The environmental impacts of palm oil in context
1.
Byerlee, D., Falcon, W. P. & Naylor, R. L. The Tropical Oil Crop Revolution: Food, Feed, Fuel, and Forests (Oxford Univ. Press, 2017).
2.
FAOSTAT. Food and agriculture data. Food and Agriculture Organization of the United Nations http://www.fao.org/faostat/en/#home (2019).
3.
Ramankutty, N. et al. Trends in global agricultural land use: implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815 (2018).
CAS PubMed Article Google Scholar
4.
Hickman, M. The guilty secrets of palm oil: Are you unwittingly contributing to the devastation of the rain forests? Independent https://www.independent.co.uk/environment/the-guilty-secrets-of-palm-oil-are-you-unwittingly-contributing-to-the-devastation-of-the-rain-1676218.html (2009).
5.
Meijaard, E. et al. Oil Palm and Biodiversity – A Situation Analysis (IUCN Oil Palm Task Force, 2018).
6.
Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).
Article Google Scholar
7.
Feintrenie, L., Gazull, L., Goulaouic, R. & Miaro III, L. Spatialized production models for sustainable palm oil in Central Africa: choices and potentials. In Scaling Up Responsible Land Governance. Annual World Bank Conference on Land and Poverty 14–18 (World Bank Group, 2016).
8.
Sheil, D. et al. The Impacts and Opportunities of Oil Palm in Southeast Asia. What Do We Know and What Do We Need to Know? (Center for International Forestry Research (CIFOR), 2009).
9.
Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. 92, 1539–1569 (2017).
PubMed Article Google Scholar
10.
Li, T. M. Evidence-Based Options For Advancing Social Equity In Indonesian Palm Oil: Implications For Research, Policy And Advocacy (Center for International Forestry Research (CIFOR), 2018).
11.
Santika, T. et al. Does oil palm agriculture help alleviate poverty? A multidimensional counterfactual assessment of oil palm development in Indonesia. World Dev. 120, 105–117 (2019).
Article Google Scholar
12.
Meijaard, E. & Sheil, D. The moral minefield of ethical oil palm and sustainable development. Front. For. Glob. Change 2, 22 (2019).
Article Google Scholar
13.
Krishna, V., Euler, M., Siregar, H. & Qaim, M. Differential livelihood impacts of oil palm expansion in Indonesia. Agric. Econ. 48, 639–653 (2017).
Article Google Scholar
14.
Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Preprint at https://essd.copernicus.org/preprints/essd-2020-159/ (2020).
15.
RSPO Smallholders Task Force. RSPO Smallholders. RSPO https://rspo.org/smallholders#definition (2012).
16.
Gaveau, D. L. A. et al. Four decades of forest persistence, loss and logging on Borneo. PLoS ONE 9, e101654 (2014).
PubMed PubMed Central Article CAS Google Scholar
17.
Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).
CAS PubMed PubMed Central Article Google Scholar
18.
Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).
PubMed PubMed Central Article Google Scholar
19.
Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).
PubMed PubMed Central Article CAS Google Scholar
20.
Furumo, P. R. & Aide, T. M. Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environ. Res. Lett. 12, 024008 (2017).
Article Google Scholar
21.
Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).
Article Google Scholar
22.
Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).
Article Google Scholar
23.
Gutiérrez-Vélez, V. H. et al. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett. 6, 044029 (2011).
Article Google Scholar
24.
Lee, J. S. H. et al. Environmental impacts of large-scale oil palm enterprises exceed that of smallholdings in Indonesia. Conserv. Lett. 7, 25–33 (2014).
Article Google Scholar
25.
Schoneveld, G. C., Ekowati, D., Andrianto, A. & van der Haar, S. Modeling peat- and forestland conversion by oil palm smallholders in Indonesian Borneo. Environ. Res. Lett. 14, 014006 (2019).
Article Google Scholar
26.
The IUCN Red List of Threatened Species Version 2019-2 (IUCN, 2019); https://www.iucnredlist.org
27.
Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation and the conscientious consumer. Curr. Biol. 30, R757–R758 (2020).
CAS PubMed Article Google Scholar
28.
Foster, W. A. et al. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Phil. Trans. R. Soc. B 366, 3277–3291 (2011).
PubMed Article Google Scholar
29.
Savilaakso, S. et al. Systematic review of effects on biodiversity from oil palm production. Environ. E. 3, 4 (2014).
Article Google Scholar
30.
Germer, J. U. Spatial undergrowth species composition in oil palm (Elaeis guineensis Jacq.) in West Sumatra, Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim (2003).
31.
