Genetic analyses reveal temporal stability and connectivity pattern in blue and red shrimp Aristeus antennatus populations
1.
Fernández, M. V., Heras, S., Maltagliati, F., Turco, A. & Roldán, M. I. Genetic structure in the blue and red shrimp Aristeus antennatus and the role played by hydrographical and oceanographical barriers. Mar. Ecol. Prog. Ser. 421, 163–171 (2011).
ADS Article Google Scholar
2.
Campillo, A. Bio-ecology of Aristeus antennatus in the French Mediterranean. in Proceedings of the International Workshop on Life Cycles and Fisheries of the Deep-water Red Shrimps Aristaeomorpha foliacea and Aristeus antennatus (ed. Bianchini, M. L. & Ragonese, S.) 25–26 (I.T.P.P. Spec. Publ., Mazara del Vallo, Italy, 1994).
Google Scholar
3.
Sardà, F. et al. An introduction to Mediterranean deep-sea biology. Sci. Mar. 68, 7–38 (2004).
Article Google Scholar
4.
Sardà, F., Company, J. B. & Castellón, A. Intraspecific aggregation structure of a shoal of a Western Mediterranean (Catalan coast) deep-sea shrimp, Aristeus antennatus (Risso, 1816), during the reproductive period. J. Shellfish Res. 22, 569–579 (2003).
Google Scholar
5.
García-Rodriguez, M. & Esteban, A. On the biology and fishery of Aristeus antennatus (Risso, 1816), (Decapoda, Dendrobranchiata) in the Ibiza Channel (Balearic Islands, Spain). Sci. Mar. 63, 27–37 (1999).
Article Google Scholar
6.
Carreton, M. et al. Morphological identification and molecular confirmation of the deep-sea blue and red shrimp Aristeus antennatus larvae. PeerJ 7, e6063 (2019).
PubMed PubMed Central Article Google Scholar
7.
Carbonell, A., Carbonell, M., Demestre, M., Grau, A. & Monserrat, S. The red shrimp Aristeus antennatus (Risso, 1816) fishery and biology in the Balearic Islands, Western Mediterranean. Fish. Res. 44, 1–13 (1999).
Article Google Scholar
8.
Maynou, F. Environmental causes of the fluctuations of red shrimp (Aristeus antennatus) landings in the Catalan Sea. J. Mar. Syst. 71, 294–302 (2008).
Article Google Scholar
9.
Massutí, E. et al. The influence of oceanographic scenarios on the population dynamics of demersal resources in the western Mediterranean; hypothesis for hake and red shrimp off Balearic Islands. J. Mar. Syst. 71, 421–438 (2008).
Article Google Scholar
10.
Food and Agriculture Organization. General Fisheries Commission for the Mediterranean; Report of the ninth session of the Scientific Advisory Committee. FAO Fish. Rep. 814, 1–106 (2006).
11.
Boletín Oficial del Estado. Orden AAA/2808/2012, de 21 de diciembre, por la que se establece un Plan de Gestión Integral para la conservación de los recursos pesqueros en el Mediterráneo afectados por las pesquerías realizadas con redes de cerco, redes de arrastre y artes fijos y menores, para el período 2013–2017. BOE 313, 89468–89475 (2012).
Google Scholar
12.
Boletín Oficial del Estado. Orden AAA/923/2013, de 16 de mayo, por la que se regula la pesca de gamba rosada (Aristeus antennatus) con arte de arrastre de fondo en determinadas zonas marítimas próximas a Palamós. BOE 126, 40016–40022 (2013).
Google Scholar
13.
Boletín Oficial del Estado. Orden APM/532/2018, de 25 de mayo, por la que se regula la pesca de gamba rosada (Aristeus antennatus) con arte de arrastre de fondo en determinadas zonas marítimas próximas a Palamós. BOE 128, 55045–55051 (2018).
Google Scholar
14.
