Species versus within-species niches: a multi-modelling approach to assess range size of a spring-dwelling amphibian
1.
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
ADS PubMed PubMed Central Article Google Scholar
2.
Peterson, M. L., Doak, D. F. & Morris, W. F. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob. Change. Biol 25, 775–793 (2019).
ADS Article Google Scholar
3.
Rodríguez-Rodríguez, E. J. et al. Niche models at inter- and intraspecific levels reveal hierarchical niche differentiation in midwife toads. Sci. Rep. 10, 10942 (2020).
ADS PubMed PubMed Central Article CAS Google Scholar
4.
Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology Vol. 239 (Oxford University Press, Oxford, 1991).
Google Scholar
5.
Banerjee, A. K., Mukherjee, A., Guo, W., Ng, W. L. & Huang, Y. Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change. Glob. Ecol. Conserv. 20, e00800 (2019).
Article Google Scholar
6.
Martínez-Freiría, F. et al. Climatic refugia boosted allopatric diversification in western Mediterranean vipers. J. Biogeogr. https://doi.org/10.1111/jbi.13861 (2020).
Article Google Scholar
7.
Groom, Q. J., Marsh, C. J., Gavish, Y. & Kunin, W. E. How to predict fine resolution occupancy from coarse occupancy data. Methods Ecol. Evol. 9, 2273–2284 (2018).
Article Google Scholar
8.
Li, Y. et al. Climate and topography explain range sizes of terrestrial vertebrates. Nat. Clim. Change 6, 498–502 (2016).
ADS Article Google Scholar
9.
Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A. & Martín, J. L. Adapting the IUCN Red List criteria for invertebrates. Biol. Conserv. 144, 2432–2440 (2011).
Article Google Scholar
10.
Burbidge, A., Woinarski, J. & Harrison, P. The Action Plan for Australian Mammals 2012 (Csiro Publishing, Clayton, 2014).
Google Scholar
11.
Jiménez-Alfaro, B., Draper, D. & Nogués-Bravo, D. Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates. Biol. Conserv. 147, 190–196 (2012).
Article Google Scholar
12.
Kamino, L. H. Y., Siqueira, M., Sánchez-Tapia, A. & Stehmann, J. R. Reassessment of the extinction risk of endemic species in the Neotropics: how can modelling tools help us. Nat. Conserv. 10, 191–198 (2012).
Article Google Scholar
13.
Kluber, M. R., Olson, D. H. & Puettmann, K. J. Amphibian distributions in riparian and upslope areas and their habitat associations on managed forest landscapes in the Oregon Coast Range. For. Ecol. Manage 256, 529–535 (2008).
Article Google Scholar
14.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
15.
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Article Google Scholar
16.
Steinfartz, S., Hwang, U. W., Tautz, D., Öz, M. & Veith, M. Molecular phylogeny of the salamandrid genus Neurergus: evidence for an intrageneric switch of reproductive biology. Amphib-Reptilia. 23, 419–431 (2002).
Article Google Scholar
17.
Goudarzi, F. et al. Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci. Rep. 9, 6239 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
18.
IUCN SSC Amphibian Specialist Group. Neurergus kaiseri. The IUCN Red List of Threatened Species 2016: e.T59450A49436271. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T59450A49436271.en. Downloaded on 29 November 2018.
19.
Vaissi, S. & Sharifi, M. Integrating multi-criteria decision analysis with a GIS-based siting procedure to select a protected area for the Kaiser’s mountain newt, Neurergus kaiseri (Caudata: Salamandridae). Glob. Ecol. Conserv. 20, e00738 (2019).
Article Google Scholar
20.
Rancilhac, L. et al. Phylogeny and species delimitation of Near Eastern Neurergus newts (Salamandridae) based on genome-wide RADseq data analysis. Mol. Phylogenet. Evol. 133, 189–197 (2019).
PubMed Article PubMed Central Google Scholar
21.
Pearman, P. B., D’Amen, M., Graham, C. H., Thuiller, W. & Zimmermann, N. E. Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33, 990–1003 (2010).
