern tropical North Atlantic. Front. Mar. Sci. 7, 1–21 (2020).
ADS Article Google Scholar
22.
Christiansen, S. et al. Particulate matter flux interception in oceanic mesoscale eddies by the polychaete Poeobius sp. Limnol. Oceanogr. 63, 2093–2109 (2018).
ADS CAS Article Google Scholar
23.
Robison, B. H., Sherlock, R. E., Reisenbichler, K. R. & Mcgill, P. R. Running the gauntlet: assessing the threats to vertical migrators. Front. Mar. Sci. 7, 1–10 (2020).
CAS Article Google Scholar
24.
NogueiraJúnior, M., PereiraBrandini, F. & UgazCodina, J. C. Diel vertical dynamics of gelatinous zooplankton (Cnidaria, Ctenophora and Thaliacea) in a subtropical stratified ecosystem (South Brazilian Bight). PLoS ONE 10, 1–28 (2015).
Google Scholar
25.
Wishner, K. F., Outram, D. M., Seibel, B. A., Daly, K. L. & Williams, R. L. Zooplankton in the eastern tropical north Pacific: boundary effects of oxygen minimum zone expansion. Deep Sea Res. Part I(79), 122–140 (2013).
Article CAS Google Scholar
26.
Hoving, H. J. T. & Robison, B. H. Vampire squid: detritivores in the oxygen minimum zone. Proc. R. Soc. B Biol. Sci. 279, 4559–4567 (2012).
Article Google Scholar
27.
Seibel, B. A. Cephalopod susceptibility to asphyxiation via ocean incalescence, deoxygenation and acidification. Physiology 31, 418–429 (2016).
CAS PubMed Article Google Scholar
28.
Gilly, W. F. et al. Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. Mar. Ecol. Prog. Ser. 324, 1–17 (2006).
ADS Article Google Scholar
29.
Zuyev, G., Nigmatullin, C., Chesalin, M. & Nesis, K. Main results of long-term worldwide studies on tropical nektonic oceanic squid genus Sthenoteuthis: an overview of the Soviet investigations. Bull. Mar. Sci. 71, 1019–1060 (2002).
Google Scholar
30.
Prince, E. D. et al. Ocean scale hypoxia-based habitat compression of Atlantic istiophorid billfishes. Fish. Oceanogr. 19, 448–462 (2010).
Article Google Scholar
31.
Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Chang. 2, 33–37 (2012).
ADS CAS Article Google Scholar
32.
Thuesen, E. V. et al. Intragel oxygen promotes hypoxia tolerance of scyphomedusae. J. Exp. Biol. 208, 2475–2482 (2005).
PubMed Article Google Scholar
33.
Thuesen, E. V. & Childress, J. J. Oxygen consumption rates and metabolic enzyme activities of oceanic California Medusae in relation to body size and habitat depth. Biol. Bull. 187, 84–98 (1994).
CAS PubMed Article Google Scholar
34.
Mills, C. E. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions?. Hydrobiologia 451, 55–68 (2001).
Article Google Scholar
35.
Hauss, H. et al. Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies. Biogeosciences 13, 1977–1989 (2016).
ADS CAS Article Google Scholar
36.
Russell, F. S. On a remarkable new scyphomedusan. J. Mar. Biol. Assoc. UK 47, 469–473 (1967).
Article Google Scholar
37.
Matsumoto, G. I. & Robison, B. H. Kiyohimea usagi, a new species of lobate ctenophore from the Monterey Submarine Canyon. Bull. Mar. Sci. 51, 19–29 (1992).
Google Scholar
38.
Matsumoto, G. I., Raskoff, K. A. & Lindsay, D. J. Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.). Mar. Biol. 143, 73–77 (2003).
Article Google Scholar
39.
Lindsay, D. J. & Hunt, J. C. Biodiversity in midwater cnidarians and ctenophores: submersible-based results from deep-water bays in the Japan Sea nand north-western Pacific. J. Mar. Biol. Assoc. UK 85, 503–517 (2005).
Article Google Scholar
40.
Robison, B. H., Raskoff, K. A. & Sherlock, R. E. Ecological substrate in midwater: Doliolula equus, a new mesopelagic tunicate. J. Mar. Biol. Assoc. UK 85, 655–663 (2005).
Article Google Scholar
41.
Robison, B. H., Sherlock, R. E. & Reisenbichler, K. R. The bathypelagic community of Monterey Canyon. Deep. Res. Part II(57), 1551–1556 (2010).
Article Google Scholar
42.
Robison, B. H., Reisenbichler, K. R., Sherlock, R. E., Silguero, J. M. B. & Chavez, F. P. Seasonal abundance of the siphonophore, Nanomia bijuga, Monterey Bay. Deep. Res. II(45), 1741–1751 (1998).