Sato, T., Itoh, H., Kudo, G., Kheong, Y. S. & Furukawa, A. Species composition and structure of epiphytic fern community on oil palm trunks in Malay Archipelago. Tropics 6, 139–148 (1996).
Article Google Scholar
32.
Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).
PubMed Article Google Scholar
33.
Wearn, O. R., Carbone, C., Rowcliffe, J. M., Bernard, H. & Ewers, R. M. Grain-dependent responses of mammalian diversity to land use and the implications for conservation set-aside. Ecol. Appl. 26, 1409–1420 (2016).
PubMed Article Google Scholar
34.
Pardo, L. E. et al. Land management strategies can increase oil palm plantation use by some terrestrial mammals in Colombia. Sci. Rep. 9, 7812 (2019).
PubMed PubMed Central Article CAS Google Scholar
35.
Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).
CAS PubMed Article Google Scholar
36.
Almeida, S. M. et al. The effects of oil palm plantations on the functional diversity of Amazonian birds. J. Trop. Ecol. 32, 510–525 (2016).
Article Google Scholar
37.
Edwards, D. P. et al. Selective-logging and oil palm: multitaxon impacts, biodiversity indicators, and trade-offs for conservation planning. Ecol. Applic. 24, 2029–2049 (2014).
Article Google Scholar
38.
Nájera, A. & Simonetti, J. A. Can oil palm plantations become bird friendly? Agrofor. Syst. 80, 203–209 (2010).
Article Google Scholar
39.
Akani, G. C., Ebere, N., Luiselli, L. & Eniang, E. A. Community structure and ecology of snakes in fields of oil palm trees (Elaeis guineensis) in the Niger Delta, southern Nigeria. Afr. J. Ecol. 46, 500–506 (2008).
Article Google Scholar
40.
Humle, T. & Matsuzawa, T. Oil palm use by adjacent communities of chimpanzees at Bossou and Nimba Mountains, West Africa. Int. J. Primatol. 25, 551–581 (2004).
Article Google Scholar
41.
Ancrenaz, M. et al. Of pongo, palms, and perceptions – A multidisciplinary assessment of orangutans in an oil palm context. Oryx 49, 465–472 (2015).
Article Google Scholar
42.
Mitchell, S. L. et al. Riparian reserves help protect forest bird communities in oil palm dominated landscapes. J. Appl. Ecol. 55, 2744–2755 (2018).
Article Google Scholar
43.
Deere, N. J. et al. Implications of zero-deforestation commitments: forest quality and hunting pressure limit mammal persistence in fragmented tropical landscapes. Conserv. Lett. 13, e12701 (2020).
Article Google Scholar
44.
Knowlton, J. L. et al. Oil palm plantations affect movement behavior of a key member of mixed-species flocks of forest birds in Amazonia, Brazil. Trop. Conserv. Sci. 10, 1940082917692800 (2017).
Article Google Scholar
45.
Tohiran, K. A. et al. Targeted cattle grazing as an alternative to herbicides for controlling weeds in bird-friendly oil palm plantations. Agron. Sust. Dev. 37, 62 (2017).
Article Google Scholar
46.
Slade, E. M. et al. Can cattle grazing in mature oil palm increase biodiversity and ecosystem service provision? Planter 90, 655–665 (2014).
Google Scholar
47.
Global Invasive Species Database (GISD). Species Profile Elaeis guineensis (IUCN, accessed 27 February 2018); http://www.iucngisd.org/gisd/species
48.
Wan, H. The introduction of barn owl (Tyto alba) to Sabah for rat control in oil palm plantations. Planter 76, 215–222 (2000).
Google Scholar
49.
Bessou, C. et al. Sustainable Palm Oil Production Project Synthesis: Understanding And Anticipating Global Challenges (Center for International Forestry Research (CIFOR), 2017).
50.
Puan, C. L., Goldizen, A. W., Zakaria, M., Hafidzi, M. N. & Baxter, G. S. Relationships among rat numbers, abundance of oil palm fruit and damage levels to fruit in an oil palm plantation. Intergr. Zool. 6, 130–139 (2011).
Article Google Scholar
51.
Holzner, A. et al. Macaques can contribute to greener practices in oil palm plantations when used as biological pest control. Curr. Biol. 29, R1066–R1067 (2019).
CAS PubMed Article Google Scholar
52.
Luskin, M. S. et al. Cross-boundary subsidy cascades from oil palm degrade distant tropical forests. Nat. Commun. 8, 2231 (2017).
PubMed PubMed Central Article CAS Google Scholar
53.
Mayfield, M. M. The importance of nearby forest to known and potential pollinators of oil palm (Elaeis guineensis Jacq.; Areceaceae) in southern Costa Rica. Econ. Bot. 59, 190 (2005).
