More stories

  • in

    Phylogenetic comparison of egg transparency in ascidians by hyperspectral imaging

    1.
    Herring, P. J. The Biology of the Deep Ocean (Oxford University Press, Oxford, 2007).
    Google Scholar 
    2.
    Chapman, G. Transparency in organisms. Experientia 32, 123–125 (1976).
    Article  Google Scholar 

    3.
    Bagge, L. E. Not as clear as it may appear: Challenges associated with transparent camouflage in the ocean. Integr. Comp. Biol. 59, 1653–1663 (2019).
    Article  Google Scholar 

    4.
    Johnsen, S. Hide and seek in the open sea: Pelagic camouflage and visual countermeasures. Ann. Rev. Mar. Sci. 6, 369–392 (2014).
    Article  Google Scholar 

    5.
    Kakiuchida, H., Sakai, D., Nishikawa, J. & Hirose, E. Measurement of refractive indices of tunicates’ tunics: Light reflection of the transparent integuments in an ascidian Rhopalaea sp. and a salp Thetys vagina. Zool. Lett. 3, 7 (2017).
    Article  Google Scholar 

    6.
    Sakai, D., Kakiuchida, H., Nishikawa, J. & Hirose, E. Physical properties of the tunic in the pinkish-brown salp Pegea confoederata (Tunicata: Thaliacea). Zool. Lett. 4, 1–9 (2018).
    Article  Google Scholar 

    7.
    Giguère, L. A. & Northcote, T. G. Ingested prey increase risks of visual predation in transparent Chaoborus larvae. Oecologia 73, 48–52 (1987).
    ADS  Article  Google Scholar 

    8.
    Cronin, T. W. Camouflage: Being invisible in the open ocean. Curr. Biol. 26, R1179–R1181 (2016).
    CAS  Article  Google Scholar 

    9.
    Hansson, L. A. Induced pigmentation in zooplankton: A trade-off between threats from predation and ultraviolet radiation. Proc. R. Soc. B Biol. Sci. 267, 2327–2331 (2000).
    CAS  Article  Google Scholar 

    10.
    Johnsen, S. Hidden in plain sight: The ecology and physiology of organismal transparency. Biol. Bull. 201, 301–318 (2001).
    CAS  Article  Google Scholar 

    11.
    Yasuo, H. & McDougall, A. Practical guide for ascidian microinjection: Phallusia mammillata. Adv. Exp. Med. Biol. 1029, 15–24 (2018).
    CAS  Article  Google Scholar 

    12.
    Piliszek, A., Kwon, G. S. & Hadjantonakis, A.-K. Embryological methods in ascidians: The Villefranche-sur-Mer protocols. In Methods in Molecular Biology (Clifton, N.J.) Vol. 770 (ed. Pelegri, F. J.) 243–257 (Humana Press, Totowa, 2011).
    Google Scholar 

    13.
    Burighel, P. & Cloney, R. A. Urochordata: Ascidiacea. Microscopic Anatomy of Invertebrates 221–347 (1997).

    14.
    Conklin, E. G. Mosaic development in ascidian eggs. J. Exp. Zool. 2, 145–223 (1905).
    Article  Google Scholar 

    15.
    Jeffery, W. R. Identification of proteins and mRNAs in isolated yellow crescents of ascidian eggs. J. Embryol. Exp. Morphol. 89, 275–287 (1985).
    CAS  PubMed  Google Scholar 

    16.
    Arai, M. N. Biological interactions. in A Functional Biology of Scyphozoa 203–223 (Springer Netherlands, 1997). https://doi.org/10.1007/978-94-009-1497-1_9

    17.
    Nishikawa, T. et al. Molecular and morphological discrimination between an invasive ascidian, Ascidiella aspersa, and its congener A. scabra (Urochordata: Ascidiacea). Zool. Sci. 31, 180–185 (2014).
    CAS  Article  Google Scholar 

    18.
    Passamaneck, Y. J. & Di Gregorio, A. Ciona intestinalis: Chordate development made simple. Dev. Dyn. https://doi.org/10.1002/dvdy.20300 (2005).
    Article  PubMed  Google Scholar 

    19.
    Dehal, P. et al. The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002).
    ADS  CAS  Article  Google Scholar 

    20.
    Tassy, O. et al. The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program. Genome Res. 20, 1459–1468 (2010).
    CAS  Article  Google Scholar 

    21.
    Brozovic, M. et al. ANISEED 2017: Extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1108 (2017).
    Article  PubMed Central  Google Scholar 

    22.
    Delsuc, F. F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 1–14 (2018).
    Article  Google Scholar 

    23.
    Epel, D., Hemela, K., Shick, M. & Patton, C. Development in the floating world: Defenses of eggs and embryos against damage from UV radiation. Am. Zool. 39, 271–278 (1999).
    Article  Google Scholar 

    24.
    Eaton, T. H. & Cott, H. B. Adaptive coloration in animals. Am. Midl. Nat. https://doi.org/10.2307/2420875 (1940).
    Article  Google Scholar 

    25.
    Lindquist, N., Hay, M. E. & Fenical, W. Defense of ascidians and their conspicuous larvae: Adult vs larval chemical defenses. Ecol. Monogr. 62, 547–568 (1992).
    Article  Google Scholar 

    26.
    Hirose, E., Ohtake, S.-I. & Azumi, K. Morphological characterization of the tunic in the edible ascidian, Halocynthia roretzi (Drasche), with remarks on ‘soft tunic syndrome’ in aquaculture. J. Fish Dis. 32, 433–445 (2009).
    CAS  Article  Google Scholar 

    27.
    Jacobs, G. H. Ultraviolet vision in vertebrates. Am. Zool. 32, 544–554 (1992).
    Article  Google Scholar 

    28.
    Karentz, D., Bosch, I. & Mitchell, D. M. Limited effects of Antarctic ozone depletion on sea urchin development. Mar. Biol. 145, 277–292 (2004).
    CAS  Article  Google Scholar 

    29.
    Winckler, K. & Fidhiany, L. Combined effects of constant sublethal UVA irradiation and elevated temperature on the survival and general metabolism of the convict-cichlid fish, Cichlasoma nigrofasciatum. Photochem. Photobiol. 63, 487–491 (1996).
    CAS  Article  Google Scholar 