Waples, R. S., Punt, A. E. & Cope, J. M. Integrating genetic data into management of marine resources: how can we do it better?. Fish. Fish. 9, 423–449 (2008).
Article Google Scholar
15.
Sardà, F., Bas, C., Roldán, M. I., Pla, C. & Lleonart, J. Enzymatic and morphometric analyses in mediterranean populations of the rose shrimp, Aristeus antennatus (Risso, 1816). J. Exp. Mar. Biol. Ecol. 221, 131–144 (1998).
Article Google Scholar
16.
Roldán, M. I., Heras, S., Patellani, R. & Maltagliati, F. Analysis of genetic structure of the red shrimp Aristeus antennatus from the Western Mediterranean employing two mitochondrial regions. Genetica 136, 1–4 (2009).
PubMed Article CAS PubMed Central Google Scholar
17.
Lo Brutto, S., Maggio, T., Delana, A. M., Cannas, R. & Arculeo, M. Further investigations on populations of the Deep-water blue and red shrimp Aristeus antennatus (Risso, 1816) (Decapoda, Dendrobranchiata), as inferred from amplified fragment length polymorphism (AFLP) and mtDNA analyses. Crustaceana 85, 1393–1408 (2012).
Article Google Scholar
18.
Wright, J. M. & Bentzen, P. Microsatellites: genetic markers for the future. Rev. Fish. Biol. Fish. 4, 384–388 (1994).
Article Google Scholar
19.
Cannas, R. et al. Genetic variability of the blue and red shrimp Aristeus antennatus in the Western Mediterranean Sea inferred by DNA microsatellite loci. Mar. Ecol. 33, 350–363 (2012).
ADS Article Google Scholar
20.
You, E.-M. et al. Microsatellite and mitochondrial haplotype diversity reveals population differentiation in the tiger shrimp (Penaeus monodon) in the Indo-Pacific region. Anim. Genet. 39, 267–277 (2008).
CAS PubMed Article PubMed Central Google Scholar
21.
Robainas-Barcia, A. et al. Spatiotemporal genetic differentiation of Cuban natural populations of the pink shrimp Farfantepenaeus notialis. Genetica 133, 283–294 (2008).
PubMed Article PubMed Central Google Scholar
22.
Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish. Fish. 9, 333–362 (2008).
Article Google Scholar
23.
Schunter, C. et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).
CAS PubMed Article PubMed Central Google Scholar
24.
Vera, M. et al. Current genetic status, temporal stability and structure of the remnant wild European flat oyster populations: conservation and restoring implications. Mar. Biol. 163, 239 (2016).
Article Google Scholar
25.
García-Ladona, E. Currents in the Western Mediterranean basin. In Atlas of Bedforms in the Western Mediterranean (eds Guillén, J. et al.) 41–47 (Springer, Cham, 2017).
Google Scholar
26.
Fernández, V., Dietrich, D. E., Haney, R. L. & Tintoré, J. Mesoscale, seasonal and interannual variability in the Mediterranean Sea using a numerical ocean model. Prog. Oceanogr. 66, 321–340 (2005).
ADS Article Google Scholar
27.
Pinot, J.-M., López-Jurado, J. L. & Riera, M. The Canales experiment (1996–1998). Interannual, seasonal and mesoscale variability of the circulation in the Balearic Channels. Prog. Oceanogr. 55, 335–370 (2002).
ADS Article Google Scholar
28.
García-Merchán, V. H. et al. Phylogeographic patterns of decapod crustaceans at the Atlantic-Mediterranean transition. Mol. Phylogenet. Evol. 62, 664–672 (2012).
PubMed Article PubMed Central Google Scholar
29.
Cartes, J. E., Madurell, T., Fanelli, E. & López-Jurado, J. L. Dynamics of suprabenthos-zooplankton communities around the Balearic Islands (western Mediterranean): influence of environmental variables and effects on the biological cycle of Aristeus antennatus. J. Mar. Syst. 71, 316–335 (2008).
Article Google Scholar
30.