Article Google Scholar
54.
Woodham, C. R. et al. Effects of replanting and retention of mature oil palm riparian buffers on ecosystem functioning in oil palm plantations. Front. For. Glob. Change 2, 29 (2019).
Article Google Scholar
55.
Azhar, B. et al. The influence of agricultural system, stand structural complexity and landscape context on foraging birds in oil palm landscapes. Ibis 155, 297–312 (2013).
Article Google Scholar
56.
Wijedasa, L. S. et al. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Glob. Change Biol. 23, 977–982 (2016).
Article Google Scholar
57.
Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 5, eaaw4418 (2019).
CAS PubMed PubMed Central Article Google Scholar
58.
Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).
CAS PubMed Article Google Scholar
59.
Reijnders, L. & Huijbregts, M. A. J. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 16, 477–482 (2006).
Article Google Scholar
60.
Murdiyarso, D., Van Noordwijk, M., Wasrin, U. R., Tomich, T. P. & Gillison, A. N. Environmental benefits and sustainable land-use options in the Jambi transect, Sumatra. J. Veg. Sci. 13, 429–438 (2002).
Article Google Scholar
61.
Harsono, S. S., Grundmann, P. & Soebronto, S. Anaerobic treatment of palm oil mill effluents: potential contribution to net energy yield and reduction of greenhouse gas emissions from biodiesel production. J. Clean. Prod. 64, 619–627 (2014).
CAS Article Google Scholar
62.
Hewitt, C. N. et al. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc. Natl Acad. Sci. USA 106, 18447 (2009).
CAS PubMed Article Google Scholar
63.
Misztal, P. K. et al. Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmos. Chem. Phys. 11, 8995–9017 (2011).
CAS Article Google Scholar
64.
Guenther, A. et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2. 1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).
CAS Article Google Scholar
65.
Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Global Environ. Chang. 43, 51–61 (2017).
Article Google Scholar
66.
McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).
Article Google Scholar
67.
Fan, Y. et al. Reconciling canopy interception parameterization and rainfall forcing frequency in the community land model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. J. Adv. Model. Earth Sy. 11, 732–751 (2019).
Article Google Scholar
68.
Crippa, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 37074 (2016).
CAS PubMed PubMed Central Article Google Scholar
69.
Nichol, J. Bioclimatic impacts of the 1994 smoke haze event in Southeast Asia. Atmos. Environ. 31, 1209–1219 (1997).
CAS Article Google Scholar
70.
Carlson, K. M. et al. Consistent results in stream hydrology across multiple watersheds: a reply to Chew and Goh. J. Geophys. Res. Biogeosci. 120, 812–817 (2015).
Article Google Scholar
71.
Luke, S. H. et al. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrol. 10, e1827 (2017).
Article Google Scholar
72.
Mayer, P. M., Reynolds, S. K., McCutchen, M. D. & Canfield, T. J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 36, 1172–1180 (2007).
CAS PubMed Article Google Scholar
73.
Chellaiah, D. & Yule, C. M. Effect of riparian management on stream morphometry and water quality in oil palm plantations in Borneo. Limnologica 69, 72–80 (2018).
CAS Article Google Scholar
74.
Sulai, P. et al. Effects of water quality in oil palm production landscapes on tropical waterbirds in Peninsular Malaysia. Ecol. Res. 30, 941–949 (2015).
Article Google Scholar
75.
Anda, M., Siswanto, A. B. & Subandiono, R. E. Properties of organic and acid sulfate soils and water of a ‘reclaimed’ tidal backswamp in Central Kalimantan, Indonesia. Geoderma 149, 54–65 (2009).
CAS Article Google Scholar
76.
Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).
Article Google Scholar
77.
Wich, SergeA. et al. Will oil palm’s homecoming spell doom for Africa’s great apes? Curr. Biol. 24, 1659–1663 (2014).
CAS PubMed Article Google Scholar
78.
Sayer, J., Ghazoul, J., Nelson, P. & Boedhihartono, A. K. Oil palm expansion transforms tropical landscapes and livelihoods. Glob. Food Secur. 1, 114–119 (2012).
Article Google Scholar
79.
RSPO and HCSA collaborate to implement no deforestation in high forest cover landscapes. RSPO https://rspo.org/news-and-events/news/rspo-and-hcsa-collaborate-to-implement-no-deforestation-in-high-forest-cover-landscapes (2018).
80.
Law, E. A. et al. Mixed policies give more options in multifunctional tropical forest landscapes. J. Appl. Ecol. 54, 51–60 (2017).
Article Google Scholar
81.