    30.
    Bingham, B. L. & Reitzel, A. M. Solar damage to the solitary ascidian, Corella inflata. J. Mar. Biol. Assoc. UK 80, 515–521 (2000).
    Article  Google Scholar 

    31.
    Hirose, E. Pigmentation and acid storage in the tunic: Protective functions of the tunic cells in the tropical ascidian Phallusia nigra. Invertebr. Biol. 118, 414 (1999).
    Article  Google Scholar 

    32.
    Hirose, E., Hirabayashi, S., Hori, K., Kasai, F. & Watanabe, M. M. UV protection in the photosymbiotic ascidian Didemnum molle inhabiting different depths. Zool. Sci. 23, 57–63 (2006).
    CAS  Article  Google Scholar 

    33.
    Olson, R. R. Ascidian-prochloron symbiosis: The role of larval photoadaptations in midday larval release and settlement. Biol. Bull. 165, 221–240 (1983).
    Article  Google Scholar 

    34.
    Sensui, N. & Hirose, E. Cytoplasmic UV-R absorption in an integumentary matrix (Tunic) of photosymbiotic ascidian colonies. Zool. Stud. 57, 1–11 (2018).
    Google Scholar 

    35.
    Hirose, E., Ohtsuka, K., Ishikura, M. & Maruyama, T. Ultraviolet absorption in ascidian tunic and ascidian-Prochloron symbiosis. J. Mar. Biol. Assoc. UK 84, 789–794 (2004).
    CAS  Article  Google Scholar 

    36.
    Hansson, L. A. & Hylander, S. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochem. Photobiol. Sci. 8, 1266–1275 (2009).
    CAS  Article  Google Scholar 

    37.
    Hansson, L. A., Hylander, S. & Sommaruga, R. Escape from UV threats in zooplankton: A cocktail of behavior and protective pigmentation. Ecology 88, 1932–1939 (2007).
    Article  Google Scholar 

    38.
    Pineda, M. C., Lorente, B., López-Legentil, S., Palacín, C. & Turon, X. Stochasticity in space, persistence in time: Genetic heterogeneity in harbour populations of the introduced ascidian Styela plicata. PeerJ 4, e2158 (2016).
    Article  Google Scholar 

    39.
    Zaniolo, G., Burighel, P. & Martinucci, G. Ovulation and placentation in Botryllus schlosseri (Ascidiacea): An ultrastructural study. Can. J. Zool. 65, 1181–1190 (1987).
    Article  Google Scholar 

    40.
    Mukai, H., Saito, Y. & Watanabe, H. Viviparous development in Botrylloides (compound ascidians). J. Morphol. 193, 263–276 (1987).
    Article  Google Scholar 

    41.
    Burighel, P., Cloney, R. A. & Cloney, B. Microscopic anatomy of invertebrates. Microsc. Anat. Invertebr. 15, 221–347 (1997).
    Google Scholar 

    42.
    Sardet, C. et al. Chapter 14 Embryological methods in ascidians: The Villefranche-sur-Mer protocols. Vertebr. Embryog. Methods Mol. Biol. 770, (2011).

    43.
    Chatterjee, A. et al. Cephalopod-inspired optical engineering of human cells. Nat. Commun. 11, 2708 (2020).
    ADS  CAS  Article  Google Scholar 

    44.
    Tsagkogeorga, G. et al. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol. Biol. 9, 187 (2009).
    Article  Google Scholar 

    45.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. https://doi.org/10.1071/ZO9660275 (1994).
    Article  PubMed  Google Scholar 

    46.
    Hasegawa, N. & Kajihara, H. A redescription of syncarpa composita (Ascidiacea, stolidobranchia) with an inference of its phylogenetic position within styelidae. Zookeys 2019, 1–15 (2019).
    CAS  Article  Google Scholar 

    47.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    48.
    Castresana, J. Estimation of genetic distances from human and mouse introns. Genome Biol. https://doi.org/10.1186/gb-2002-3-6-research0028 (2002).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw054 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu033 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
    Article  PubMed  Google Scholar 

    52.
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics https://doi.org/10.1093/bioinformatics/btg180 (2003).
    Article  PubMed  Google Scholar 

    53.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw260 (2017).
    Article  PubMed  Google Scholar 

    54.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  Article  Google Scholar  More

  • in

    Local communities and wildlife consumption bans

    To the Editor — A wildlife consumption ban, which China enacted in February as a response to the COVID-19 pandemic, has been welcomed by most conservationists as a step towards avoiding a future outbreak of zoonotic diseases1. There are dissenting voices against this ban, arguing that wildlife generates multiple benefits for people who co-exist with wild species2. While both schools of thought have their own valid arguments, neither has yet to actively lobby for the free, prior and informed consent or consultation of the people who will be directly affected by conservation decisions related to COVID-19.

    Throughout the years, indigenous peoples and local communities (IPLCs) have been seen as either culprits of biodiversity decline or as ‘unseen sentinels’ effectively managing and monitoring their territories, which are often highly biodiverse3. This polarized view of IPLCs signals a prevailing lack of understanding of their way of life, where most of their dependence on nature is on a subsistence level. Wildlife consumption is often an essential part of their diets. A blanket ban on wildlife consumption may, therefore, exacerbate food insecurity in these communities. In other cases, IPLC wildlife consumption is more than just for subsistence. It may also have cultural roots and should be respected in that regard. Calling for education campaigns to ‘discredit engrained cultural beliefs’ that lead to wildlife consumption ignores the dynamics of cultural development and would most likely fail to conserve wildlife or fail to prevent another zoonotic disease outbreak4. What is needed is to craft bottom-up solutions together with the IPLCs directly depending on wildlife and to learn from their nuanced understanding of nature.

