Nitrogen isotopic signatures and fluxes of N2O in response to land-use change on naturally occurring saline–alkaline soil
1.
Myhre, G. et al. Anthropogenic and natural radiative forcing. In Climate change 2013: The physical science basis; Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (ed. Stocker, T.) 659–740 (Cambridge University Press, Cambridge, 2014).
Google Scholar
2.
Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).
ADS CAS PubMed Article Google Scholar
3.
Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M. & Richardson, D. J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. B Biol. Sci. 367(1593), 1157–1168 (2012).
CAS Article Google Scholar
4.
NoAA, ESLR (2019). https://www.esrl.noaa.gov/gmd/hats/insitu/cats/conc.php?site=brw&gas=n2o. Accessed on 01 May 2019.
5.
Park, S. et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5, 261–265 (2012).
ADS CAS Article Google Scholar
6.
Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2, 659–662 (2009).
ADS CAS Article Google Scholar
7.
Hu, H., Chen, D. & He, J. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39(5), 729–749 (2015).
CAS PubMed Article Google Scholar
8.
Zhou, M., Butterbach-Bahl, K., Vereecken, H. & Brüggemann, N. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Glob. Chang. Biol. 23, 1338–1352 (2017).
ADS PubMed Article Google Scholar
9.
Inubushi, K., Barahona, M. A. & Yamakawa, K. Effects of salts and moisture content on N2O emission and nitrogen dynamics in Yellow soil and Andosol in model experiments. Biol. Fertil. Soils 29, 401–407 (1999).
CAS Article Google Scholar
10.
Yang, W., Yang, M., Wen, H. & Jiao, Y. Global warming potential of CH4 uptake and N2O emissions in saline–alkaline soils. Atmos. Environ. 191, 172–180 (2018).
ADS CAS Article Google Scholar
11.
Aliyu, G. et al. A meta-analysis of soil background N2O emissions from croplands in China shows variation among climatic zones. Agric. Ecosyst. Environ. 267, 63–73 (2018).
CAS Article Google Scholar
12.
Wang, Y. et al. Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation. Glob. Chang. Biol. 24, 617–626 (2018).
Article Google Scholar
13.
Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 16, 81–814 (2002).
Google Scholar
14.
Allen, D. E. et al. Nitrous oxide and methane emissions from soil are reduced following afforestation of pasture lands in three contrasting climatic zones. Soil Res. 47, 443 (2009).
ADS CAS Article Google Scholar
15.
Pendall, E. et al. Land use and season affect fluxes of CO2, CH4, CO, N2O, H2 and isotopic source signatures in Panama: Evidence from nocturnal boundary layer profiles. Glob. Chang. Biol. 16, 2721–2736 (2010).
ADS Article Google Scholar
16.
Van Lent, J., Hergoualc, H. K. & Verchot, L. V. Reviews and syntheses: Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: A meta-analysis. Biogeosciences 12, 7299–7313 (2015).
ADS Article Google Scholar
17.
Benanti, G., Saunders, M., Tobin, B. & Osborne, B. Contrasting impacts of afforestation on nitrous oxide and methane emissions. Agric. For. Meteorol. 198–199, 82–93 (2014).
ADS Article Google Scholar
18.
de Godoi, S. G. et al. The conversion of grassland to acacia forest as an effective option for net reduction in greenhouse gas emissions. J. Environ. Manag. 169, 91–102 (2016).
Article CAS Google Scholar
19.
Zona, D. et al. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land. Agric. For. Meteorol. 169, 100–110 (2013).
ADS Article Google Scholar
20.
Li, C., Di, H. J., Cameron, K. C., Podolyan, A. & Zhu, B. Effect of different land use and land use change on ammonia oxidiser abundance and N2O emissions. Soil Biol. Biochem. 96, 169–175 (2016).
CAS Article Google Scholar
21.
Ussiri, D. & Lal, R. Soil Emission of Nitrous Oxide and Its Mitigation (Springer, Netherlands, 2013).