Company, J. B. et al. Climate influence on deep sea populations. PLoS ONE 3, e1431 (2008).
ADS PubMed PubMed Central Article CAS Google Scholar
31.
Direcció General d’Agricultura, Ramadería, Pesca i Alimentació. Programa d’Acció Marítima. Estratègia marítima de Catalunya 2030—Pla Estratègic 2018–2021 (2018).
32.
Food and Agriculture Organization. General Fisheries Commission for the Mediterranean; Report of the nineteenth session of the Scientific Advisory Committee on Fisheries. FAO Fish. Rep. 1209, 1–174 (2017).
33.
Planella, L., Vera, M., García-Marín, J.-L., Heras, S. & Roldán, M. I. Mating structure of the blue and red shrimp, Aristeus antennatus (Risso, 1816) characterized by relatedness analysis. Sci. Rep. 9, 7227 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
34.
Heras, S., Planella, L., García-Marín, J.-L., Vera, M. & Roldán, M. I. Genetic structure and population connectivity of the blue and red shrimp Aristeus antennatus. Sci. Rep. 9, 13531 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
35.
Jorquera, E., Anstey, L., Paterson, I., Kenchington, E. & Ruzzante, D. E. Isolation and characterization of 26 novel microsatellite loci in the deep-sea shrimp Acanthephyra pelagica. Conserv. Genet. Resour. 6, 731–733 (2014).
Article Google Scholar
36.
Jacobson, A., Plouviez, S., Thaler, A. D. & Van Dover, C. L. Characterization of 13 polymorphic microsatellite loci in Rimicaris hybisae, a shrimp from deep-sea hydrothermal vents. Conserv. Genet. Resour. 5, 449–451 (2013).
Article Google Scholar
37.
Arculeo, M., Pellerito, R. & Bonhomme, F. Isolation and use of microsatellite loci in Melicertus kerathurus (Crustacea, Penaeidae). Aquat. Living Resour. 23, 103–107 (2010).
CAS Article Google Scholar
38.
Benzie, J. A. H. Population genetic structure in penaeid prawns. Aquac. Res. 31, 95–119 (2000).
Article Google Scholar
39.
Maggio, T., Lo Brutto, S., Cannas, R., Deiana, A. M. & Arculeo, M. Environmental features of deep-sea habitats linked to the genetic population structure of a crustacean species in the Mediterranean Sea. Mar. Ecol. 30, 354–365 (2009).
ADS CAS Article Google Scholar
40.
Palumbi, S. R. Marine reserves and ocean neighbourhoods: the spatial scale of marine populations and their management. Annu. Rev. Environ. Resour. 29, 31–68 (2004).
Article Google Scholar
41.
Anger, K. Contributions of larval biology to crustacean research: a review. Invertebr. Reprod. Dev. 49, 175–205 (2006).
Article Google Scholar
42.
Palmas, F., Olita, A., Addis, P., Sorgente, R. & Sabatini, A. Modelling giant red shrimp larval dispersal in the Sardinian seas: density and connectivity scenarios. Fish. Oceanogr. 26, 364–378 (2017).
Article Google Scholar
43.
Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).
PubMed Article PubMed Central Google Scholar
44.
Schunter, C. et al. Genetic connectivity patterns in an endangered species: The dusky grouper (Epinephelus marginatus). J. Exp. Mar. Biol. Ecol. 401, 126–133 (2011).
Article Google Scholar
45.
Carbonell, A. Evaluación de la gamba rosada, Aristeus antennatus (Risso, 1816), en el Mar Balear. (University of the Balearic Islands, Mallorca, Spain, 2005).
46.
Sardà, F., Company, J. B., Rotllant, G. & Coll, M. Biological patterns and ecological indicators for Mediterranean fish and crustaceans below 1,000 m: a review. Rev. Fish. Biol. Fish. 19, 329–347 (2009).
Article Google Scholar
47.
Paradis, S. et al. Spatial distribution of sedimentation-rate increases in Blanes Canyon caused by technification of bottom trawling fleet. Prog. Oceanogr. 169, 241–252 (2018).