    Through creating opportunities and spaces for dialogue, governments and institutions can involve IPLCs in setting guidelines for wildlife consumption. They can adopt the dialogue approach employed by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), where IPLCs engage in knowledge exchange with technical experts and government representatives5. The dialogue, through parallel contributions of indigenous, local, scientific and practical knowledge, can enhance the understanding of wildlife consumption6. Governments and institutions can tap into the network of non-governmental organizations (NGOs) that closely collaborate with IPLCs and have them facilitate these dialogues. They need to listen carefully to IPLCs, learn from their customary protocols on wildlife use and consumption, and draft laws that could potentially prevent another zoonotic disease outbreak without jeopardizing the livelihoods and well-being of IPLCs. Likewise, IPLCs and civil society can continue to build on processes of self-strengthening and assert themselves in spaces where they can proactively engage in efforts to raise awareness and understanding of traditional wildlife consumption practices. These multiple stakeholders must work together to co-craft potential solutions to this global yet also very local concern of wildlife consumption and its connection to zoonotic diseases.

    References

    1.
    Butler, R. A. Conservationists welcome China’s wildlife trade ban. Mongabay (26 January 2020); https://go.nature.com/3pohgzZ

    2.
    Roe, D. Despite COVID-19, using wild species may still be the best way to save them. International Institute for Environment and Development (1 April 2020); https://go.nature.com/3pjRNYt

    3.
    Sheil, D., Boissière, M. & Beaudoin, G. Ecol. Soc. 20, 39 (2015).
    Article  Google Scholar 

    4.
    Ribeiro, J., Bingre, P., Strubbe, D. & Reino, L. Nature 578, 217 (2020).
    CAS  Article  Google Scholar 

    5.
    Hill, R. et al. Curr. Opin. Environ. Sustain. 43, 8–20 (2020).
    Article  Google Scholar 

    6.
    Tengö, M., Brondizio, E. S., Elmqvist, T., Malmer, P. & Spierenburg, M. AMBIO 43, 579–591 (2014).
    Article  Google Scholar 

    Download references

    Author information

    Affiliations

    Center for Development Research (ZEF) Bonn, University of Bonn, Bonn, Germany
    Denise Margaret S. Matias

    Institute for Social-Ecological Research (ISOE), Frankfurt am Main, Germany
    Denise Margaret S. Matias

    Non-Timber Forest Products Exchange Programme (NTFP-EP) Asia, Quezon City, Philippines
    Eufemia Felisa Pinto & Diana San Jose

    Non-Timber Forest Products Exchange Programme (NTFP-EP) India, c/o Keystone Foundation, Kotagiri, India
    Madhu Ramnath

    Authors
    Denise Margaret S. Matias

    Eufemia Felisa Pinto

    Madhu Ramnath

    Diana San Jose

    Contributions
    D.M.S.M. conceptualized and drafted the Correspondence. E.F.P. and D.S.J. provided input. M.R. reviewed the Correspondence.
    Corresponding author
    Correspondence to Denise Margaret S. Matias.

    Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Rights and permissions

    About this article

    Cite this article
    Matias, D.M.S., Pinto, E.F., Ramnath, M. et al. Local communities and wildlife consumption bans. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-00662-7
    Download citation More

  • in

    Diversity, structure and demography of coral assemblages on underwater lava flows of different ages at Reunion Island and implications for ecological succession hypotheses

    1.
    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).
    Article  Google Scholar 
    2.
    Sandin, S. A. & Sala, E. Using successional theory to measure marine ecosystem health. Evol. Ecol. 26, 435–448 (2012).
    Article  Google Scholar 

    3.
    Buma, B., Bisbing, S., Krapek, J. & Wright, G. A foundation of ecology rediscovered: 100 years of succession on the William S. Cooper plots in Glacier Bay, Alaska. Ecology 98, 1513–1523 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Copper, P. Ecological succession in Phanerozoic reef ecosystems: Is it real?. Palaios 3, 136–151 (1988).
    ADS  Article  Google Scholar 

    6.
    Vercelloni, J., Kayal, M., Chancerelle, Y. & Planes, S. Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Sci. Rep. 9, 1027 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Grigg, R. Community structure, succession and development of coral reefs in Hawaii. Mar. Ecol. Prog. Ser. 11, 1–14 (1983).
    ADS  Article  Google Scholar 

    9.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
    ADS  CAS  Article  Google Scholar 

    10.
    Knowlton, N. Multiple, “stable” states and the conservation of marine ecosystems. Prog. Oceanogr. 60, 387–396 (2004).
    ADS  Article  Google Scholar 

    11.
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).
    ADS  Article  Google Scholar 

    12.
    van de Leemput, I. A., Hughes, T. P., van Nes, E. H. & Scheffer, M. Multiple feedbacks and the prevalence of alternate stable states on coral reefs. Coral Reefs 35, 857–865 (2016).
    ADS  Article  Google Scholar 

    13.
    Kitayama, K., Mueller-Dombois, D. & Vitousek, P. M. Primary succession of Hawaiian montane rain forest on a chronosequence of eight lava flows. J. Veg. Sci. 6, 211–222 (1995).
    Article  Google Scholar 

    14.
    Walker, L. R. & del Moral, R. Primary Succession and Ecosystem Rehabilitation. (Cambridge University Press, Cambridge, 2003). https://doi.org/10.1017/CBO9780511615078.

    15.
    Prach, K. & Walker, L. R. Four opportunities for studies of ecological succession. Trends Ecol. Evol. 26, 119–123 (2011).
    PubMed  Article  Google Scholar 

    16.
    Turner, M. G., Whitby, T. G., Tinker, D. B. & Romme, W. H. Twenty-four years after the Yellowstone Fires: Are postfire lodgepole pine stands converging in structure and function?. Ecology 97, 1260–1273 (2016).
    PubMed  Article  Google Scholar 

    17.
    Rossi, S., Bramanti, L., Gori, A. & Orejas, C. Animal forests of the world: An overview. In Marine Animal Forests (eds. Rossi, S., Bramanti, L., Gori, A. & Orejas, C.) 1–28 (Springer, New York, 2017).

    18.
    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
    Article  Google Scholar 

    19.
    Wilkinson, C. Status of Coral Reefs of the World: 2008. (Global Coral Reef Monitoring Network and Reef and Rainforest Research Center, 2008).