Article Google Scholar
22.
Lecocq, T., Harpke, A., Rasmont, P. & Schweiger, O. Integrating intraspecific differentiation in species distribution models: Consequences on projections of current and future climatically suitable areas of species. Divers. Distrib. 25, 1088–1100 (2019).
Article Google Scholar
23.
Rodríguez-Rodríguez, E. J. et al. Climate change challenges IUCN conservation priorities: A test with western Mediterranean amphibians. SN Appl. Sci. 2, 216 (2020).
Article Google Scholar
24.
Joppa, L. N. et al. Impact of alternative metrics on estimates of extent of occurrence for extinction risk assessment. Conserv. Biol. 30, 362–370 (2016).
PubMed Article PubMed Central Google Scholar
25.
Denoël, M. & Ficetola, G. F. Landscape-level thresholds and newt conservation. Ecol. Appl. 17, 302–309 (2007).
PubMed Article PubMed Central Google Scholar
26.
Denoël, M. et al. A multi-scale approach to facultative paedomorphosis of European newts (Salamandridae) in the Montenegrin karst: distribution pattern, environmental variables, and conservation. Biol. Conserv. 142, 509–517 (2009).
Article Google Scholar
27.
Ildos, A. S. & Ancona, N. Analysis of amphibian habitat preferences in a farmland area (Po plain, northern Italy). Amphib-Reptilia. 15, 307–316 (1994).
Article Google Scholar
28.
Beebee, T. J. Discriminant analysis of amphibian habitat determinants in South-East England. Amphib-Reptilia. 6, 35–43 (1985).
Article Google Scholar
29.
Manzoor, S. A., Griffiths, G. & Lukac, M. Species distribution model transferability and model grain size—finer may not always be better. Sci. Rep. 8, 7168 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
30.
Chardon, N. I., Pironon, S., Peterson, M. L. & Doak, D. F. Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide-spread plant species. Ecography 43, 60–74 (2020).
Article Google Scholar
31.
Maguire, K. C., Shinneman, D. J., Potter, K. M. & Hipkins, V. D. Intraspecific niche models for ponderosa pine (Pinus ponderosa) suggest potential variability in population-level response to climate change. Syst. Biol 67, 965–978 (2018).
PubMed Article PubMed Central Google Scholar
32.
Barria, A. M. et al. The importance of intraspecific variation for niche differentiation and species distribution models: The ecologically diverse frog pleurodema thaul as study case. Evol. Biol. 47, 206–219 (2020).
Article Google Scholar
33.
Austin, M. P. & Van Niel, K. P. Impact of landscape predictors on climate change modelling of species distributions: A case study with Eucalyptus fastigata in southern New South Wales, Australia. J. Biogeogr. 38, 9–19 (2011).
Article Google Scholar
34.
Fournier, A., Barbet-Massin, M., Rome, Q. & Courchamp, F. Predicting species distribution combining multi-scale drivers. Glob. Ecol. Conserv. 12, 215–226 (2017).
Article Google Scholar
35.
Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).
Article Google Scholar
36.
Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).
Article Google Scholar
37.
Dinis, M. et al. Allopatric diversification and evolutionary melting pot in a North African Palearctic relict: the biogeographic history of Salamandra algira. Mol. Phylogenet. Evol. 130, 81–91 (2019).
PubMed Article PubMed Central Google Scholar
38.
Schulte, U. et al. Cryptic niche conservatism among evolutionary lineages of an invasive lizard. Glob. Ecol. Biogeogr 21, 198–211 (2012).
Article Google Scholar
39.
Breiner, F. T., Guisan, A., Nobis, M. P. & Bergamini, A. Including environmental niche information to improve IUCN Red List assessments. Divers. Distrib. 23, 484–495 (2017).
Article Google Scholar
40.
IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria, ver. 14. The Standards and Petitions Committee. https://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed 22 March 2020). (2019).
41.
Hartley, S. & Kunin, W. E. Scale dependency of rarity, extinction risk, and conservation priority. Conserv. Biol. 17, 1559–1570 (2003).