ADS Google Scholar
43.
Choy, C. A., Haddock, S. H. D. & Robison, B. H. Deep pelagic food web structure as revealed by in situ feeding observations. Proc. R. Soc. B Biol. Sci. 284, 1–10 (2017).
Google Scholar
44.
Lindsay, D. J. et al. The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae). Mar. Biol. Res. 13, 494–512 (2017).
Article Google Scholar
45.
Raskoff, K., Hopcroft, R. R., Kosobokova, K., Purcell, J. & Youngbluth, M. Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep. Res. Part II(57), 111–126 (2010).
Article Google Scholar
46.
Hosia, A., Falkenhaug, T., Baxter, E. J. & Pagès, F. Abundance, distribution and diversity of gelatinous predators along the northern Mid-Atlantic Ridge: a comparison of different sampling methodologies. PLoS ONE 12, 1–18 (2017).
Article CAS Google Scholar
47.
Lindsay, D. J. et al. Submersible observations on the deep-sea fauna of the south-west Indian Ocean: preliminary results for the mesopelagic and near-bottom communities. JAMSTEC J. Deep Sea Res. 16, 1–10 (2000).
Google Scholar
48.
Robison, B. H., Reisenbichler, K. R. & Sherlock, R. E. The coevolution of midwater research and ROV technology at MBARI. Oceanography 30, 26–37 (2017).
Article Google Scholar
49.
Hays, G. C., Doyle, T. K. & Houghton, J. D. R. A Paradigm Shift in the Trophic Importance of Jellyfish?. Trends Ecol. Evol. 33, 874–884 (2018).
PubMed Article Google Scholar
50.
Hoving, H. J. T. et al. the pelagic in situ observation system (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna. Ocean Sci. 15, 1327–1340 (2019).
ADS CAS Article Google Scholar
51.
Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).
ADS CAS Article Google Scholar
52.
Breitburg, D. L. et al. The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. Estuaries 26, 280–297 (2003).
CAS Article Google Scholar
53.
Bailey, T. G., Youngbluth, M. J. & Owen, G. P. Chemical composition and metabolic rates of gelatinous zooplankton from midwater and benthic boundary layer environments off Cape Hatteras, North Carolina, USA. Mar. Ecol. Prog. Ser. 122, 121–134 (1995).
ADS CAS Article Google Scholar
54.
Maas, A. E., Frazar, S. L., Outram, D. M., Seibel, B. A. & Wishner, K. F. Fine-scale vertical distribution of macroplankton and micronekton in the Eastern Tropical North Pacific in association with an oxygen minimum zone. J. Plankton Res. 36, 1557–1575 (2014).
Article Google Scholar
55.
Morrison, J. M. et al. The oxygen minimum zone in the Arabian Sea during 1995. Deep. Res. Part II(46), 1903–1931 (1999).
Article Google Scholar
56.
Tecchio, S. et al. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea. Deep. Res. Part I(75), 1–15 (2013).
Google Scholar
57.
Toda, R., Lindsay, D. J., Fuentes, V. L. & Moteki, M. Community structure of pelagic cnidarians off Adélie Land, East Antarctica, during austral summer 2008. Polar Biol. 37, 269–289 (2014).
Article Google Scholar
58.
Licandro, P. et al. Biogeography of jellyfish in the North Atlantic, by traditional and genomic methods. Earth Syst. Sci. Data 7, 173–191 (2015).
ADS Article Google Scholar
59.
Lindsay, D., Umetsu, M., Grossmann, M., Miyake, H. & Yamamoto, H. The Gelatinous Macroplankton Community at the Hatoma Knoll Hydrothermal Vent, in Subseafloor Biosph. Linked to Hydrothermal Syst. TAIGA Concept (J.-i. Ishibashi, eds.) 639–666 (2015). https://doi.org/10.1007/978-4-431-54865-2.
60.
Johnsen, S. & Widder, E. A. Ultraviolet absorption in transparent zooplankton and its implications for depth distribution and visual predation. Mar. Biol. 138, 717–730 (2001).
Article Google Scholar
61.
Lüskow, F. et al. Distribution and biomass of gelatinous zooplankton in relation to an oxygen minimum zone and a shallow seamount in the Eastern Tropical Atlantic Ocean. Reg. Stud. Mar. Sci. Submitt. (2020)
62.
Raskoff, K. A. Distributions and trophic interactions of mesopelagic hydromedusae in Monterey Bay, CA: In situ studies with the MBARI ROVs Ventana and Tiburon. Ocean Sci. Diego, CA. Eos, Trans. Am. Geophys. Union. 79, 1, (1998).
63.