    20.
    Kittinger, J. N., Finkbeiner, E. M., Glazier, E. W. & Crowder, L. B. Human dimensions of coral reef social-ecological systems. Ecol. Soc. 17, 17 (2012).
    Article  Google Scholar 

    21.
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Edmunds, P. J. et al. Persistence and change in community composition of reef corals through present, past, and future climates. PLoS ONE 9, e107525 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci. Rep. 8, 9680 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Dudgeon, S. R., Aronson, R. B., Bruno, J. F. & Precht, W. F. Phase shifts and stable states on coral reefs. Mar. Ecol. Prog. Ser. 413, 201–216 (2010).
    ADS  Article  Google Scholar 

    27.
    Coles, S. L. & Brown, E. K. Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai’i: The importance of recruitment. Coral Reefs 26, 705–717 (2007).
    ADS  Article  Google Scholar 

    28.
    Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).
    Article  Google Scholar 

    29.
    Doropoulos, C., Roff, G., Visser, M. S. & Mumby, P. J. Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology 98, 304–314 (2016).
    Article  Google Scholar 

    30.
    Hixon, M. A. & Brostoff, W. N. Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol. Monogr. 66, 67–90 (1996).
    Article  Google Scholar 

    31.
    Burkepile, D. E. & Hay, M. E. Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS ONE 5, e8963 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Humphries, A. T., McClanahan, T. R. & McQuaid, C. D. Differential impacts of coral reef herbivores on algal succession in Kenya. Mar. Ecol. Prog. Ser. 504, 119–132 (2014).
    ADS  Article  Google Scholar 

    33.
    Grigg, R. & Maragos, J. Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55, 387–395 (1974).
    Article  Google Scholar 

    34.
    Tomascik, T., van Woesik, R. & Mah, A. J. Rapid coral colonization of a recent lava flow following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15, 169–175 (1996).
    ADS  Article  Google Scholar 

    35.
    Smallhorn-West, P. F. et al. Coral reef annihilation, persistence and recovery at Earth’s youngest volcanic island. Coral Reefs 39, 529–536 (2020).
    Article  Google Scholar 

    36.
    Edmunds, P. J., Nelson, H. R. & Bramanti, L. Density-dependence mediates coral assemblage structure. Ecology 99, 2605–2613 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Pearson, R. G. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4, 105–122 (1981).
    ADS  Article  Google Scholar 

    38.
    Kayal, M. et al. Predicting coral community recovery using multi-species population dynamics models. Ecol. Lett. 21, 1790–1799 (2018).
    PubMed  Article  Google Scholar 

    39.
    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change. 3, 508–511 (2013).
    ADS  Article  CAS  Google Scholar 

    40.
    Yates, K. K. et al. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change. Biogeosciences 11, 4321–4337 (2014).
    ADS  Article  Google Scholar 

    41.
    Cacciapaglia, C. & van Woesik, R. Reef-coral refugia in a rapidly changing ocean. Glob. Change. Biol. 21, 2272–2282 (2015).
    ADS  Article  Google Scholar 

    42.
    Kavousi, J. & Keppel, G. Clarifying the concept of climate change refugia for coral reefs. ICES J. Mar. Sci. 75, 43–49 (2018).
    Article  Google Scholar 

    43.
    Tanguy, J. C., Bachèlery, P. & LeGoff, M. Archeomagnetism of Piton de la Fournaise: Bearing on volcanic activity at La Réunion Island and geomagnetic secular variation in Southern Indian Ocean. Earth Planet. Sci. Lett. 303, 361–368 (2011).
    ADS  CAS  Article  Google Scholar 

    44.
    Michon, L. & Saint-Ange, F. Morphology of Piton de la Fournaise basaltic shield volcano (La Réunion Island): Characterization and implication in the volcano evolution. J. Geophys. Res. Solid Earth 113, B03203 (2008).
    ADS  Article  Google Scholar 

    45.
    Schleyer, M. H., Benayahu, Y., Parker-Nance, S., van Soest, R. W. M. & Quod, J. P. Benthos on submerged lava beds of varying age off the coast of Reunion, western Indian Ocean: sponges, octocorals and ascidians. Biodiversity 17, 93–100 (2016).
    Article  Google Scholar 

    46.
    Zubia, M. et al. Diversity and assemblage structure of tropical marine flora on lava flows of different ages. Aquat. Bot. 144, 20–30 (2018).
    Article  Google Scholar 

    47.
    Pinault, M. et al. Marine fish communities in shallow volcanic habitats. J. Fish Biol. 82, 1821–1847 (2013).
    CAS  PubMed  Article  Google Scholar 

    48.
    Pinault, M. et al. Fish community structure in relation to environmental variation in coastal volcanic habitats. J. Exp. Mar. Biol. Ecol. 460, 62–71 (2014).
    Article  Google Scholar 

    49.
    Bollard, S. et al. Biodiversity of echinoderms on underwater lava flows with different ages, from the Piton de la Fournaise (Reunion Island, Indian Ocean). Cah. Biol. Mar. 54, 491–497 (2013).
    Google Scholar 

    50.
    Camoin, G. F. et al. Holocene sea level changes and reef development in the southwestern Indian Ocean. Coral Reefs 16, 247–259 (1997).
    Article  Google Scholar 

    51.
    Quod, J.-P. & Bigot, L. Coral Bleaching in the Indian Ocean Islands: Ecological Consequences and Recovery in Madagascar, Comoros, Mayotte and Réunion. Coral Reef Degradation in the Indian Ocean, Status Report. (2000).

    52.
    Scopélitis, J. et al. Changes of coral communities over 35 years: Integrating in situ and remote-sensing data on Saint-Leu Reef (La Réunion, Indian Ocean). Estuar. Coast. Shelf Sci. 84, 342–352 (2009).
    ADS  Article  Google Scholar 

    53.
    Wickel, J. et al. Coral reef status report for the Western Indian Ocean. Reunion (France). In Coral Reef Status Report for the Western Indian Ocean, Global Coral Reef Monitoring Network (GCRMN)/International Coral Reef Initiative (ICRI) (eds. Obura, D. et al.) 96–108 (2017).