Article Google Scholar
42.
Raeisi, E. & Stevanovic, Z. Groundwater Hydrology of Springs 498–515 (Elsevier, Amsterdam, 2010).
Google Scholar
43.
Chen, J. et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7–27 (2015).
ADS Article Google Scholar
44.
Sharifi, M., Farasat, H., Barani-Beiranvand, H., Vaissi, S. & Foroozanfar, E. Notes on the distribution and abundance of the endangered kaiser’s mountain newt, neurergus kaiseri (caudata: salamandridae), in southwestern Iran. Herpetol. Conserv. Biol 8, 724–731 (2013).
Google Scholar
45.
Mobaraki, A. et al. A conservation reassessment of the Critically Endangered, Lorestan newt Neurergus kaiseri (Schmidt 1952) in Iran. Amphib. Reptile Conserv. 9, 16–25 (2014).
Google Scholar
46.
Casula, P., Vignoli, L., Luiselli, L. & Lecis, R. Local abundance and observer’s identity affect visual detectability of Sardinian mountain newts. Herpetol. J. 27, 258–265 (2017).
Google Scholar
47.
Joly, P., Morand, C. & Cohas, A. Habitat fragmentation and amphibian conservation: Building a tool for assessing landscape matrix connectivity. BC. R. Biol. 326, 132–139 (2003).
Google Scholar
48.
Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr 12, 361–371 (2003).
Article Google Scholar
49.
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. R package version 1.0-12. The R Foundation for Statistical Computing, Vienna. http://cran.r-project.org (2015).
50.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).
51.
ESRI. Using ecological niche modeling. (2016).
52.
Blank, L. & Blaustein, L. Using ecological niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693, 157–167 (2012).
Article Google Scholar
53.
Bradie, J. & Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).
Article Google Scholar
54.
Cunningham, H. R., Rissler, L. J., Buckley, L. B. & Urban, M. C. Abiotic and biotic constraints across reptile and amphibian ranges. Ecography 39, 1–8 (2015).
Article Google Scholar
55.
Peterman, W. E. & Semlitsch, R. D. Fine-scale habitat associations of a terrestrial salamander: the role of environmental gradients and implications for population dynamics. PLoS ONE 8, e62184 (2013).
ADS PubMed PubMed Central Article CAS Google Scholar
56.
Vasconcelos, T. S., Rodríguez, M. Á. & Hawkins, B. A. Species distribution modelling as a macroecological tool: A case study using New World amphibians. Ecography 35, 539–548 (2012).
Article Google Scholar
57.
Keating, K. A., Gogan, P. J. P., Vore, J. M. & Irby, L. R. A simple solar radiation index for wildlife habitat studies. J. Wildl. Manage. 71, 1344–1348 (2007).
Article Google Scholar
58.
Jenness, J., Brost, B. & Beier, P. Land Facet Corridor Designer: Extension for ArcGIS. Jenness Enterprises. http://www.jennessent.com/arcgis/land_facets.htm. (2013).
59.
Marnell, F. Discriminant analysis of the terrestrial and aquatic habitat determinants of the smooth newt (Triturus vulgaris) and the common frog (Rana temporaria) in Ireland. J Zool 244, 1–6 (2001).
Article Google Scholar
60.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Article Google Scholar
61.
Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 C alifornia vertebrate species of concern. Divers. Distrib. 20, 334–343 (2014).
Article Google Scholar
62.
Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
Article Google Scholar
63.
Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
Article Google Scholar
64.
Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).
PubMed PubMed Central Article Google Scholar
65.
Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).
Article Google Scholar
66.
Moreno-Amat, E. et al. Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecol. Model. 312, 308–317 (2015).
Article Google Scholar
67.
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Article Google Scholar
68.
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Article Google Scholar
69.
Schoener, T. W. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
Article Google Scholar
70.
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).
PubMed Article PubMed Central Google Scholar
71.
Lee, C. K. F., Keith, D. A., Nicholson, E. & Murray, N. J. Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. Ecography 42, 1050–1055 (2019).
Article Google Scholar More