Google Scholar
22.
Butterbach-Bahl, K. et al. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?. Philos Trans. R. Soc. B Biol. Sci. 368, 1621. https://doi.org/10.1098/rstb.2013.0122 (2013).
CAS Article Google Scholar
23.
Sarauer, J. L. & Coleman, M. D. Converting conventional agriculture to poplar bioenergy crops: Soil greenhouse gas flux. Scand. J. For. Res. 33, 781–792 (2018).
Article Google Scholar
24.
Denk, T. R. A. et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 105, 121–137 (2017).
CAS Article Google Scholar
25.
Park, S. et al. Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils ?. Glob. Biogeochem. Cycles 25, 1–16 (2011).
CAS Article Google Scholar
26.
Koba, K. et al. The 15N natural abundance of the N lost from an N-saturated subtropical forest in southern China. J. Geophys. Res. Biogeosci. 117, G2. https://doi.org/10.1029/2010JG001615 (2012).
CAS Article Google Scholar
27.
Gil, J., Pérez, T., Boering, K., Martikainen, P. J. & Biasi, C. Mechanisms responsible for high N2O emissions from subarctic permafrost peatlands studied via stable isotope techniques. Glob. Biogeochem. Cycles 31, 172–189 (2017).
CAS Article Google Scholar
28.
Pérez, T. et al. Identifying the agricultural imprint on the global N2O budget using stable isotopes. J. Geophys. Res. Atmos. 106, 9869–9878 (2001).
ADS Article Google Scholar
29.
Conen, F. & Neftel, Æ. A. Do increasingly depleted d 15N values of atmospheric N2O indicate a decline in soil N2O reduction ?. Biogeochemistry 82(3), 321–326 (2007).
CAS Article Google Scholar
30.
Wada, E. & Ueda, S. Carbon, nitrogen, and oxygen isotope ratios of CH4 and N2O in soil ecosystems. In Mass Spectrometry of Soils (eds Boutton, T. W. & Yamaski, S. I.) 177–203 (Marchel Dekker, New York, 1996).
Google Scholar
31.
Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 108, 3465–3472 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
32.
Shi, Z., Wang, R., Huang, M. X. & Landgraf, D. Detection of coastal saline land uses with multi-temporal landsat images in Shangyu City, China. Environ. Manag. 30, 142–150 (2002).
Article Google Scholar
33.
Manning, M. et al. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007).
Google Scholar
34.
Cui, B., Yang, Q., Zhang, K., Zhao, X. & You, Z. Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China. Plant Ecol. 209, 279–290 (2010).
Article Google Scholar
35.
Feng, X. et al. Spatiotemporal heterogeneity of soil water and salinity after establishment of dense-foliage Tamarix chinensis on coastal saline land. Ecol. Eng. 121, 104–113 (2018).
Article Google Scholar
36.
Zhang, L. L. et al. Seasonal dynamics in nitrous oxide emissions under different types of vegetation in saline–alkaline soils of the Yellow River Delta, China and implications for eco-restoring coastal wetland. Ecol. Eng. 61, 82–89 (2013).
ADS Article Google Scholar
37.
Abalos, D., van Groenigen, J. W. & De Deyn, G. B. What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands?. Glob. Chang. Biol. 24, 248–258 (2018).
Article Google Scholar
38.
Ju, Z., Du, Z., Guo, K. & Liu, X. Irrigation with freezing saline water for 6 years alters salt ion distribution within soil aggregates. J. Soils Sedim. 19, 97–105 (2019).
CAS Article Google Scholar
39.
Li, F. et al. Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds. Sci. Total Environ. 655, 284–291 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar
40.
Snider, D., Thompson, K., Wagner-Riddle, C., Spoelstra, J. & Dunfield, K. Molecular techniques and stable isotope ratios at natural abundance give complementary inferences about N2O production pathways in an agricultural soil following a rainfall event. Soil Biol. Biochem. 88, 197–213 (2015).