    54.
    Putts, M. R., Parrish, F. A., Trusdell, F. A. & Kahng, S. E. Structure and development of Hawaiian deep-water coral communities on Mauna Loa lava flows. Mar. Ecol. Prog. Ser. 630, 69–82 (2019).
    ADS  Article  Google Scholar 

    55.
    Loya, Y. Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar. Biol. 13, 100–123 (1972).
    Article  Google Scholar 

    56.
    Beenaerts, N. & Vanden Berghe, E. Comparative study of three transect methods to assess coral cover, richness and diversity. West Indian Ocean J. Mar. Sci. 4, 29–37 (2005).
    Google Scholar 

    57.
    Mundy, C. N. An appraisal of methods used in coral recruitment studies. Coral Reefs 19, 124–131 (2000).
    Article  Google Scholar 

    58.
    Adjeroud, M., Penin, L. & Carroll, A. G. Spatio-temporal heterogeneity in coral recruitment around Moorea, French Polynesia: Implications for population maintenance. J. Exp. Mar. Biol. Ecol. 341, 204–218 (2007).
    Article  Google Scholar 

    59.
    Babcock, R. C., Baird, A. H., Piromvaragorn, S., Thomson, D. P. & Willis, B. L. Identification of scleractinian coral recruits from Indo-Pacific reefs. Zool. Stud. 42, 211–226 (2003).
    Google Scholar 

    60.
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Article  Google Scholar 

    61.
    Legendre, P. & Legendre, L. Numerical Ecology. 2nd English Ed. (Elsevier Science BV, Amsterdam, 1998).

    62.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2018).

    63.
    Huston, M. A. Patterns of species diversity on coral reefs. Annu. Rev. Ecol. Syst. 16, 149–177 (1985).
    Article  Google Scholar 

    64.
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
    Article  Google Scholar 

    65.
    Karlson, R. H. & Cornell, H. V. Species richness of coral assemblages: Detecting regional influences at local spatial scales. Ecology 83, 452–463 (2002).
    Article  Google Scholar 

    66.
    Adjeroud, M., Poisson, E., Peignon, C., Penin, L. & Kayal, M. Spatial patterns and short-term changes of coral assemblages along a cross-shelf gradient in the southwestern lagoon of New Caledonia. Diversity 11, 21 (2019).
    Article  Google Scholar 

    67.
    Bouchon, C. Quantitative study of the scleractinian coral communities of a fringing reef at Reunion Island (Indian Ocean). Mar. Ecol. Prog. Ser. 4, 273–288 (1981).
    ADS  Article  Google Scholar 

    68.
    Connell, J. H. Population ecology of reef-building corals. In Biology and Geology of Coral Reefs 205–245 (Elsevier, Amsterdam, 1973). https://doi.org/10.1016/B978-0-12-395526-5.50015-8.

    69.
    Clark, S. & Edwards, A. J. Use of artificial reef structures to rehabilitate reef flats degraded by coral mining in the Maldives. Bull. Mar. Sci. 55, 724–744 (1994).
    Google Scholar 

    70.
    Penin, L. et al. Early post-settlement mortality and the structure of coral assemblages. Mar. Ecol. Prog. Ser. 408, 55–64 (2010).
    ADS  Article  Google Scholar 

    71.
    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    72.
    Kayal, M., Vercelloni, J., Wand, M. P. & Adjeroud, M. Searching for the best bet in life-strategy: A quantitative approach to individual performance and population dynamics in reef-building corals. Ecol. Complex. 23, 73–84 (2015).
    Article  Google Scholar 

    73.
    Jouval, F., Latreille, A. C., Bureau, S., Adjeroud, M. & Penin, L. Multiscale variability in coral recruitment in the Mascarene Islands: From centimetric to geographical scale. PLoS ONE 14, e0214163 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Sutherland, J. P. & Karlson, R. H. Development and stability of the fouling community at Beaufort, North Carolina. Ecol. Monogr. 47, 452–446 (1977).
    Article  Google Scholar 

    75.
    Karlson, R. H. & Hurd, L. E. Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12, 117–125 (1993).
    ADS  Article  Google Scholar 

    76.
    Bramanti, L. & Edmunds, P. J. Density-associated recruitment mediates coral population dynamics on a coral reef. Coral Reefs 35, 543–553 (2016).
    ADS  Article  Google Scholar  More

  • in

    Soil bacterial community structures in relation to different oil palm management practices