Youngbluth, M., Sørnes, T., Hosia, A. & Stemmann, L. Vertical distribution and relative abundance of gelatinous zooplankton, in situ observations near the Mid-Atlantic Ridge. Deep. Res. II Top. Stud. Oceanogr. 55, 119–125 (2008).
ADS Article Google Scholar
64.
Grossmann, M. M., Nishikawa, J. & Lindsay, D. J. Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas. Deep. Res. Part I(100), 54–63 (2015).
Article Google Scholar
65.
Swift, H. F., Hamner, W. M., Robison, B. H. & Madin, L. P. Feeding behavior of the ctenophore Thalassocalyce inconstans: revision of anatomy of the order Thalassocalycida. Mar. Biol. 156, 1049–1056 (2009).
Article Google Scholar
66.
Hoving, H. J., Neitzel, P. & Robison, B. In situ observations lead to the discovery of the large ctenophore Kiyohimea usagi (Lobata: Eurhamphaeidae) in the eatern tropical Atlantic. Zootaxa 4526, 232–238 (2018).
PubMed Article Google Scholar
67.
Kiko, R., Hauss, H., Buchholz, F. & Melzner, F. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions. Biogeosciences 13, 2241–2255 (2016).
ADS CAS Article Google Scholar
68.
Seibel, B. A., Schneider, J. L., Kaartvedt, S., Wishner, K. F. & Daly, K. L. Hypoxia tolerance and metabolic suppression in oxygen minimum zone euphausiids: implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. 56, 510–523 (2016).
CAS PubMed Article Google Scholar
69.
Christiansen, B. et al. SEAMOX: The influence of Seamounts and Oxygen Minimum Zones on Pelagic Fauna in the Eastern Tropical Atlantic. Cruise No. MSM49 (MARIA S. MERIAN-Berichte) 1–42 (2016). https://doi.org/10.2312/cr_msm49.
70.
Haeckel, S. The Deep-Sea Guide, (DSG) at http://dsg.mbari.org. Monterey Bay Aquarium Research Institute (MBARI). Consult. 2020-04-14. (1879)
71.
Lilley, M. K. S. & Lombard, F. Respiration of fragile planktonic zooplankton: extending the possibilities with a single method. J. Exp. Mar. Bio. Ecol. 471, 226–231 (2015).
Article Google Scholar
72.
Raskoff, K. A. Foraging, prey capture, and gut contents of the mesopelagic narcomedusa Solmissus spp. (Cnidaria: Hydrozoa). Mar. Biol. 141, 1099–1107 (2002).
Article Google Scholar
73.
Thuesen, E. V. & Childress, J. J. Metabolic rates, enzyme activities and chemical compositions of some deep-sea pelagic worms, particularly Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida; Polychaeta). Deep. Res. I(40), 937–951 (1993).
Article Google Scholar
74.
Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–519 (2016).
ADS CAS PubMed Article Google Scholar
75.
Childress, J. J. Are there physiological and biochemical adaptations of metabolism in deep-sea animals?. Trends Ecol. Evol. 10, 1–10 (1995).
Article Google Scholar
76.
Koslow, J. A., Goericke, R., Lara-Lopez, A. & Watson, W. Impact of declining intermediate-water oxygen on deepwater fishes in the California Current. Mar. Ecol. Prog. Ser. 436, 207–218 (2011).
ADS Article Google Scholar
77.
Netburn, A. N. & Koslow, J. A. Dissolved oxygen as a constraint on daytime deep scattering layer depth in the southern California current ecosystem. Deep. Res. Part I(104), 149–158 (2015).
Article CAS Google Scholar
78.
Klevjer, T. A., Torres, D. J. & Kaartvedt, S. Distribution and diel vertical movements of mesopelagic scattering layers in the Red Sea. Mar. Biol. 159, 1833–1841 (2012).
PubMed PubMed Central Article Google Scholar
79.
Aksnes, D. L. et al. Light penetration structures the deep acoustic scattering layers in the global ocean. Sci. Adv. 3, 1–6 (2017).
Article Google Scholar
80.
Osborn, D. A., Silver, M. W., Castro, C. G., Bros, S. M. & Chavez, F. P. The habitat of mesopelagic scyphomedusae in Monterey Bay, California. Deep. Res. Part I(54), 1241–1255 (2007).
Article Google Scholar
81.
Roe, H. S. J., James, P. T. & Thurston, M. H. The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 6. Medusae, Ctenophores, Amphipods and Euphasusiids. Prog. Oceanogr. 13, 425–460 (1984).
ADS Article Google Scholar
82.
Morita, H. et al. Spatio-temporal structure of the jellyfish community in the transition zone of cold and warm currents in the northwest pacific. Plankt. Benthos Res. 12, 266–284 (2017).