ADS Article Google Scholar
48.
Clavel-Henry, M. et al. Influence of the summer deep-sea circulations on passive drifts among the submarine canyons in the northwestern Mediterranean Sea. Ocean. Sci. 15, 1745–1759 (2019).
ADS Article Google Scholar
49.
Masó, M. & Tintoré, J. Variability of the shelf water off the northeast Spanish coast. J. Mar. Syst. 1, 441–450 (1991).
Article Google Scholar
50.
Ahumada-Sempoal, M.-A., Flexas, M. M., Bernardello, R., Bahamon, N. & Cruzado, A. Northern Current variability and its impact on the Blanes Canyon circulation: a numerical study. Prog. Oceanogr. 118, 61–70 (2013).
ADS Article Google Scholar
51.
Fernandez-Arcaya, U. et al. Ecological role of submarine canyons and need for canyon conservation: a review. Front. Mar. Sci. 4, 1–26 (2017).
ADS Article Google Scholar
52.
Zúñiga, D. et al. Particle fluxes dynamics in Blanes submarine canyon (Northwestern Mediterranean). Prog. Oceanogr. 82, 239–251 (2009).
ADS Article Google Scholar
53.
Durrieu de Madron, X. et al. Interaction of dense shelf water cascading and open-sea convection in the northwestern Mediterranean during winter 2012. Geophys. Res. Lett. 40, 1379–1385 (2013).
ADS Article Google Scholar
54.
Cisneros, M. et al. Deep-water formation variability in the north-western Mediterranean Sea during the last 2500 yr: a proxy validation with present-day data. Glob. Planet. Change 177, 56–68 (2019).
ADS Article Google Scholar
55.
Román, S. et al. High spatiotemporal variability in meiofaunal assemblages in Blanes Canyon (NW Mediterranean) subject to anthropogenic and natural disturbances. Deep. Sea Res Part I Oceanogr. Res. Pap. 117, 70–83 (2016).
ADS Article CAS Google Scholar
56.
Fernández, M. V., Heras, S., Maltagliati, F. & Roldán, M. I. Deep genetic divergence in giant red shrimp Aristaeomorpha foliacea (Risso, 1827) across a wide distributional range. J. Sea. Res. 76, 146–153 (2013).
ADS Article Google Scholar
57.
Heras, S. et al. Development and characterization of novel microsatellite markers by Next Generation Sequencing for the blue and red shrimp Aristeus antennatus. PeerJ 4, e2200 (2016).
PubMed PubMed Central Article CAS Google Scholar
58.
Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Accessed 20 Nov 2019; https://www2.unil.ch/popgen/softwares/fstat.htm (2001).
59.
Rousset, F. GENEPOP´007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
PubMed Article PubMed Central Google Scholar
60.
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
CAS PubMed PubMed Central Google Scholar
61.
Guo, S. W. & Thompson, E. A. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48, 361–372 (1992).
CAS PubMed MATH Article PubMed Central Google Scholar
62.
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Article CAS Google Scholar
63.
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Article Google Scholar
64.
Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).
CAS PubMed Article PubMed Central Google Scholar
65.
Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
CAS PubMed PubMed Central Google Scholar
66.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
67.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
CAS PubMed Article PubMed Central Google Scholar
68.
Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Article Google Scholar
69.
Ryman, N. & Palm, S. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602 (2006).
Article Google Scholar
70.
Hill, W. G. Estimation of effective population size from data on linkage disequilibrium. Genet. Res. 38, 209–216 (1981).
Article Google Scholar
71.
Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184 (2006).
Article Google Scholar
72.
Do, C. et al. NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).
CAS PubMed Article PubMed Central Google Scholar
73.
Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).
CAS PubMed PubMed Central Google Scholar
74.
Rohlf, F. J. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Setauket, New York (1993).
75.
Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475 (2016).
PubMed PubMed Central Article Google Scholar More