    Site description and soil sampling
    The experiment was established as part of the EFForTS project (Ecological and socioeconomic Functions of tropical lowland rainForest Transformation Systems) in the Jambi province, located in Sumatra, Indonesia8.
    The experimental sites are located in the state-owned oil palm plantation PTPNVI, which was planted in 2002 (Fig. 1). All planted palms were derived from Tenera seedlings, which are a crossing between Dura and Psifera palms, supplied by Marihat (Medan, Indonesia). Four different locations (referred to as OM1-4) harbor four treatments, which were established in November 2016. In each of these 16 plots (50 × 50 m), five subplots were randomly established, resulting in 80 samples total.
    Fertilizer treatment was conducted in two intensities: for one application the conventional treatment usually used in the entire plantation with 130 kg nitrogen, 25 kg phosphorus and 110 kg potassium ha−1 and reduced fertilization with 68 kg nitrogen, 8.5 kg phosphorous and 93.5 kg potassium ha−1. Additionally, liming was conducted in all plots with equal amounts (213 kg dolomite and 71 kg micromag (micronutrients) ha−1). Fertilizer application and liming was done twice per year. The herbicide treatment used 375 cm3 glyphosate ha−1 sprayed within the palm circle four times per year and 375 cm3 glyphosate ha−1 in inter-rows applied twice per year15. The last application before sampling was done in April 2017. Mechanical weeding was done by cutting vegetation four times per year within the palm circle and two times per year in interrows with a brush cutter. The combination of these applications resulted in four different treatments: conventional fertilization with herbicide spraying (ch), conventional fertilization with mechanical weeding (cw), reduced fertilization with herbicide spraying (rh) and reduced fertilization with mechanical weeding (rw) (Table 1).
    Topsoil was sampled in May 2017 with a soil corer from the upper seven centimeters in each subplot with a diameter of five cm. A soil corer was used to take three cores in each subplot with a distance of 1 m to each other and at least 1 m distance to trees. The three bulk soil samples per subplot were homogenized and coarse roots and stones were removed. To prevent nucleic acids, especially RNA, from degradation RNAprotect Bacteria Reagent (Qiagen, Hilden, Germany) was applied in a ratio of 1:1. For measurements of soil parameters, we collected an additional sample, which was not supplemented with RNAprotect solution. All samples were transported in cooling boxes and stored at −80 °C until further use.
    Nucleic acid extraction
    Frozen samples were thawed on ice. RNAprotect was removed from all samples by centrifuging for 20 min at 804.96 g and 4 °C and discarding the resulting supernatant. DNA and RNA were co-extracted from 1 g of soil by using the Qiagen RNeasy PowerSoil Total RNA kit and the RNeasy PowerSoil DNA Elution kit as recommended by the manufacturer (Qiagen), except that RNA was eluted with 50 µl elution buffer instead of 100 µl. DNA contamination was removed from RNA preparations by using the TurboDNAfree kit (Applied Biosystems, Darmstadt, Germany). For this purpose, 0.1 volume DNAse buffer and 1 µl DNAse were added and incubated for 30 min at 37 °C. Subsequently, a second digestion cycle was performed with 0.5 µl DNAse at 37 °C for 15 min. RNA was then purified with the RNeasy MiniElute Cleanup kit (Qiagen). In order to verify complete DNA removal, a control amplification of the 16 S rRNA gene was performed as described below for 16 S rRNA gene amplification. Purified RNA was then reverse-transcribed into cDNA with the Superscript IV reverse transcriptase and a specific primer (5′-CCGTCAATTCMTTTGAGT-′3) as recommended by the manufacturer (Thermo Fisher Scientific, Schwerte, Germany). After cDNA synthesis, we removed residual RNA by adding 1 µl RNase H (New England Biolabs, Frankfurt am Main, Germany) to each reaction and incubation for 20 min at 37 °C. Obtained DNA and cDNA were stored at −20 °C until further use.
    16 S rRNA gene amplification and sequencing
    For amplification of 16 S rRNA sequences, we used 16 S rRNA gene primers targeting the V3-V4 region (forward primer: S-D-Bact-0341-b-S-17 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-CCTACGGGNGGCWGCAG-3′, reverse primer: S-D-Bact-0785-a-A-21 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-GACTACHVGGGTATCTAATCC-3′) as described by Klindworth22 and Herlemann23 and added adapters for MiSeq sequencing (underlined). PCR reactions were performed in a total volume 50 µl containing 10 µl of 5-fold Phusion GC buffer, 0.2 µl 50 mM MgCl2 solution, 2.5 µl DMSO, 200 µM of each of the four deoxynucleoside triphosphates and 1 U of Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific). We used 20 to 30 ng of DNA and 1 µl cDNA per reaction. The PCR reaction was started by an initial denaturation at 98 °C for 1 min, followed by 25 cycles of denaturation at 98 °C for 45 s, annealing at 60 °C for 45 s and elongation at 72 °C for 30 s. The final elongation was at 72 °C for 5 minutes. Amplicons were then purified by using MagSi-NGS PREP Plus magnetic beads following the procedure recommended by the manufacturer (Steinbrenner Laborsysteme GmbH, Wiesenbach, Germany) with the Janus Automated Workstation from Perkin Elmer (Perkin Elmer, Waltham Massachusetts, USA). Illumina MiSeq sequencing adapters were attached to the purified amplicons with the Nextera XT Index kit (Illumina, San Diego, USA). The Index PCR was done by using 5 µl of template PCR product, 2.5 µl of each index primer, 12.5 µl of 2x KAPA HiFi HotStart ReadyMix and 2.5 µl PCR grade water. Thermal cycling scheme was as follows: 95 °C for 3 min, 8 cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C and a final extension at 72 °C for 5 min. The indexed products were purified as described before. Products were quantified by using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer following the instructions of the manufacturer (Invitrogen GmbH, Karlsruhe, Germany). Purified amplicons were sequenced by the Göttingen Genomics Laboratory with a MiSeq instrument with a read length of 2 × 300 bp using dual indexing and reagent kit v3 (600 cycles) as recommended by the manufacturer (Illumina).
    Sequence processing
    We obtained 6,817,019 amplicon sequences with 5,183,993 remaining sequences after quality-filtering from DNA samples. At RNA level 6,412,838 raw sequences with 3,601,637 remaining sequences after quality-filtering were obtained24.
    Obtained paired-end sequences were first quality-filtered with fastp version 0.2025 using a minimum phred score of 20, a minimum length of 50 bases, the default sliding window size (–cut_window_size = 4), read correction by overlap (option “correction”), adapter removal of the sequencing primers (option “adapter_fasta”), and the provided index sequences of Illumina. Quality-filtered paired-end reads were merged with PEAR version 0.9.11 and default settings26. Primer sequences were clipped with cutadapt version 2.5 and default settings27. All further steps, except mapping of sequences to ASVs (Amplicon Sequence Variant) were performed with functions implemented in vsearch version 2.1.4.128. Sequences were filtered by size with “sortbylength” with a set minimum length of 300 bp. Dereplication of identical sequences was done by “derep_fulllength”. Denoising and removal of low abundant sequences with less than eight replicates were done with the vsearch UNOISE3 module “cluster_unoise”. Chimeric sequences were removed by employing the UCHIME module of vsearch. This included a de novo chimera removal (“uchime3_denovo”) and a reference-based chimera removal (“uchime_ref”) against the SILVA SSU 138 NR database29. Sequences were mapped to ASVs by vsearch (“usearch_global”) with a set sequence identity threshold of 0.97. Taxonomy assignments were performed with BLASTN30 (version 2.9.0) against the SILVA SSU 138 NR database29 with an minimum identity threshold of 90%31. In addition to the taxonomy identity, we added the taxonomy id of the database, length of fragment, query percentage identity, query coverage and e-value in the taxonomy string of the table. We used identity (pident) and query coverage (qcovs) per ASV of the blast output to exclude uncertain blast hits. As recommended by the SILVA ribosomal RNA database project32, we removed the taxonomic assignment for blast hits if dividing the sum of percent identity and percent query coverage by 2 resulted in ≤93%. In total, 31,987 ASVs were used for downstream analysis.
    Bacterial community analysis
    The bacterial community composition was further analysed in R33 (version 3.6.1) and RStudio34 (version 1.1.463). ASV counts were normalized by using the Geometric Mean of Pairwise Ratios (GMPR) of the GMPR package version 0.1.335. Community compositions were then analysed by the ampvis2 package version 2.4.11 and “amp_heatmap” at genus level36. The fifteen most abundant genera were displayed as relative abundance and clustered at treatment level. Heat-trees were displayed by the metacoder37 package (version 0.3.2.9001).
    For heat-tree calculation all counts were summed at order level and all taxa with a relative abundance of More