Article Google Scholar
83.
Grossmann, M. M., Nishikawa, J. & Lindsay, D. J. Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas. Deep. Res. I Oceanogr. Res. Pap. 100, 54–63 (2015).
ADS Article Google Scholar
84.
Hidaka-Umetsu, M. & Lindsay, D. J. Comparative ROV surveys reveal jellyfish blooming in a deep-sea caldera: the first report of Earleria bruuni from the Pacific Ocean. J. Mar. Biol. Assoc. UK 98, 2075–2085 (2018).
Article Google Scholar
85.
Haddock, S. H. D., Dunn, C. W. & Pugh, P. R. A re-examination of siphonophore terminology and morphology, applied to the description of two new prayine species with remarkable bio-optical properties. J. Mar. Biol. Assoc. UK 85, 695–707 (2005).
Article Google Scholar
86.
Fenaux, R. & Youngbluth, M. J. A new mesopelagic Appendicularian, Mesochordaeus bahamasi gen. nov., sp. nov. J. Mar. Biol. Assoc. UK 70, 755–760 (1990).
Article Google Scholar
87.
Hopcroft, R. R. & Robison, B. H. A new mesopelagic larvacean, Mesochordaeus erythrocephalus, sp. nov., from Monterey Bay, with a description of its filtering house. J. Plankton Res. 21, 1923–1937 (1999).
Article Google Scholar
88.
Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. C. Ocean oxygen minima expansions and their biological impacts. Deep. Res. I Oceanogr. Res. Pap. 57, 587–595 (2010).
ADS CAS Article Google Scholar
89.
Garçon, V. et al. Multidisciplinary observing in the world ocean’s oxygen minimum zone regions: from climate to fish—the VOICE Initiative. Front. Mar. Sci. 6, 1–22 (2019).
Article Google Scholar
90.
Christiansen, B. et al. SEAMOX: The Influence of Seamounts and Oxygen Minimum Zones on Pelagc Fauna in the Eastern Tropical Atlantic – Cruise No. MSM49 – November 28 – December 21, 2015 – Las Palmas de Gran Canaria (Spain) – Mindelo (Republic of Cape Verde). MARIA S. MERIAN-Berichte 1–42 (2016). https://doi.org/10.2312/cr_msm49.
91.
Picheral, M. et al. The Underwater Vision Profiler 5: an advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8, 462–473 (2010).
Article Google Scholar
92.
Schlining, B. M. & Jacobsen Stout, N. MBARI’s Video Annotation and Reference System. IEEE 1–5 (2006). https://doi.org/10.1109/OCEANS.2006.306879.
93.
Reisenbichler, K. R. et al. Automating MBARI ’s midwater time-series video surveys: the transition from ROV to AUV. Ocean. 2016 MTS/IEEE Monterey 1–9 (2016). https://doi.org/10.1109/OCEANS.2016.7761499.
94.
Biard, T. & Ohman, M. D. Vertical niche definition of test-bearing protists (Rhizaria) into the twilight zone revealed by in situ imaging. Limnol. Oceanogr. https://doi.org/10.1002/lno.11472 (2020).
Article Google Scholar
95.
Nakamura, Y. et al. Optics-based surveys of large unicellular zooplankton: a case study on radiolarians and phaeodarians. Plankt. Benthos Res. 12, 95–103 (2017).
Article Google Scholar
96.
Hunt, J. C. & Lindsay, D. J. Observations on the behavior of Atolla (Scyphozoa: Coronatae) and Nanomia (Hydrozoa: Physonectae): use of the hypertrophied tentacle in prey capture. Plankt. Biol. Ecol. 45, 239–242 (1998).
Google Scholar
97.
Kramp, P. L. Synopsis of the Medusae of the World. J. Mar. Biol. Assoc. UK 40, 7–382 (1961).
Article Google Scholar
98.
Mills, C. E., Haddock, S. H. D., Dunn, C. W. & Pugh, P. R. Key To the Siphonophora. In Light Smith’s Man Intertidal Invertebr Cent Calif Coast (ed. Carlton, J. T.) 150–166 (University of California Press, San Francisco, 2007).
Google Scholar
99.
Sherlock, R. E., Walz, K. R., Schlining, K. L. & Robison, B. H. Morphology, ecology, and molecular biology of a new species of giant larvacean in the eastern North Pacific: Bathochordaeus mcnutti sp. nov.. Mar. Biol. 164, 1–15 (2017).
CAS Article Google Scholar
100.
Latasa, M., Cabello, A. M., Morán, X. A. G., Massana, R. & Scharek, R. Distribution of phytoplankton groups within the deep chlorophyll maximum. Limnol. Oceanogr. 62, 665–685 (2017).
ADS CAS Article Google Scholar More