Budiadi et al. Oil palm agroforestry: an alternative to enhance farmers’ livelihood resilience. In The 1st International Conference on Natural Resources and Environmental Conservation (ICNREC) (IOP Publishing Ltd., 2019).
82.
Valin, H. et al. The Land Use Change Impact Of Biofuels Consumed In The EU. Quantification Of Area And Greenhouse Gas Impacts (ECOFYS Netherlands B. V., 2015).
83.
Thamsiriroj, T. & Murphy, J. D. Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed? Appl. Energ. 86, 595–604 (2009).
CAS Article Google Scholar
84.
Rosoman, G., Sheun, S. S., Opal, C., Anderson, P. & Trapshah, R. The HCS Approach Toolkit (HCS Approach Steering Group, 2017).
85.
Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).
CAS PubMed Article Google Scholar
86.
Furumo, P. R., Rueda, X., Rodríguez, J. S. & Parés Ramos, I. K. Field evidence for positive certification outcomes on oil palm smallholder management practices in Colombia. J. Clean. Prod. 245, 118891 (2020).
Article Google Scholar
87.
Donofrio, S., Rothrock, P. & Leonard, J. Tracking Corporate Commitments to Deforestation-free Supply Chains, 2017 (Forest Trends, 2017).
88.
Palm oil: ESG policy transparency assessments. SPOTT https://www.spott.org/palm-oil/ (2018).
89.
Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Global Environ. Chang. 62, 102055 (2020).
Article Google Scholar
90.
Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377 (2015).
CAS PubMed Article Google Scholar
91.
OECD‑FAO Agricultural Outlook 2018‑2027 (OECD and FAO, 2017).
92.
Johnston, M., Foley, J. A., Holloway, T., Kucharik, C. & Monfreda, C. Resetting global expectations from agricultural biofuels. Environ. Res. Lett. 4, 014004 (2009).
Article CAS Google Scholar
93.
Parsons, S., Raikova, S. & Chuck, C. J. The viability and desirability of replacing palm oil. Nat. Sustain. 3, 412–418 (2020).
Article Google Scholar
94.
Qaim, M., Sibhatu, K. T., Siregar, H. & Grass, I. Environmental, economic, and social consequences of the oil palm boom. Ann. Rev. Res. Econ. 12, 321–344 (2020).
Article Google Scholar
95.
VanBeek, K. R., Brawn, J. D. & Ward, M. P. Does no-till soybean farming provide any benefits for birds? Agricult. Ecosyst. Env. 185, 59–64 (2014).
Article Google Scholar
96.
Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202 (2019).
CAS PubMed Article Google Scholar
97.
Strona, G. et al. Small room for compromise between oil palm cultivation and primate conservation in Africa. Proc. Natl Acad. Sci. USA 115, 8811 (2018).
CAS PubMed Article Google Scholar
98.
Ajjawi, I. et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35, 647 (2017).
CAS PubMed Article Google Scholar
99.
De Beenhouwer, M., Aerts, R. & Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Env. 175, 1–7 (2013).
Article Google Scholar
100.
Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).
CAS PubMed Article Google Scholar
101.
Payán, E. & Boron, V. The future of wild mammals in oil palm landscapes in the Neotropics. Front. For. Glob. Change 2, 61 (2019).
Article Google Scholar
102.
Maddox, T., Priatna, D., Gemita, E. & Salampessy, A. The Conservation Of Tigers And Other Wildlife In Oil Palm Plantations Jambi Province, Sumatra, Indonesia ZSL Conservation Report No. 7 (The Zoological Society of London, 2007).
103.
Ancrenaz, M. et al. Pongo pygmaeus; erratum The IUCN Red List of Threatened Species 2016: e.T17975A123809220 (IUCN, 2016); https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T17975A17966347.en
104.
Pangau-Adam, M., Mühlenberg, M. & Waltert, M. Rainforest disturbance affects population density of the northern cassowary Casuarius unappendiculatus in Papua, Indonesia. Oryx 49, 735–742 (2014).
Article Google Scholar
105.
Alamgir, M. et al. Infrastructure expansion challenges sustainable development in Papua New Guinea. PLoS ONE 14, e0219408 (2019).
CAS PubMed PubMed Central Article Google Scholar
106.
Katiyar, R. et al. Microalgae: an emerging source of energy based bio-products and a solution for environmental issues. Renew. Sustain. Energy Rev. 72, 1083–1093 (2017).
CAS Article Google Scholar
107.
Nomanbhay, S., Salman, B., Hussain, R. & Ong, M. Y. Microwave pyrolysis of lignocellulosic biomass––a contribution to power Africa. Energy Sustain. Soc. 7, 23 (2017).
Article Google Scholar More