  • in

    Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported

    1.
    Nazni, W. A. et al. Establishment of Wolbachia Strain wAlbB in Malaysian populations of Aedes aegypti for Dengue control. Curr. Biol. 29, 4241–4248 (2019). e4245.
    CAS  Article  Google Scholar 
    2.
    Ryan, P. A. et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 3, 1547 (2019).
    Article  Google Scholar 

    3.
    King, J. G., Souto-Maior, C., Sartori, L. M., Maciel-de-Freitas, R. & Gomes, M. G. M. Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nat. Commun. 9, 1483 (2018).
    ADS  Article  Google Scholar 

    4.
    Souto-Maior, C., Sylvestre, G., Braga Stehling Dias, F., Gomes, M. G. M. & Maciel-de-Freitas, R. Model-based inference from multiple dose, time course data reveals Wolbachia effects on infection profiles of type 1 dengue virus in Aedes aegypti. PLoS Negl. Trop. Dis. 12, e0006339 (2018).
    Article  Google Scholar 

    5.
    Ferguson, N. M. et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Transl. Med. 7, 279ra237 (2015).
    Article  Google Scholar 

    6.
    Ant, T. H., Herd, C. S., Geoghegan, V., Hoffmann, A. A. & Sinkins, S. P. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 14, e1006815 (2018).
    Article  Google Scholar 

    7.
    Walker, T. et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450–453 (2011).
    ADS  CAS  Article  Google Scholar 

    8.
    Frentiu, F. D. et al. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 8, e2688 (2014).
    Article  Google Scholar 

    9.
    Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).
    Article  Google Scholar 

    10.
    Fraser, J. E. et al. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog. 13, e1006751 (2017).
    Article  Google Scholar 

    11.
    Joubert, D. A. et al. Establishment of a Wolbachia superinfection in Aedes aegypti Mosquitoes as a potential approach for future resistance management. PLoS Pathog. 12, e1005434 (2016).
    Article  Google Scholar 

    12.
    Bian, G., Xu, Y., Lu, P., Xie, Y. & Xi, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 6, e1000833 (2010).
    Article  Google Scholar 

    13.
    Chouin-Carneiro, T. et al. Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti. Med. Vet. Entomol. https://doi.org/10.1111/mve.12384 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Pacidonio, E. C., Caragata, E. P., Alves, D. M., Marques, J. T. & Moreira, L. A. The impact of Wolbachia infection on the rate of vertical transmission of dengue virus in Brazilian Aedes aegypti. Parasit. Vectors 10, 296 (2017).
    Article  Google Scholar 

    15.
    Duong, V. et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc. Natl Acad. Sci. USA 112, 14688–14693 (2015).
    ADS  CAS  Article  Google Scholar  More

  • in

    Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations

    1.
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
    Google Scholar 
    2.
    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).
    Google Scholar 

    3.
    Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014).
    Google Scholar 

    4.
    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 

    5.
    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philos. Trans. R. Soc. A 373, 20140423 (2015).
    Google Scholar 

    6.
    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 68, 12–26 (2003).
    Google Scholar 

    7.
    Harding, T., Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Microbes in High Arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 77, 3234–3243 (2011).
    Google Scholar 

    8.
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
    Google Scholar 

    9.
    Bier, R. L. et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol. Ecol. 91, fiv113 (2015).
    Google Scholar 

    10.
    Nunan, N., Leloup, J., Ruamps, L. S., Pouteau, V. & Chenu, C. Effects of habitat constraints on soil microbial community function. Sci. Rep. 7, 4280 (2017).
    Google Scholar 

    11.
    Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 214 (2016).
    Google Scholar 

    12.
    Schimel, J. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. & Körner, C.) 239–254 (Springer, 1995).

    13.
    Schimel, J. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).
    Google Scholar 

    14.
    Bottos, E. M. et al. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, fiy110 (2018).
    Google Scholar 

    15.
    Jansson, J. K. & Tas, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).
    Google Scholar 

    16.
    Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).
    Google Scholar 

    17.
    Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).
    Google Scholar 

    18.
    Monteux, S. et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J. 12, 2129–2141 (2018).
    Google Scholar 

    19.
    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).
    Google Scholar 

    20.
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).
    Google Scholar 

    21.
    Sanders, T., Fiencke, C., Hüpeden, J., Pfeiffer, E. M. & Spieck, E. Cold adapted Nitrosospira sp.: a potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in Northeast Siberia. Microorganisms 7, 699 (2019).
    Google Scholar 

    22.
    Hill, K. A. et al. Processing of atmospheric nitrogen by clouds above a forest environment. J. Geophys. Res. Atmos. 112, D11301 (2007).
    Google Scholar 

    23.
    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 1160–1172 (2013).
    Google Scholar 

    24.
    Wild, B. et al. Plant-derived compounds stimulate the decomposition of organic matter in Arctic permafrost soils. Sci. Rep. 6, 25607 (2016).
    Google Scholar 

    25.
    Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 172, 75–86 (2017).
    Google Scholar 

    26.
    Wertz, S. et al. Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8, 2162–2169 (2006).
    Google Scholar 

    27.
    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).
    Google Scholar 

    28.
    Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).
    Google Scholar 

    29.
    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
    Google Scholar 

    30.
    Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 

    31.
    Elberling, B., Christiansen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nat. Geosci. 3, 332–335 (2010).
    Google Scholar 