CAS Article Google Scholar
41.
Dong, W. H., Zhang, S., Rao, X. & Liu, C.-A. Newly-reclaimed alfalfa forage land improved soil properties comparison to farmland in wheat–maize cropping systems at the margins of oases. Ecol. Eng. 94, 57–64 (2016).
Article Google Scholar
42.
Livesley, S. J. et al. Soil–atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Glob. Chang. Biol. 15, 425–440 (2009).
ADS Article Google Scholar
43.
Lin, S. et al. Differences in nitrous oxide fluxes from red soil under different land uses in mid-subtropical China. Agric. Ecosyst. Environ. 146, 168–178 (2012).
ADS CAS Article Google Scholar
44.
Song, A. et al. Substrate-driven microbial response: A novel mechanism contributes significantly to temperature sensitivity of N2O emissions in upland arable soil. Soil Biol. Biochem. 118, 18–26 (2018).
CAS Article Google Scholar
45.
Huang, X. et al. A flexible Bayesian model for describing temporal variability of N2O emissions from an Australian pasture. Sci. Total Environ. 454, 206–210 (2013).
ADS PubMed Article CAS Google Scholar
46.
Nan, W. et al. Characteristics of N2O production and transport within soil profiles subjected to different nitrogen application rates in China. Sci. Total Environ. 542, 864–875 (2016).
ADS CAS PubMed Article Google Scholar
47.
Chaddy, A., Melling, L., Ishikura, K. & Hatano, R. Soil N2O emissions under different N rates in an oil palm plantation on tropical peatland. Agriculture 9, 213. https://doi.org/10.3390/agriculture9100213 (2019).
CAS Article Google Scholar
48.
Davidson, E. A. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci. Soc. Am. J. 56, 95–102 (1992).
ADS CAS Article Google Scholar
49.
Kazuya, N. et al. Evaluation of uncertinities in N2O and NO fluxes from agricultural soil using a hierarchical bayesian model. J Geophys Res. 117, G04008. https://doi.org/10.1029/2012JG002157 (2012).
ADS CAS Article Google Scholar
50.
Sakata, R. et al. Effect of soil types and nitrogen fertilizer on nitrous oxide and carbon dioxide emissions in oil palm plantations. Soil Sci. Plant Nutr. 61, 48–60 (2015).
CAS Article Google Scholar
51.
Smith, K. A. Changing views of nitrous oxide emissions from agricultural soil: Key controlling processes and assessment at different spatial scales. Eur. J. Soil Sci. 68, 137–155 (2017).
CAS Article Google Scholar
52.
Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).
CAS Article Google Scholar
53.
Chapuis-lardy, L., Wrage, N., Metay, A., Chotte, J. L. & Bernoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 13, 1–17 (2007).
ADS Article Google Scholar
54.
Glatzel, S. & Stahr, K. Methane and nitrous oxide exchange in differently fertilised grassland in southern Germany. Plant Soil 231, 21–35 (2001).
CAS Article Google Scholar
55.
Saggar, S. et al. Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 465, 173–195 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
56.
Warneke, S., Schipper, L. A., Bruesewitz, D. A., Mcdonald, I. & Cameron, S. Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecol. Eng. 37, 511–522 (2011).
Article Google Scholar
57.
Wang, Y. et al. Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China. Geoderma 319, 100–112 (2018).
ADS CAS Article Google Scholar
58.
Wu, D. et al. N2O consumption by low-nitrogen soil and its regulation by water and oxygen. Soil Biol. Biochem. 60, 165–172 (2013).
CAS Article Google Scholar
59.
Dijkstra, F. A., Morgan, J. A., Follett, R. F. & LeCain, D. R. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Glob. Chang. Biol. 19, 1816–1826 (2013).
ADS PubMed Article PubMed Central Google Scholar
60.
Ryden, J. C. Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. J. Soil Sci. 34, 355–365 (1983).
CAS Article Google Scholar
61.