    32.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
    Google Scholar 

    33.
    Gittel, A. et al. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 8, 841–853 (2014).
    Google Scholar 

    34.
    Weiss, N. et al. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region. Sediment. Geol. 340, 38–48 (2016).
    Google Scholar 

    35.
    Inglese, C. N. et al. Examination of soil microbial communities after permafrost thaw subsequent to an active layer detachment in the High Arctic. Arct. Antarct. Alp. Res. 49, 455–472 (2017).
    Google Scholar 

    36.
    Wild, B. et al. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in Western Siberia. Glob. Biogeochem. Cycles 29, 567–582 (2015).
    Google Scholar 

    37.
    Voigt, C. et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proc. Natl Acad. Sci. USA 114, 6238–6243 (2017).
    Google Scholar 

    38.
    Wrage-Mönnig, N. et al. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 123, A3–A16 (2018).
    Google Scholar 

    39.
    Siljanen, H. M. P. et al. Archaeal nitrification is a key driver of high nitrous oxide emissions from Arctic peatlands. Soil Biol. Biochem. 137, 107539 (2019).
    Google Scholar 

    40.
    Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).
    Google Scholar 

    41.
    Keuper, F. et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 23, 4257–4266 (2017).
    Google Scholar 

    42.
    Liu, X.-Y. et al. Nitrate is an important nitrogen source for Arctic tundra plants. Proc. Natl Acad. Sci. USA 115, 3398–3403 (2018).
    Google Scholar 

    43.
    Myrstener, M. et al. Persistent nitrogen limitation of stream biofilm communities along climate gradients in the Arctic. Glob. Change Biol. 24, 3680–3691 (2018).
    Google Scholar 

    44.
    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).
    Google Scholar 

    45.
    Holm, S. et al. Methanogenic response to long-term permafrost thaw is determined by paleoenvironment. FEMS Microbiol. Ecol. 96, fiaa021 (2020).
    Google Scholar 

    46.
    Douglas, T. A. et al. Biogeochemical and geocryological characteristics of wedge and thermokarst-cave ice in the CRREL permafrost tunnel, Alaska. Permafr. Periglac. Process. 22, 120–128 (2011).
    Google Scholar 

    47.
    Long, A. & Péwé, T. L. Radiocarbon dating by high-sensitivity liquid scintillation counting of wood from the Fox permafrost tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 7, 281–285 (1996).
    Google Scholar 

    48.
    Hamilton, T. D., Craig, J. L. & Sellmann, P. V. The Fox permafrost tunnel: a late Quaternary geologic record in central Alaska. GSA Bull. 100, 948–969 (1988).
    Google Scholar 

    49.
    Shur, Y., French, H. M., Bray, M. T. & Anderson, D. A. Syngenetic permafrost growth: cryostratigraphic observations from the CRREL tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 15, 339–347 (2004).
    Google Scholar 

    50.
    Howard, M. M., Bell, T. H. & Kao-Kniffin, J. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment. FEMS Microbiol. Lett. 364, fnx092 (2017).
    Google Scholar 

    51.
    Patra, A. K. et al. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecol. Monogr. 75, 65–80 (2005).
    Google Scholar 

    52.
    Fontaine, S. et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 43, 86–96 (2011).
    Google Scholar 

    53.
    Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nat. Clim. Change 3, 890–894 (2013).
    Google Scholar 

    54.
    Walz, J., Knoblauch, C., Böhme, L. & Pfeiffer, E.-M. Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils—impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol. Biochem. 110, 34–43 (2017).
    Google Scholar 

    55.
    Weedon, J. T. et al. Temperature sensitivity of peatland C and N cycling: does substrate supply play a role? Soil Biol. Biochem. 61, 109–120 (2013).
    Google Scholar 

    56.
    Ping, C. L. Soil temperature profiles of two Alaskan soils. Soil Sci. Soc. Am. J. 51, 1010–1018 (1987).
    Google Scholar 

    57.
    D’Amico, S. et al. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7, 385–389 (2006).
    Google Scholar 

    58.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
    Google Scholar 

    59.
    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation–extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).
    Google Scholar 

    60.
    Rotthauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
    Google Scholar 

    61.
    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364 (2008).
    Google Scholar 

    62.
    Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).
    Google Scholar 

    63.
    Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).
    Google Scholar 

    64.
    Muyzer, G., Waal, E. Cde & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
    Google Scholar 

    65.
    Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).
    Google Scholar 

    66.
    Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9, e90234 (2014).
    Google Scholar 

    67.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    Google Scholar 

    68.
    Morgan, M. et al. ShortRead: a Bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).
    Google Scholar 

    69.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    Google Scholar 

    70.
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).
    Google Scholar 

    71.
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).
    Google Scholar 

    72.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    Google Scholar 

    73.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    Google Scholar 

    74.
    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).
    Google Scholar 

    75.
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).
    Google Scholar 

    76.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    Google Scholar 

    77.
    Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 5, e2836 (2017).
    Google Scholar 

    78.
    White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979).
    Google Scholar 

    79.
    Olsson, P. A., Bååth, E., Jakobsen, I. & Söderström, B. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629 (1995).
    Google Scholar 

    80.
    Ruess, L. & Chamberlain, P. M. The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 42, 1898–1910 (2010).
    Google Scholar 

    81.
    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29, 111–129 (1999).
    Google Scholar 

    82.
    Frostegård, A. & Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65 (1996).
    Google Scholar 

    83.
    Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Google Scholar 

    84.
    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).
    Google Scholar 

    85.
    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).
    Google Scholar 

    86.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    Google Scholar 

    87.
    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 10, e1003531 (2014).
    Google Scholar 

    88.
    Pinto, A. J. et al. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. mSphere 1, e00054-15 (2016).
    Google Scholar 

    89.
    Kozlowski, J. A., Kits, K. D. & Stein, L. Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front. Microbiol. 7, 1090 (2016).
    Google Scholar 

    90.
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).
    Google Scholar 

    91.
    Kuhn, M. caret: Classification and Regression Training v.6.0-86 (2020); https://CRAN.R-project.org/package=caret

    92.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 

    93.
    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).

    94.
    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: an R package for variable selection using random forests. R J. 7, 19–33 (2015).
    Google Scholar 

    95.
    R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More