Rosenkranz, P. et al. N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences 3(2), 121–133 (2006).
ADS CAS Article Google Scholar
62.
Menyailo, O. V. & Hungate, B. A. Stable isotope discrimination during soil denitrification: Production and consumption of nitrous oxide. Glob. Biochem. Cycle. 20, 3. https://doi.org/10.1029/2005GB002527 (2006).
CAS Article Google Scholar
63.
Roobroeck, D., Butterbach-Bahl, K., Brüggemann, N. & Boeckx, P. Dinitrogen and nitrous oxide exchanges from an undrained monolith fen: Short-term responses following nitrate addition. Eur. J. Soil Sci. 61, 662–670 (2010).
CAS Article Google Scholar
64.
Kammann, C., Grünhage, L., Müller, C., Jacobi, S. & Jäger, H.-J. Seasonal variability and mitigation options for N2O emissions from differently managed grasslands. Environ. Pollut. 102, 179–186 (1998).
CAS Article Google Scholar
65.
Yang, X. et al. Nitrous oxide emissions from an agro-pastoral ecotone of northern China depending on land uses. Agric. Ecosyst. Environ. 213, 241–251 (2015).
CAS Article Google Scholar
66.
Peng, Q., Qi, Y., Dong, Y., Xiao, S. & He, Y. Soil nitrous oxide emissions from a typical semiarid temperate steppe in inner Mongolia: Effects of mineral nitrogen fertilizer levels and forms. Plant Soil 342, 345–357 (2011).
CAS Article Google Scholar
67.
Eggleston, S. et al. (eds) IPCC Guidelines for National Greenhouse Gas Inventories (Institute for Global Environmental Strategies, Hayama, 2006).
Google Scholar
68.
Qin, S. et al. Yield-scaled N2O emissions in a winter wheat-summer corn double-cropping system. Atmos. Environ. 55, 240–244 (2012).
ADS CAS Article Google Scholar
69.
Blackmer, A. M. & Bremner, J. M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol. Biochem. 10, 187–191 (1978).
CAS Article Google Scholar
70.
Ghosh, U., Thapa, R., Desutter, T., He, Y. & Chatterjee, A. Saline-sodic soils: Potential sources of nitrous oxide and carbon dioxide emissions?. Pedosphere 27, 65–75 (2017).
Article Google Scholar
71.
Townsend-Small, A. et al. Nitrous oxide emissions and isotopic composition in urban and agricultural systems in southern California. J. Geophys. Res. Biogeosci. 116, 1–11 (2011).
Article CAS Google Scholar
72.
Mariotti, A. et al. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant Soil 62, 413–430 (1981).
CAS Article Google Scholar
73.
Ibraim, E. et al. Attribution of N2O sources in a grassland soil with laser spectroscopy based isotopocule analysis. Biogeosciences 16(16), 3247–3266 (2019).
ADS CAS Article Google Scholar
74.
Timilsina, A. et al. Potential pathway of nitrous oxide formation in plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.01177 (2020).
Article PubMed PubMed Central Google Scholar
75.
Webster, E. A. & Hopkins, D. W. Nitrogen and oxygen isotope ratios of nitrous oxide emitted from soil and produced by nitrifying and denitrifying bacteria. Biol. Fertil. Soils 22, 326–330 (1996).
CAS Article Google Scholar
76.
Wrage, N. et al. Distinguishing sources of N2O in European grasslands by stable isotope analysis. Rapid Commun. Mass Spectrom. 18, 1201–1207 (2004).
ADS CAS PubMed Article PubMed Central Google Scholar
77.
Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H. & Breznak, J. A. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun. Mass Spectrom. 17, 738–745 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar
78.
Röckmann, T., Kaiser, J. & Brenninkmeijer, C. A. M. The isotopic fingerprint of the pre-industrial and the anthropogenic N2O source. Atmos. Chem. Phys. 3, 315–323 (2003).
ADS Article Google Scholar More
